xref: /openbmc/linux/arch/x86/kvm/svm/sev.c (revision 75020f2d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9 
10 #include <linux/kvm_types.h>
11 #include <linux/kvm_host.h>
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/psp-sev.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/misc_cgroup.h>
18 #include <linux/processor.h>
19 #include <linux/trace_events.h>
20 #include <asm/fpu/internal.h>
21 
22 #include <asm/trapnr.h>
23 
24 #include "x86.h"
25 #include "svm.h"
26 #include "svm_ops.h"
27 #include "cpuid.h"
28 #include "trace.h"
29 
30 #define __ex(x) __kvm_handle_fault_on_reboot(x)
31 
32 #ifndef CONFIG_KVM_AMD_SEV
33 /*
34  * When this config is not defined, SEV feature is not supported and APIs in
35  * this file are not used but this file still gets compiled into the KVM AMD
36  * module.
37  *
38  * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
39  * misc_res_type {} defined in linux/misc_cgroup.h.
40  *
41  * Below macros allow compilation to succeed.
42  */
43 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES
44 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
45 #endif
46 
47 #ifdef CONFIG_KVM_AMD_SEV
48 /* enable/disable SEV support */
49 static bool sev_enabled = true;
50 module_param_named(sev, sev_enabled, bool, 0444);
51 
52 /* enable/disable SEV-ES support */
53 static bool sev_es_enabled = true;
54 module_param_named(sev_es, sev_es_enabled, bool, 0444);
55 #else
56 #define sev_enabled false
57 #define sev_es_enabled false
58 #endif /* CONFIG_KVM_AMD_SEV */
59 
60 static u8 sev_enc_bit;
61 static DECLARE_RWSEM(sev_deactivate_lock);
62 static DEFINE_MUTEX(sev_bitmap_lock);
63 unsigned int max_sev_asid;
64 static unsigned int min_sev_asid;
65 static unsigned long sev_me_mask;
66 static unsigned long *sev_asid_bitmap;
67 static unsigned long *sev_reclaim_asid_bitmap;
68 
69 struct enc_region {
70 	struct list_head list;
71 	unsigned long npages;
72 	struct page **pages;
73 	unsigned long uaddr;
74 	unsigned long size;
75 };
76 
77 /* Called with the sev_bitmap_lock held, or on shutdown  */
78 static int sev_flush_asids(int min_asid, int max_asid)
79 {
80 	int ret, pos, error = 0;
81 
82 	/* Check if there are any ASIDs to reclaim before performing a flush */
83 	pos = find_next_bit(sev_reclaim_asid_bitmap, max_asid, min_asid);
84 	if (pos >= max_asid)
85 		return -EBUSY;
86 
87 	/*
88 	 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
89 	 * so it must be guarded.
90 	 */
91 	down_write(&sev_deactivate_lock);
92 
93 	wbinvd_on_all_cpus();
94 	ret = sev_guest_df_flush(&error);
95 
96 	up_write(&sev_deactivate_lock);
97 
98 	if (ret)
99 		pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
100 
101 	return ret;
102 }
103 
104 static inline bool is_mirroring_enc_context(struct kvm *kvm)
105 {
106 	return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
107 }
108 
109 /* Must be called with the sev_bitmap_lock held */
110 static bool __sev_recycle_asids(int min_asid, int max_asid)
111 {
112 	if (sev_flush_asids(min_asid, max_asid))
113 		return false;
114 
115 	/* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
116 	bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
117 		   max_sev_asid);
118 	bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid);
119 
120 	return true;
121 }
122 
123 static int sev_asid_new(struct kvm_sev_info *sev)
124 {
125 	int pos, min_asid, max_asid, ret;
126 	bool retry = true;
127 	enum misc_res_type type;
128 
129 	type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
130 	WARN_ON(sev->misc_cg);
131 	sev->misc_cg = get_current_misc_cg();
132 	ret = misc_cg_try_charge(type, sev->misc_cg, 1);
133 	if (ret) {
134 		put_misc_cg(sev->misc_cg);
135 		sev->misc_cg = NULL;
136 		return ret;
137 	}
138 
139 	mutex_lock(&sev_bitmap_lock);
140 
141 	/*
142 	 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
143 	 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
144 	 */
145 	min_asid = sev->es_active ? 0 : min_sev_asid - 1;
146 	max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
147 again:
148 	pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_asid);
149 	if (pos >= max_asid) {
150 		if (retry && __sev_recycle_asids(min_asid, max_asid)) {
151 			retry = false;
152 			goto again;
153 		}
154 		mutex_unlock(&sev_bitmap_lock);
155 		ret = -EBUSY;
156 		goto e_uncharge;
157 	}
158 
159 	__set_bit(pos, sev_asid_bitmap);
160 
161 	mutex_unlock(&sev_bitmap_lock);
162 
163 	return pos + 1;
164 e_uncharge:
165 	misc_cg_uncharge(type, sev->misc_cg, 1);
166 	put_misc_cg(sev->misc_cg);
167 	sev->misc_cg = NULL;
168 	return ret;
169 }
170 
171 static int sev_get_asid(struct kvm *kvm)
172 {
173 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
174 
175 	return sev->asid;
176 }
177 
178 static void sev_asid_free(struct kvm_sev_info *sev)
179 {
180 	struct svm_cpu_data *sd;
181 	int cpu, pos;
182 	enum misc_res_type type;
183 
184 	mutex_lock(&sev_bitmap_lock);
185 
186 	pos = sev->asid - 1;
187 	__set_bit(pos, sev_reclaim_asid_bitmap);
188 
189 	for_each_possible_cpu(cpu) {
190 		sd = per_cpu(svm_data, cpu);
191 		sd->sev_vmcbs[pos] = NULL;
192 	}
193 
194 	mutex_unlock(&sev_bitmap_lock);
195 
196 	type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
197 	misc_cg_uncharge(type, sev->misc_cg, 1);
198 	put_misc_cg(sev->misc_cg);
199 	sev->misc_cg = NULL;
200 }
201 
202 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
203 {
204 	struct sev_data_decommission decommission;
205 	struct sev_data_deactivate deactivate;
206 
207 	if (!handle)
208 		return;
209 
210 	deactivate.handle = handle;
211 
212 	/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
213 	down_read(&sev_deactivate_lock);
214 	sev_guest_deactivate(&deactivate, NULL);
215 	up_read(&sev_deactivate_lock);
216 
217 	/* decommission handle */
218 	decommission.handle = handle;
219 	sev_guest_decommission(&decommission, NULL);
220 }
221 
222 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
223 {
224 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
225 	bool es_active = argp->id == KVM_SEV_ES_INIT;
226 	int asid, ret;
227 
228 	if (kvm->created_vcpus)
229 		return -EINVAL;
230 
231 	ret = -EBUSY;
232 	if (unlikely(sev->active))
233 		return ret;
234 
235 	sev->es_active = es_active;
236 	asid = sev_asid_new(sev);
237 	if (asid < 0)
238 		goto e_no_asid;
239 	sev->asid = asid;
240 
241 	ret = sev_platform_init(&argp->error);
242 	if (ret)
243 		goto e_free;
244 
245 	sev->active = true;
246 	sev->asid = asid;
247 	INIT_LIST_HEAD(&sev->regions_list);
248 
249 	return 0;
250 
251 e_free:
252 	sev_asid_free(sev);
253 	sev->asid = 0;
254 e_no_asid:
255 	sev->es_active = false;
256 	return ret;
257 }
258 
259 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
260 {
261 	struct sev_data_activate activate;
262 	int asid = sev_get_asid(kvm);
263 	int ret;
264 
265 	/* activate ASID on the given handle */
266 	activate.handle = handle;
267 	activate.asid   = asid;
268 	ret = sev_guest_activate(&activate, error);
269 
270 	return ret;
271 }
272 
273 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
274 {
275 	struct fd f;
276 	int ret;
277 
278 	f = fdget(fd);
279 	if (!f.file)
280 		return -EBADF;
281 
282 	ret = sev_issue_cmd_external_user(f.file, id, data, error);
283 
284 	fdput(f);
285 	return ret;
286 }
287 
288 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
289 {
290 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
291 
292 	return __sev_issue_cmd(sev->fd, id, data, error);
293 }
294 
295 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
296 {
297 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
298 	struct sev_data_launch_start start;
299 	struct kvm_sev_launch_start params;
300 	void *dh_blob, *session_blob;
301 	int *error = &argp->error;
302 	int ret;
303 
304 	if (!sev_guest(kvm))
305 		return -ENOTTY;
306 
307 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
308 		return -EFAULT;
309 
310 	memset(&start, 0, sizeof(start));
311 
312 	dh_blob = NULL;
313 	if (params.dh_uaddr) {
314 		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
315 		if (IS_ERR(dh_blob))
316 			return PTR_ERR(dh_blob);
317 
318 		start.dh_cert_address = __sme_set(__pa(dh_blob));
319 		start.dh_cert_len = params.dh_len;
320 	}
321 
322 	session_blob = NULL;
323 	if (params.session_uaddr) {
324 		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
325 		if (IS_ERR(session_blob)) {
326 			ret = PTR_ERR(session_blob);
327 			goto e_free_dh;
328 		}
329 
330 		start.session_address = __sme_set(__pa(session_blob));
331 		start.session_len = params.session_len;
332 	}
333 
334 	start.handle = params.handle;
335 	start.policy = params.policy;
336 
337 	/* create memory encryption context */
338 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
339 	if (ret)
340 		goto e_free_session;
341 
342 	/* Bind ASID to this guest */
343 	ret = sev_bind_asid(kvm, start.handle, error);
344 	if (ret)
345 		goto e_free_session;
346 
347 	/* return handle to userspace */
348 	params.handle = start.handle;
349 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
350 		sev_unbind_asid(kvm, start.handle);
351 		ret = -EFAULT;
352 		goto e_free_session;
353 	}
354 
355 	sev->handle = start.handle;
356 	sev->fd = argp->sev_fd;
357 
358 e_free_session:
359 	kfree(session_blob);
360 e_free_dh:
361 	kfree(dh_blob);
362 	return ret;
363 }
364 
365 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
366 				    unsigned long ulen, unsigned long *n,
367 				    int write)
368 {
369 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
370 	unsigned long npages, size;
371 	int npinned;
372 	unsigned long locked, lock_limit;
373 	struct page **pages;
374 	unsigned long first, last;
375 	int ret;
376 
377 	lockdep_assert_held(&kvm->lock);
378 
379 	if (ulen == 0 || uaddr + ulen < uaddr)
380 		return ERR_PTR(-EINVAL);
381 
382 	/* Calculate number of pages. */
383 	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
384 	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
385 	npages = (last - first + 1);
386 
387 	locked = sev->pages_locked + npages;
388 	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
389 	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
390 		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
391 		return ERR_PTR(-ENOMEM);
392 	}
393 
394 	if (WARN_ON_ONCE(npages > INT_MAX))
395 		return ERR_PTR(-EINVAL);
396 
397 	/* Avoid using vmalloc for smaller buffers. */
398 	size = npages * sizeof(struct page *);
399 	if (size > PAGE_SIZE)
400 		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
401 	else
402 		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
403 
404 	if (!pages)
405 		return ERR_PTR(-ENOMEM);
406 
407 	/* Pin the user virtual address. */
408 	npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
409 	if (npinned != npages) {
410 		pr_err("SEV: Failure locking %lu pages.\n", npages);
411 		ret = -ENOMEM;
412 		goto err;
413 	}
414 
415 	*n = npages;
416 	sev->pages_locked = locked;
417 
418 	return pages;
419 
420 err:
421 	if (npinned > 0)
422 		unpin_user_pages(pages, npinned);
423 
424 	kvfree(pages);
425 	return ERR_PTR(ret);
426 }
427 
428 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
429 			     unsigned long npages)
430 {
431 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
432 
433 	unpin_user_pages(pages, npages);
434 	kvfree(pages);
435 	sev->pages_locked -= npages;
436 }
437 
438 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
439 {
440 	uint8_t *page_virtual;
441 	unsigned long i;
442 
443 	if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
444 	    pages == NULL)
445 		return;
446 
447 	for (i = 0; i < npages; i++) {
448 		page_virtual = kmap_atomic(pages[i]);
449 		clflush_cache_range(page_virtual, PAGE_SIZE);
450 		kunmap_atomic(page_virtual);
451 	}
452 }
453 
454 static unsigned long get_num_contig_pages(unsigned long idx,
455 				struct page **inpages, unsigned long npages)
456 {
457 	unsigned long paddr, next_paddr;
458 	unsigned long i = idx + 1, pages = 1;
459 
460 	/* find the number of contiguous pages starting from idx */
461 	paddr = __sme_page_pa(inpages[idx]);
462 	while (i < npages) {
463 		next_paddr = __sme_page_pa(inpages[i++]);
464 		if ((paddr + PAGE_SIZE) == next_paddr) {
465 			pages++;
466 			paddr = next_paddr;
467 			continue;
468 		}
469 		break;
470 	}
471 
472 	return pages;
473 }
474 
475 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
476 {
477 	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
478 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
479 	struct kvm_sev_launch_update_data params;
480 	struct sev_data_launch_update_data data;
481 	struct page **inpages;
482 	int ret;
483 
484 	if (!sev_guest(kvm))
485 		return -ENOTTY;
486 
487 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
488 		return -EFAULT;
489 
490 	vaddr = params.uaddr;
491 	size = params.len;
492 	vaddr_end = vaddr + size;
493 
494 	/* Lock the user memory. */
495 	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
496 	if (IS_ERR(inpages))
497 		return PTR_ERR(inpages);
498 
499 	/*
500 	 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
501 	 * place; the cache may contain the data that was written unencrypted.
502 	 */
503 	sev_clflush_pages(inpages, npages);
504 
505 	data.reserved = 0;
506 	data.handle = sev->handle;
507 
508 	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
509 		int offset, len;
510 
511 		/*
512 		 * If the user buffer is not page-aligned, calculate the offset
513 		 * within the page.
514 		 */
515 		offset = vaddr & (PAGE_SIZE - 1);
516 
517 		/* Calculate the number of pages that can be encrypted in one go. */
518 		pages = get_num_contig_pages(i, inpages, npages);
519 
520 		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
521 
522 		data.len = len;
523 		data.address = __sme_page_pa(inpages[i]) + offset;
524 		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
525 		if (ret)
526 			goto e_unpin;
527 
528 		size -= len;
529 		next_vaddr = vaddr + len;
530 	}
531 
532 e_unpin:
533 	/* content of memory is updated, mark pages dirty */
534 	for (i = 0; i < npages; i++) {
535 		set_page_dirty_lock(inpages[i]);
536 		mark_page_accessed(inpages[i]);
537 	}
538 	/* unlock the user pages */
539 	sev_unpin_memory(kvm, inpages, npages);
540 	return ret;
541 }
542 
543 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
544 {
545 	struct vmcb_save_area *save = &svm->vmcb->save;
546 
547 	/* Check some debug related fields before encrypting the VMSA */
548 	if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1))
549 		return -EINVAL;
550 
551 	/* Sync registgers */
552 	save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
553 	save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
554 	save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
555 	save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
556 	save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
557 	save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
558 	save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
559 	save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
560 #ifdef CONFIG_X86_64
561 	save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
562 	save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
563 	save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
564 	save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
565 	save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
566 	save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
567 	save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
568 	save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
569 #endif
570 	save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
571 
572 	/* Sync some non-GPR registers before encrypting */
573 	save->xcr0 = svm->vcpu.arch.xcr0;
574 	save->pkru = svm->vcpu.arch.pkru;
575 	save->xss  = svm->vcpu.arch.ia32_xss;
576 
577 	/*
578 	 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
579 	 * the traditional VMSA that is part of the VMCB. Copy the
580 	 * traditional VMSA as it has been built so far (in prep
581 	 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
582 	 */
583 	memcpy(svm->vmsa, save, sizeof(*save));
584 
585 	return 0;
586 }
587 
588 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
589 {
590 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
591 	struct sev_data_launch_update_vmsa vmsa;
592 	struct kvm_vcpu *vcpu;
593 	int i, ret;
594 
595 	if (!sev_es_guest(kvm))
596 		return -ENOTTY;
597 
598 	vmsa.reserved = 0;
599 
600 	kvm_for_each_vcpu(i, vcpu, kvm) {
601 		struct vcpu_svm *svm = to_svm(vcpu);
602 
603 		/* Perform some pre-encryption checks against the VMSA */
604 		ret = sev_es_sync_vmsa(svm);
605 		if (ret)
606 			return ret;
607 
608 		/*
609 		 * The LAUNCH_UPDATE_VMSA command will perform in-place
610 		 * encryption of the VMSA memory content (i.e it will write
611 		 * the same memory region with the guest's key), so invalidate
612 		 * it first.
613 		 */
614 		clflush_cache_range(svm->vmsa, PAGE_SIZE);
615 
616 		vmsa.handle = sev->handle;
617 		vmsa.address = __sme_pa(svm->vmsa);
618 		vmsa.len = PAGE_SIZE;
619 		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa,
620 				    &argp->error);
621 		if (ret)
622 			return ret;
623 
624 		svm->vcpu.arch.guest_state_protected = true;
625 	}
626 
627 	return 0;
628 }
629 
630 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
631 {
632 	void __user *measure = (void __user *)(uintptr_t)argp->data;
633 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
634 	struct sev_data_launch_measure data;
635 	struct kvm_sev_launch_measure params;
636 	void __user *p = NULL;
637 	void *blob = NULL;
638 	int ret;
639 
640 	if (!sev_guest(kvm))
641 		return -ENOTTY;
642 
643 	if (copy_from_user(&params, measure, sizeof(params)))
644 		return -EFAULT;
645 
646 	memset(&data, 0, sizeof(data));
647 
648 	/* User wants to query the blob length */
649 	if (!params.len)
650 		goto cmd;
651 
652 	p = (void __user *)(uintptr_t)params.uaddr;
653 	if (p) {
654 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
655 			return -EINVAL;
656 
657 		blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
658 		if (!blob)
659 			return -ENOMEM;
660 
661 		data.address = __psp_pa(blob);
662 		data.len = params.len;
663 	}
664 
665 cmd:
666 	data.handle = sev->handle;
667 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
668 
669 	/*
670 	 * If we query the session length, FW responded with expected data.
671 	 */
672 	if (!params.len)
673 		goto done;
674 
675 	if (ret)
676 		goto e_free_blob;
677 
678 	if (blob) {
679 		if (copy_to_user(p, blob, params.len))
680 			ret = -EFAULT;
681 	}
682 
683 done:
684 	params.len = data.len;
685 	if (copy_to_user(measure, &params, sizeof(params)))
686 		ret = -EFAULT;
687 e_free_blob:
688 	kfree(blob);
689 	return ret;
690 }
691 
692 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
693 {
694 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
695 	struct sev_data_launch_finish data;
696 
697 	if (!sev_guest(kvm))
698 		return -ENOTTY;
699 
700 	data.handle = sev->handle;
701 	return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
702 }
703 
704 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
705 {
706 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
707 	struct kvm_sev_guest_status params;
708 	struct sev_data_guest_status data;
709 	int ret;
710 
711 	if (!sev_guest(kvm))
712 		return -ENOTTY;
713 
714 	memset(&data, 0, sizeof(data));
715 
716 	data.handle = sev->handle;
717 	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
718 	if (ret)
719 		return ret;
720 
721 	params.policy = data.policy;
722 	params.state = data.state;
723 	params.handle = data.handle;
724 
725 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
726 		ret = -EFAULT;
727 
728 	return ret;
729 }
730 
731 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
732 			       unsigned long dst, int size,
733 			       int *error, bool enc)
734 {
735 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
736 	struct sev_data_dbg data;
737 
738 	data.reserved = 0;
739 	data.handle = sev->handle;
740 	data.dst_addr = dst;
741 	data.src_addr = src;
742 	data.len = size;
743 
744 	return sev_issue_cmd(kvm,
745 			     enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
746 			     &data, error);
747 }
748 
749 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
750 			     unsigned long dst_paddr, int sz, int *err)
751 {
752 	int offset;
753 
754 	/*
755 	 * Its safe to read more than we are asked, caller should ensure that
756 	 * destination has enough space.
757 	 */
758 	offset = src_paddr & 15;
759 	src_paddr = round_down(src_paddr, 16);
760 	sz = round_up(sz + offset, 16);
761 
762 	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
763 }
764 
765 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
766 				  void __user *dst_uaddr,
767 				  unsigned long dst_paddr,
768 				  int size, int *err)
769 {
770 	struct page *tpage = NULL;
771 	int ret, offset;
772 
773 	/* if inputs are not 16-byte then use intermediate buffer */
774 	if (!IS_ALIGNED(dst_paddr, 16) ||
775 	    !IS_ALIGNED(paddr,     16) ||
776 	    !IS_ALIGNED(size,      16)) {
777 		tpage = (void *)alloc_page(GFP_KERNEL);
778 		if (!tpage)
779 			return -ENOMEM;
780 
781 		dst_paddr = __sme_page_pa(tpage);
782 	}
783 
784 	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
785 	if (ret)
786 		goto e_free;
787 
788 	if (tpage) {
789 		offset = paddr & 15;
790 		if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
791 			ret = -EFAULT;
792 	}
793 
794 e_free:
795 	if (tpage)
796 		__free_page(tpage);
797 
798 	return ret;
799 }
800 
801 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
802 				  void __user *vaddr,
803 				  unsigned long dst_paddr,
804 				  void __user *dst_vaddr,
805 				  int size, int *error)
806 {
807 	struct page *src_tpage = NULL;
808 	struct page *dst_tpage = NULL;
809 	int ret, len = size;
810 
811 	/* If source buffer is not aligned then use an intermediate buffer */
812 	if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
813 		src_tpage = alloc_page(GFP_KERNEL);
814 		if (!src_tpage)
815 			return -ENOMEM;
816 
817 		if (copy_from_user(page_address(src_tpage), vaddr, size)) {
818 			__free_page(src_tpage);
819 			return -EFAULT;
820 		}
821 
822 		paddr = __sme_page_pa(src_tpage);
823 	}
824 
825 	/*
826 	 *  If destination buffer or length is not aligned then do read-modify-write:
827 	 *   - decrypt destination in an intermediate buffer
828 	 *   - copy the source buffer in an intermediate buffer
829 	 *   - use the intermediate buffer as source buffer
830 	 */
831 	if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
832 		int dst_offset;
833 
834 		dst_tpage = alloc_page(GFP_KERNEL);
835 		if (!dst_tpage) {
836 			ret = -ENOMEM;
837 			goto e_free;
838 		}
839 
840 		ret = __sev_dbg_decrypt(kvm, dst_paddr,
841 					__sme_page_pa(dst_tpage), size, error);
842 		if (ret)
843 			goto e_free;
844 
845 		/*
846 		 *  If source is kernel buffer then use memcpy() otherwise
847 		 *  copy_from_user().
848 		 */
849 		dst_offset = dst_paddr & 15;
850 
851 		if (src_tpage)
852 			memcpy(page_address(dst_tpage) + dst_offset,
853 			       page_address(src_tpage), size);
854 		else {
855 			if (copy_from_user(page_address(dst_tpage) + dst_offset,
856 					   vaddr, size)) {
857 				ret = -EFAULT;
858 				goto e_free;
859 			}
860 		}
861 
862 		paddr = __sme_page_pa(dst_tpage);
863 		dst_paddr = round_down(dst_paddr, 16);
864 		len = round_up(size, 16);
865 	}
866 
867 	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
868 
869 e_free:
870 	if (src_tpage)
871 		__free_page(src_tpage);
872 	if (dst_tpage)
873 		__free_page(dst_tpage);
874 	return ret;
875 }
876 
877 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
878 {
879 	unsigned long vaddr, vaddr_end, next_vaddr;
880 	unsigned long dst_vaddr;
881 	struct page **src_p, **dst_p;
882 	struct kvm_sev_dbg debug;
883 	unsigned long n;
884 	unsigned int size;
885 	int ret;
886 
887 	if (!sev_guest(kvm))
888 		return -ENOTTY;
889 
890 	if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
891 		return -EFAULT;
892 
893 	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
894 		return -EINVAL;
895 	if (!debug.dst_uaddr)
896 		return -EINVAL;
897 
898 	vaddr = debug.src_uaddr;
899 	size = debug.len;
900 	vaddr_end = vaddr + size;
901 	dst_vaddr = debug.dst_uaddr;
902 
903 	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
904 		int len, s_off, d_off;
905 
906 		/* lock userspace source and destination page */
907 		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
908 		if (IS_ERR(src_p))
909 			return PTR_ERR(src_p);
910 
911 		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
912 		if (IS_ERR(dst_p)) {
913 			sev_unpin_memory(kvm, src_p, n);
914 			return PTR_ERR(dst_p);
915 		}
916 
917 		/*
918 		 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
919 		 * the pages; flush the destination too so that future accesses do not
920 		 * see stale data.
921 		 */
922 		sev_clflush_pages(src_p, 1);
923 		sev_clflush_pages(dst_p, 1);
924 
925 		/*
926 		 * Since user buffer may not be page aligned, calculate the
927 		 * offset within the page.
928 		 */
929 		s_off = vaddr & ~PAGE_MASK;
930 		d_off = dst_vaddr & ~PAGE_MASK;
931 		len = min_t(size_t, (PAGE_SIZE - s_off), size);
932 
933 		if (dec)
934 			ret = __sev_dbg_decrypt_user(kvm,
935 						     __sme_page_pa(src_p[0]) + s_off,
936 						     (void __user *)dst_vaddr,
937 						     __sme_page_pa(dst_p[0]) + d_off,
938 						     len, &argp->error);
939 		else
940 			ret = __sev_dbg_encrypt_user(kvm,
941 						     __sme_page_pa(src_p[0]) + s_off,
942 						     (void __user *)vaddr,
943 						     __sme_page_pa(dst_p[0]) + d_off,
944 						     (void __user *)dst_vaddr,
945 						     len, &argp->error);
946 
947 		sev_unpin_memory(kvm, src_p, n);
948 		sev_unpin_memory(kvm, dst_p, n);
949 
950 		if (ret)
951 			goto err;
952 
953 		next_vaddr = vaddr + len;
954 		dst_vaddr = dst_vaddr + len;
955 		size -= len;
956 	}
957 err:
958 	return ret;
959 }
960 
961 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
962 {
963 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
964 	struct sev_data_launch_secret data;
965 	struct kvm_sev_launch_secret params;
966 	struct page **pages;
967 	void *blob, *hdr;
968 	unsigned long n, i;
969 	int ret, offset;
970 
971 	if (!sev_guest(kvm))
972 		return -ENOTTY;
973 
974 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
975 		return -EFAULT;
976 
977 	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
978 	if (IS_ERR(pages))
979 		return PTR_ERR(pages);
980 
981 	/*
982 	 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
983 	 * place; the cache may contain the data that was written unencrypted.
984 	 */
985 	sev_clflush_pages(pages, n);
986 
987 	/*
988 	 * The secret must be copied into contiguous memory region, lets verify
989 	 * that userspace memory pages are contiguous before we issue command.
990 	 */
991 	if (get_num_contig_pages(0, pages, n) != n) {
992 		ret = -EINVAL;
993 		goto e_unpin_memory;
994 	}
995 
996 	memset(&data, 0, sizeof(data));
997 
998 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
999 	data.guest_address = __sme_page_pa(pages[0]) + offset;
1000 	data.guest_len = params.guest_len;
1001 
1002 	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1003 	if (IS_ERR(blob)) {
1004 		ret = PTR_ERR(blob);
1005 		goto e_unpin_memory;
1006 	}
1007 
1008 	data.trans_address = __psp_pa(blob);
1009 	data.trans_len = params.trans_len;
1010 
1011 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1012 	if (IS_ERR(hdr)) {
1013 		ret = PTR_ERR(hdr);
1014 		goto e_free_blob;
1015 	}
1016 	data.hdr_address = __psp_pa(hdr);
1017 	data.hdr_len = params.hdr_len;
1018 
1019 	data.handle = sev->handle;
1020 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1021 
1022 	kfree(hdr);
1023 
1024 e_free_blob:
1025 	kfree(blob);
1026 e_unpin_memory:
1027 	/* content of memory is updated, mark pages dirty */
1028 	for (i = 0; i < n; i++) {
1029 		set_page_dirty_lock(pages[i]);
1030 		mark_page_accessed(pages[i]);
1031 	}
1032 	sev_unpin_memory(kvm, pages, n);
1033 	return ret;
1034 }
1035 
1036 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1037 {
1038 	void __user *report = (void __user *)(uintptr_t)argp->data;
1039 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1040 	struct sev_data_attestation_report data;
1041 	struct kvm_sev_attestation_report params;
1042 	void __user *p;
1043 	void *blob = NULL;
1044 	int ret;
1045 
1046 	if (!sev_guest(kvm))
1047 		return -ENOTTY;
1048 
1049 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1050 		return -EFAULT;
1051 
1052 	memset(&data, 0, sizeof(data));
1053 
1054 	/* User wants to query the blob length */
1055 	if (!params.len)
1056 		goto cmd;
1057 
1058 	p = (void __user *)(uintptr_t)params.uaddr;
1059 	if (p) {
1060 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
1061 			return -EINVAL;
1062 
1063 		blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
1064 		if (!blob)
1065 			return -ENOMEM;
1066 
1067 		data.address = __psp_pa(blob);
1068 		data.len = params.len;
1069 		memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1070 	}
1071 cmd:
1072 	data.handle = sev->handle;
1073 	ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1074 	/*
1075 	 * If we query the session length, FW responded with expected data.
1076 	 */
1077 	if (!params.len)
1078 		goto done;
1079 
1080 	if (ret)
1081 		goto e_free_blob;
1082 
1083 	if (blob) {
1084 		if (copy_to_user(p, blob, params.len))
1085 			ret = -EFAULT;
1086 	}
1087 
1088 done:
1089 	params.len = data.len;
1090 	if (copy_to_user(report, &params, sizeof(params)))
1091 		ret = -EFAULT;
1092 e_free_blob:
1093 	kfree(blob);
1094 	return ret;
1095 }
1096 
1097 /* Userspace wants to query session length. */
1098 static int
1099 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1100 				      struct kvm_sev_send_start *params)
1101 {
1102 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1103 	struct sev_data_send_start data;
1104 	int ret;
1105 
1106 	memset(&data, 0, sizeof(data));
1107 	data.handle = sev->handle;
1108 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1109 
1110 	params->session_len = data.session_len;
1111 	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1112 				sizeof(struct kvm_sev_send_start)))
1113 		ret = -EFAULT;
1114 
1115 	return ret;
1116 }
1117 
1118 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1119 {
1120 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1121 	struct sev_data_send_start data;
1122 	struct kvm_sev_send_start params;
1123 	void *amd_certs, *session_data;
1124 	void *pdh_cert, *plat_certs;
1125 	int ret;
1126 
1127 	if (!sev_guest(kvm))
1128 		return -ENOTTY;
1129 
1130 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1131 				sizeof(struct kvm_sev_send_start)))
1132 		return -EFAULT;
1133 
1134 	/* if session_len is zero, userspace wants to query the session length */
1135 	if (!params.session_len)
1136 		return __sev_send_start_query_session_length(kvm, argp,
1137 				&params);
1138 
1139 	/* some sanity checks */
1140 	if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1141 	    !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1142 		return -EINVAL;
1143 
1144 	/* allocate the memory to hold the session data blob */
1145 	session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1146 	if (!session_data)
1147 		return -ENOMEM;
1148 
1149 	/* copy the certificate blobs from userspace */
1150 	pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1151 				params.pdh_cert_len);
1152 	if (IS_ERR(pdh_cert)) {
1153 		ret = PTR_ERR(pdh_cert);
1154 		goto e_free_session;
1155 	}
1156 
1157 	plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1158 				params.plat_certs_len);
1159 	if (IS_ERR(plat_certs)) {
1160 		ret = PTR_ERR(plat_certs);
1161 		goto e_free_pdh;
1162 	}
1163 
1164 	amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1165 				params.amd_certs_len);
1166 	if (IS_ERR(amd_certs)) {
1167 		ret = PTR_ERR(amd_certs);
1168 		goto e_free_plat_cert;
1169 	}
1170 
1171 	/* populate the FW SEND_START field with system physical address */
1172 	memset(&data, 0, sizeof(data));
1173 	data.pdh_cert_address = __psp_pa(pdh_cert);
1174 	data.pdh_cert_len = params.pdh_cert_len;
1175 	data.plat_certs_address = __psp_pa(plat_certs);
1176 	data.plat_certs_len = params.plat_certs_len;
1177 	data.amd_certs_address = __psp_pa(amd_certs);
1178 	data.amd_certs_len = params.amd_certs_len;
1179 	data.session_address = __psp_pa(session_data);
1180 	data.session_len = params.session_len;
1181 	data.handle = sev->handle;
1182 
1183 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1184 
1185 	if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1186 			session_data, params.session_len)) {
1187 		ret = -EFAULT;
1188 		goto e_free_amd_cert;
1189 	}
1190 
1191 	params.policy = data.policy;
1192 	params.session_len = data.session_len;
1193 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params,
1194 				sizeof(struct kvm_sev_send_start)))
1195 		ret = -EFAULT;
1196 
1197 e_free_amd_cert:
1198 	kfree(amd_certs);
1199 e_free_plat_cert:
1200 	kfree(plat_certs);
1201 e_free_pdh:
1202 	kfree(pdh_cert);
1203 e_free_session:
1204 	kfree(session_data);
1205 	return ret;
1206 }
1207 
1208 /* Userspace wants to query either header or trans length. */
1209 static int
1210 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1211 				     struct kvm_sev_send_update_data *params)
1212 {
1213 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1214 	struct sev_data_send_update_data data;
1215 	int ret;
1216 
1217 	memset(&data, 0, sizeof(data));
1218 	data.handle = sev->handle;
1219 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1220 
1221 	params->hdr_len = data.hdr_len;
1222 	params->trans_len = data.trans_len;
1223 
1224 	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1225 			 sizeof(struct kvm_sev_send_update_data)))
1226 		ret = -EFAULT;
1227 
1228 	return ret;
1229 }
1230 
1231 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1232 {
1233 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1234 	struct sev_data_send_update_data data;
1235 	struct kvm_sev_send_update_data params;
1236 	void *hdr, *trans_data;
1237 	struct page **guest_page;
1238 	unsigned long n;
1239 	int ret, offset;
1240 
1241 	if (!sev_guest(kvm))
1242 		return -ENOTTY;
1243 
1244 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1245 			sizeof(struct kvm_sev_send_update_data)))
1246 		return -EFAULT;
1247 
1248 	/* userspace wants to query either header or trans length */
1249 	if (!params.trans_len || !params.hdr_len)
1250 		return __sev_send_update_data_query_lengths(kvm, argp, &params);
1251 
1252 	if (!params.trans_uaddr || !params.guest_uaddr ||
1253 	    !params.guest_len || !params.hdr_uaddr)
1254 		return -EINVAL;
1255 
1256 	/* Check if we are crossing the page boundary */
1257 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1258 	if ((params.guest_len + offset > PAGE_SIZE))
1259 		return -EINVAL;
1260 
1261 	/* Pin guest memory */
1262 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1263 				    PAGE_SIZE, &n, 0);
1264 	if (!guest_page)
1265 		return -EFAULT;
1266 
1267 	/* allocate memory for header and transport buffer */
1268 	ret = -ENOMEM;
1269 	hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1270 	if (!hdr)
1271 		goto e_unpin;
1272 
1273 	trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1274 	if (!trans_data)
1275 		goto e_free_hdr;
1276 
1277 	memset(&data, 0, sizeof(data));
1278 	data.hdr_address = __psp_pa(hdr);
1279 	data.hdr_len = params.hdr_len;
1280 	data.trans_address = __psp_pa(trans_data);
1281 	data.trans_len = params.trans_len;
1282 
1283 	/* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1284 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1285 	data.guest_address |= sev_me_mask;
1286 	data.guest_len = params.guest_len;
1287 	data.handle = sev->handle;
1288 
1289 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1290 
1291 	if (ret)
1292 		goto e_free_trans_data;
1293 
1294 	/* copy transport buffer to user space */
1295 	if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1296 			 trans_data, params.trans_len)) {
1297 		ret = -EFAULT;
1298 		goto e_free_trans_data;
1299 	}
1300 
1301 	/* Copy packet header to userspace. */
1302 	ret = copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1303 				params.hdr_len);
1304 
1305 e_free_trans_data:
1306 	kfree(trans_data);
1307 e_free_hdr:
1308 	kfree(hdr);
1309 e_unpin:
1310 	sev_unpin_memory(kvm, guest_page, n);
1311 
1312 	return ret;
1313 }
1314 
1315 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1316 {
1317 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1318 	struct sev_data_send_finish data;
1319 
1320 	if (!sev_guest(kvm))
1321 		return -ENOTTY;
1322 
1323 	data.handle = sev->handle;
1324 	return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1325 }
1326 
1327 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1328 {
1329 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1330 	struct sev_data_send_cancel data;
1331 
1332 	if (!sev_guest(kvm))
1333 		return -ENOTTY;
1334 
1335 	data.handle = sev->handle;
1336 	return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1337 }
1338 
1339 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1340 {
1341 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1342 	struct sev_data_receive_start start;
1343 	struct kvm_sev_receive_start params;
1344 	int *error = &argp->error;
1345 	void *session_data;
1346 	void *pdh_data;
1347 	int ret;
1348 
1349 	if (!sev_guest(kvm))
1350 		return -ENOTTY;
1351 
1352 	/* Get parameter from the userspace */
1353 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1354 			sizeof(struct kvm_sev_receive_start)))
1355 		return -EFAULT;
1356 
1357 	/* some sanity checks */
1358 	if (!params.pdh_uaddr || !params.pdh_len ||
1359 	    !params.session_uaddr || !params.session_len)
1360 		return -EINVAL;
1361 
1362 	pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1363 	if (IS_ERR(pdh_data))
1364 		return PTR_ERR(pdh_data);
1365 
1366 	session_data = psp_copy_user_blob(params.session_uaddr,
1367 			params.session_len);
1368 	if (IS_ERR(session_data)) {
1369 		ret = PTR_ERR(session_data);
1370 		goto e_free_pdh;
1371 	}
1372 
1373 	memset(&start, 0, sizeof(start));
1374 	start.handle = params.handle;
1375 	start.policy = params.policy;
1376 	start.pdh_cert_address = __psp_pa(pdh_data);
1377 	start.pdh_cert_len = params.pdh_len;
1378 	start.session_address = __psp_pa(session_data);
1379 	start.session_len = params.session_len;
1380 
1381 	/* create memory encryption context */
1382 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1383 				error);
1384 	if (ret)
1385 		goto e_free_session;
1386 
1387 	/* Bind ASID to this guest */
1388 	ret = sev_bind_asid(kvm, start.handle, error);
1389 	if (ret)
1390 		goto e_free_session;
1391 
1392 	params.handle = start.handle;
1393 	if (copy_to_user((void __user *)(uintptr_t)argp->data,
1394 			 &params, sizeof(struct kvm_sev_receive_start))) {
1395 		ret = -EFAULT;
1396 		sev_unbind_asid(kvm, start.handle);
1397 		goto e_free_session;
1398 	}
1399 
1400     	sev->handle = start.handle;
1401 	sev->fd = argp->sev_fd;
1402 
1403 e_free_session:
1404 	kfree(session_data);
1405 e_free_pdh:
1406 	kfree(pdh_data);
1407 
1408 	return ret;
1409 }
1410 
1411 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1412 {
1413 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1414 	struct kvm_sev_receive_update_data params;
1415 	struct sev_data_receive_update_data data;
1416 	void *hdr = NULL, *trans = NULL;
1417 	struct page **guest_page;
1418 	unsigned long n;
1419 	int ret, offset;
1420 
1421 	if (!sev_guest(kvm))
1422 		return -EINVAL;
1423 
1424 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1425 			sizeof(struct kvm_sev_receive_update_data)))
1426 		return -EFAULT;
1427 
1428 	if (!params.hdr_uaddr || !params.hdr_len ||
1429 	    !params.guest_uaddr || !params.guest_len ||
1430 	    !params.trans_uaddr || !params.trans_len)
1431 		return -EINVAL;
1432 
1433 	/* Check if we are crossing the page boundary */
1434 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1435 	if ((params.guest_len + offset > PAGE_SIZE))
1436 		return -EINVAL;
1437 
1438 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1439 	if (IS_ERR(hdr))
1440 		return PTR_ERR(hdr);
1441 
1442 	trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1443 	if (IS_ERR(trans)) {
1444 		ret = PTR_ERR(trans);
1445 		goto e_free_hdr;
1446 	}
1447 
1448 	memset(&data, 0, sizeof(data));
1449 	data.hdr_address = __psp_pa(hdr);
1450 	data.hdr_len = params.hdr_len;
1451 	data.trans_address = __psp_pa(trans);
1452 	data.trans_len = params.trans_len;
1453 
1454 	/* Pin guest memory */
1455 	ret = -EFAULT;
1456 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1457 				    PAGE_SIZE, &n, 0);
1458 	if (!guest_page)
1459 		goto e_free_trans;
1460 
1461 	/* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1462 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1463 	data.guest_address |= sev_me_mask;
1464 	data.guest_len = params.guest_len;
1465 	data.handle = sev->handle;
1466 
1467 	ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1468 				&argp->error);
1469 
1470 	sev_unpin_memory(kvm, guest_page, n);
1471 
1472 e_free_trans:
1473 	kfree(trans);
1474 e_free_hdr:
1475 	kfree(hdr);
1476 
1477 	return ret;
1478 }
1479 
1480 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1481 {
1482 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1483 	struct sev_data_receive_finish data;
1484 
1485 	if (!sev_guest(kvm))
1486 		return -ENOTTY;
1487 
1488 	data.handle = sev->handle;
1489 	return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1490 }
1491 
1492 int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
1493 {
1494 	struct kvm_sev_cmd sev_cmd;
1495 	int r;
1496 
1497 	if (!sev_enabled)
1498 		return -ENOTTY;
1499 
1500 	if (!argp)
1501 		return 0;
1502 
1503 	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1504 		return -EFAULT;
1505 
1506 	mutex_lock(&kvm->lock);
1507 
1508 	/* enc_context_owner handles all memory enc operations */
1509 	if (is_mirroring_enc_context(kvm)) {
1510 		r = -EINVAL;
1511 		goto out;
1512 	}
1513 
1514 	switch (sev_cmd.id) {
1515 	case KVM_SEV_ES_INIT:
1516 		if (!sev_es_enabled) {
1517 			r = -ENOTTY;
1518 			goto out;
1519 		}
1520 		fallthrough;
1521 	case KVM_SEV_INIT:
1522 		r = sev_guest_init(kvm, &sev_cmd);
1523 		break;
1524 	case KVM_SEV_LAUNCH_START:
1525 		r = sev_launch_start(kvm, &sev_cmd);
1526 		break;
1527 	case KVM_SEV_LAUNCH_UPDATE_DATA:
1528 		r = sev_launch_update_data(kvm, &sev_cmd);
1529 		break;
1530 	case KVM_SEV_LAUNCH_UPDATE_VMSA:
1531 		r = sev_launch_update_vmsa(kvm, &sev_cmd);
1532 		break;
1533 	case KVM_SEV_LAUNCH_MEASURE:
1534 		r = sev_launch_measure(kvm, &sev_cmd);
1535 		break;
1536 	case KVM_SEV_LAUNCH_FINISH:
1537 		r = sev_launch_finish(kvm, &sev_cmd);
1538 		break;
1539 	case KVM_SEV_GUEST_STATUS:
1540 		r = sev_guest_status(kvm, &sev_cmd);
1541 		break;
1542 	case KVM_SEV_DBG_DECRYPT:
1543 		r = sev_dbg_crypt(kvm, &sev_cmd, true);
1544 		break;
1545 	case KVM_SEV_DBG_ENCRYPT:
1546 		r = sev_dbg_crypt(kvm, &sev_cmd, false);
1547 		break;
1548 	case KVM_SEV_LAUNCH_SECRET:
1549 		r = sev_launch_secret(kvm, &sev_cmd);
1550 		break;
1551 	case KVM_SEV_GET_ATTESTATION_REPORT:
1552 		r = sev_get_attestation_report(kvm, &sev_cmd);
1553 		break;
1554 	case KVM_SEV_SEND_START:
1555 		r = sev_send_start(kvm, &sev_cmd);
1556 		break;
1557 	case KVM_SEV_SEND_UPDATE_DATA:
1558 		r = sev_send_update_data(kvm, &sev_cmd);
1559 		break;
1560 	case KVM_SEV_SEND_FINISH:
1561 		r = sev_send_finish(kvm, &sev_cmd);
1562 		break;
1563 	case KVM_SEV_SEND_CANCEL:
1564 		r = sev_send_cancel(kvm, &sev_cmd);
1565 		break;
1566 	case KVM_SEV_RECEIVE_START:
1567 		r = sev_receive_start(kvm, &sev_cmd);
1568 		break;
1569 	case KVM_SEV_RECEIVE_UPDATE_DATA:
1570 		r = sev_receive_update_data(kvm, &sev_cmd);
1571 		break;
1572 	case KVM_SEV_RECEIVE_FINISH:
1573 		r = sev_receive_finish(kvm, &sev_cmd);
1574 		break;
1575 	default:
1576 		r = -EINVAL;
1577 		goto out;
1578 	}
1579 
1580 	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1581 		r = -EFAULT;
1582 
1583 out:
1584 	mutex_unlock(&kvm->lock);
1585 	return r;
1586 }
1587 
1588 int svm_register_enc_region(struct kvm *kvm,
1589 			    struct kvm_enc_region *range)
1590 {
1591 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1592 	struct enc_region *region;
1593 	int ret = 0;
1594 
1595 	if (!sev_guest(kvm))
1596 		return -ENOTTY;
1597 
1598 	/* If kvm is mirroring encryption context it isn't responsible for it */
1599 	if (is_mirroring_enc_context(kvm))
1600 		return -EINVAL;
1601 
1602 	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1603 		return -EINVAL;
1604 
1605 	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1606 	if (!region)
1607 		return -ENOMEM;
1608 
1609 	mutex_lock(&kvm->lock);
1610 	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
1611 	if (IS_ERR(region->pages)) {
1612 		ret = PTR_ERR(region->pages);
1613 		mutex_unlock(&kvm->lock);
1614 		goto e_free;
1615 	}
1616 
1617 	region->uaddr = range->addr;
1618 	region->size = range->size;
1619 
1620 	list_add_tail(&region->list, &sev->regions_list);
1621 	mutex_unlock(&kvm->lock);
1622 
1623 	/*
1624 	 * The guest may change the memory encryption attribute from C=0 -> C=1
1625 	 * or vice versa for this memory range. Lets make sure caches are
1626 	 * flushed to ensure that guest data gets written into memory with
1627 	 * correct C-bit.
1628 	 */
1629 	sev_clflush_pages(region->pages, region->npages);
1630 
1631 	return ret;
1632 
1633 e_free:
1634 	kfree(region);
1635 	return ret;
1636 }
1637 
1638 static struct enc_region *
1639 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1640 {
1641 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1642 	struct list_head *head = &sev->regions_list;
1643 	struct enc_region *i;
1644 
1645 	list_for_each_entry(i, head, list) {
1646 		if (i->uaddr == range->addr &&
1647 		    i->size == range->size)
1648 			return i;
1649 	}
1650 
1651 	return NULL;
1652 }
1653 
1654 static void __unregister_enc_region_locked(struct kvm *kvm,
1655 					   struct enc_region *region)
1656 {
1657 	sev_unpin_memory(kvm, region->pages, region->npages);
1658 	list_del(&region->list);
1659 	kfree(region);
1660 }
1661 
1662 int svm_unregister_enc_region(struct kvm *kvm,
1663 			      struct kvm_enc_region *range)
1664 {
1665 	struct enc_region *region;
1666 	int ret;
1667 
1668 	/* If kvm is mirroring encryption context it isn't responsible for it */
1669 	if (is_mirroring_enc_context(kvm))
1670 		return -EINVAL;
1671 
1672 	mutex_lock(&kvm->lock);
1673 
1674 	if (!sev_guest(kvm)) {
1675 		ret = -ENOTTY;
1676 		goto failed;
1677 	}
1678 
1679 	region = find_enc_region(kvm, range);
1680 	if (!region) {
1681 		ret = -EINVAL;
1682 		goto failed;
1683 	}
1684 
1685 	/*
1686 	 * Ensure that all guest tagged cache entries are flushed before
1687 	 * releasing the pages back to the system for use. CLFLUSH will
1688 	 * not do this, so issue a WBINVD.
1689 	 */
1690 	wbinvd_on_all_cpus();
1691 
1692 	__unregister_enc_region_locked(kvm, region);
1693 
1694 	mutex_unlock(&kvm->lock);
1695 	return 0;
1696 
1697 failed:
1698 	mutex_unlock(&kvm->lock);
1699 	return ret;
1700 }
1701 
1702 int svm_vm_copy_asid_from(struct kvm *kvm, unsigned int source_fd)
1703 {
1704 	struct file *source_kvm_file;
1705 	struct kvm *source_kvm;
1706 	struct kvm_sev_info *mirror_sev;
1707 	unsigned int asid;
1708 	int ret;
1709 
1710 	source_kvm_file = fget(source_fd);
1711 	if (!file_is_kvm(source_kvm_file)) {
1712 		ret = -EBADF;
1713 		goto e_source_put;
1714 	}
1715 
1716 	source_kvm = source_kvm_file->private_data;
1717 	mutex_lock(&source_kvm->lock);
1718 
1719 	if (!sev_guest(source_kvm)) {
1720 		ret = -EINVAL;
1721 		goto e_source_unlock;
1722 	}
1723 
1724 	/* Mirrors of mirrors should work, but let's not get silly */
1725 	if (is_mirroring_enc_context(source_kvm) || source_kvm == kvm) {
1726 		ret = -EINVAL;
1727 		goto e_source_unlock;
1728 	}
1729 
1730 	asid = to_kvm_svm(source_kvm)->sev_info.asid;
1731 
1732 	/*
1733 	 * The mirror kvm holds an enc_context_owner ref so its asid can't
1734 	 * disappear until we're done with it
1735 	 */
1736 	kvm_get_kvm(source_kvm);
1737 
1738 	fput(source_kvm_file);
1739 	mutex_unlock(&source_kvm->lock);
1740 	mutex_lock(&kvm->lock);
1741 
1742 	if (sev_guest(kvm)) {
1743 		ret = -EINVAL;
1744 		goto e_mirror_unlock;
1745 	}
1746 
1747 	/* Set enc_context_owner and copy its encryption context over */
1748 	mirror_sev = &to_kvm_svm(kvm)->sev_info;
1749 	mirror_sev->enc_context_owner = source_kvm;
1750 	mirror_sev->asid = asid;
1751 	mirror_sev->active = true;
1752 
1753 	mutex_unlock(&kvm->lock);
1754 	return 0;
1755 
1756 e_mirror_unlock:
1757 	mutex_unlock(&kvm->lock);
1758 	kvm_put_kvm(source_kvm);
1759 	return ret;
1760 e_source_unlock:
1761 	mutex_unlock(&source_kvm->lock);
1762 e_source_put:
1763 	if (source_kvm_file)
1764 		fput(source_kvm_file);
1765 	return ret;
1766 }
1767 
1768 void sev_vm_destroy(struct kvm *kvm)
1769 {
1770 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1771 	struct list_head *head = &sev->regions_list;
1772 	struct list_head *pos, *q;
1773 
1774 	if (!sev_guest(kvm))
1775 		return;
1776 
1777 	/* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
1778 	if (is_mirroring_enc_context(kvm)) {
1779 		kvm_put_kvm(sev->enc_context_owner);
1780 		return;
1781 	}
1782 
1783 	mutex_lock(&kvm->lock);
1784 
1785 	/*
1786 	 * Ensure that all guest tagged cache entries are flushed before
1787 	 * releasing the pages back to the system for use. CLFLUSH will
1788 	 * not do this, so issue a WBINVD.
1789 	 */
1790 	wbinvd_on_all_cpus();
1791 
1792 	/*
1793 	 * if userspace was terminated before unregistering the memory regions
1794 	 * then lets unpin all the registered memory.
1795 	 */
1796 	if (!list_empty(head)) {
1797 		list_for_each_safe(pos, q, head) {
1798 			__unregister_enc_region_locked(kvm,
1799 				list_entry(pos, struct enc_region, list));
1800 			cond_resched();
1801 		}
1802 	}
1803 
1804 	mutex_unlock(&kvm->lock);
1805 
1806 	sev_unbind_asid(kvm, sev->handle);
1807 	sev_asid_free(sev);
1808 }
1809 
1810 void __init sev_set_cpu_caps(void)
1811 {
1812 	if (!sev_enabled)
1813 		kvm_cpu_cap_clear(X86_FEATURE_SEV);
1814 	if (!sev_es_enabled)
1815 		kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
1816 }
1817 
1818 void __init sev_hardware_setup(void)
1819 {
1820 #ifdef CONFIG_KVM_AMD_SEV
1821 	unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
1822 	bool sev_es_supported = false;
1823 	bool sev_supported = false;
1824 
1825 	if (!sev_enabled || !npt_enabled)
1826 		goto out;
1827 
1828 	/* Does the CPU support SEV? */
1829 	if (!boot_cpu_has(X86_FEATURE_SEV))
1830 		goto out;
1831 
1832 	/* Retrieve SEV CPUID information */
1833 	cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
1834 
1835 	/* Set encryption bit location for SEV-ES guests */
1836 	sev_enc_bit = ebx & 0x3f;
1837 
1838 	/* Maximum number of encrypted guests supported simultaneously */
1839 	max_sev_asid = ecx;
1840 	if (!max_sev_asid)
1841 		goto out;
1842 
1843 	/* Minimum ASID value that should be used for SEV guest */
1844 	min_sev_asid = edx;
1845 	sev_me_mask = 1UL << (ebx & 0x3f);
1846 
1847 	/* Initialize SEV ASID bitmaps */
1848 	sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1849 	if (!sev_asid_bitmap)
1850 		goto out;
1851 
1852 	sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1853 	if (!sev_reclaim_asid_bitmap) {
1854 		bitmap_free(sev_asid_bitmap);
1855 		sev_asid_bitmap = NULL;
1856 		goto out;
1857 	}
1858 
1859 	sev_asid_count = max_sev_asid - min_sev_asid + 1;
1860 	if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count))
1861 		goto out;
1862 
1863 	pr_info("SEV supported: %u ASIDs\n", sev_asid_count);
1864 	sev_supported = true;
1865 
1866 	/* SEV-ES support requested? */
1867 	if (!sev_es_enabled)
1868 		goto out;
1869 
1870 	/* Does the CPU support SEV-ES? */
1871 	if (!boot_cpu_has(X86_FEATURE_SEV_ES))
1872 		goto out;
1873 
1874 	/* Has the system been allocated ASIDs for SEV-ES? */
1875 	if (min_sev_asid == 1)
1876 		goto out;
1877 
1878 	sev_es_asid_count = min_sev_asid - 1;
1879 	if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count))
1880 		goto out;
1881 
1882 	pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count);
1883 	sev_es_supported = true;
1884 
1885 out:
1886 	sev_enabled = sev_supported;
1887 	sev_es_enabled = sev_es_supported;
1888 #endif
1889 }
1890 
1891 void sev_hardware_teardown(void)
1892 {
1893 	if (!sev_enabled)
1894 		return;
1895 
1896 	/* No need to take sev_bitmap_lock, all VMs have been destroyed. */
1897 	sev_flush_asids(0, max_sev_asid);
1898 
1899 	bitmap_free(sev_asid_bitmap);
1900 	bitmap_free(sev_reclaim_asid_bitmap);
1901 
1902 	misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
1903 	misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
1904 }
1905 
1906 int sev_cpu_init(struct svm_cpu_data *sd)
1907 {
1908 	if (!sev_enabled)
1909 		return 0;
1910 
1911 	sd->sev_vmcbs = kcalloc(max_sev_asid + 1, sizeof(void *), GFP_KERNEL);
1912 	if (!sd->sev_vmcbs)
1913 		return -ENOMEM;
1914 
1915 	return 0;
1916 }
1917 
1918 /*
1919  * Pages used by hardware to hold guest encrypted state must be flushed before
1920  * returning them to the system.
1921  */
1922 static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va,
1923 				   unsigned long len)
1924 {
1925 	/*
1926 	 * If hardware enforced cache coherency for encrypted mappings of the
1927 	 * same physical page is supported, nothing to do.
1928 	 */
1929 	if (boot_cpu_has(X86_FEATURE_SME_COHERENT))
1930 		return;
1931 
1932 	/*
1933 	 * If the VM Page Flush MSR is supported, use it to flush the page
1934 	 * (using the page virtual address and the guest ASID).
1935 	 */
1936 	if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) {
1937 		struct kvm_sev_info *sev;
1938 		unsigned long va_start;
1939 		u64 start, stop;
1940 
1941 		/* Align start and stop to page boundaries. */
1942 		va_start = (unsigned long)va;
1943 		start = (u64)va_start & PAGE_MASK;
1944 		stop = PAGE_ALIGN((u64)va_start + len);
1945 
1946 		if (start < stop) {
1947 			sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
1948 
1949 			while (start < stop) {
1950 				wrmsrl(MSR_AMD64_VM_PAGE_FLUSH,
1951 				       start | sev->asid);
1952 
1953 				start += PAGE_SIZE;
1954 			}
1955 
1956 			return;
1957 		}
1958 
1959 		WARN(1, "Address overflow, using WBINVD\n");
1960 	}
1961 
1962 	/*
1963 	 * Hardware should always have one of the above features,
1964 	 * but if not, use WBINVD and issue a warning.
1965 	 */
1966 	WARN_ONCE(1, "Using WBINVD to flush guest memory\n");
1967 	wbinvd_on_all_cpus();
1968 }
1969 
1970 void sev_free_vcpu(struct kvm_vcpu *vcpu)
1971 {
1972 	struct vcpu_svm *svm;
1973 
1974 	if (!sev_es_guest(vcpu->kvm))
1975 		return;
1976 
1977 	svm = to_svm(vcpu);
1978 
1979 	if (vcpu->arch.guest_state_protected)
1980 		sev_flush_guest_memory(svm, svm->vmsa, PAGE_SIZE);
1981 	__free_page(virt_to_page(svm->vmsa));
1982 
1983 	if (svm->ghcb_sa_free)
1984 		kfree(svm->ghcb_sa);
1985 }
1986 
1987 static void dump_ghcb(struct vcpu_svm *svm)
1988 {
1989 	struct ghcb *ghcb = svm->ghcb;
1990 	unsigned int nbits;
1991 
1992 	/* Re-use the dump_invalid_vmcb module parameter */
1993 	if (!dump_invalid_vmcb) {
1994 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
1995 		return;
1996 	}
1997 
1998 	nbits = sizeof(ghcb->save.valid_bitmap) * 8;
1999 
2000 	pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2001 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2002 	       ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2003 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2004 	       ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2005 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2006 	       ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2007 	pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2008 	       ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2009 	pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2010 }
2011 
2012 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2013 {
2014 	struct kvm_vcpu *vcpu = &svm->vcpu;
2015 	struct ghcb *ghcb = svm->ghcb;
2016 
2017 	/*
2018 	 * The GHCB protocol so far allows for the following data
2019 	 * to be returned:
2020 	 *   GPRs RAX, RBX, RCX, RDX
2021 	 *
2022 	 * Copy their values, even if they may not have been written during the
2023 	 * VM-Exit.  It's the guest's responsibility to not consume random data.
2024 	 */
2025 	ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2026 	ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2027 	ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2028 	ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2029 }
2030 
2031 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2032 {
2033 	struct vmcb_control_area *control = &svm->vmcb->control;
2034 	struct kvm_vcpu *vcpu = &svm->vcpu;
2035 	struct ghcb *ghcb = svm->ghcb;
2036 	u64 exit_code;
2037 
2038 	/*
2039 	 * The GHCB protocol so far allows for the following data
2040 	 * to be supplied:
2041 	 *   GPRs RAX, RBX, RCX, RDX
2042 	 *   XCR0
2043 	 *   CPL
2044 	 *
2045 	 * VMMCALL allows the guest to provide extra registers. KVM also
2046 	 * expects RSI for hypercalls, so include that, too.
2047 	 *
2048 	 * Copy their values to the appropriate location if supplied.
2049 	 */
2050 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2051 
2052 	vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb);
2053 	vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb);
2054 	vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb);
2055 	vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb);
2056 	vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb);
2057 
2058 	svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb);
2059 
2060 	if (ghcb_xcr0_is_valid(ghcb)) {
2061 		vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2062 		kvm_update_cpuid_runtime(vcpu);
2063 	}
2064 
2065 	/* Copy the GHCB exit information into the VMCB fields */
2066 	exit_code = ghcb_get_sw_exit_code(ghcb);
2067 	control->exit_code = lower_32_bits(exit_code);
2068 	control->exit_code_hi = upper_32_bits(exit_code);
2069 	control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2070 	control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2071 
2072 	/* Clear the valid entries fields */
2073 	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2074 }
2075 
2076 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2077 {
2078 	struct kvm_vcpu *vcpu;
2079 	struct ghcb *ghcb;
2080 	u64 exit_code = 0;
2081 
2082 	ghcb = svm->ghcb;
2083 
2084 	/* Only GHCB Usage code 0 is supported */
2085 	if (ghcb->ghcb_usage)
2086 		goto vmgexit_err;
2087 
2088 	/*
2089 	 * Retrieve the exit code now even though is may not be marked valid
2090 	 * as it could help with debugging.
2091 	 */
2092 	exit_code = ghcb_get_sw_exit_code(ghcb);
2093 
2094 	if (!ghcb_sw_exit_code_is_valid(ghcb) ||
2095 	    !ghcb_sw_exit_info_1_is_valid(ghcb) ||
2096 	    !ghcb_sw_exit_info_2_is_valid(ghcb))
2097 		goto vmgexit_err;
2098 
2099 	switch (ghcb_get_sw_exit_code(ghcb)) {
2100 	case SVM_EXIT_READ_DR7:
2101 		break;
2102 	case SVM_EXIT_WRITE_DR7:
2103 		if (!ghcb_rax_is_valid(ghcb))
2104 			goto vmgexit_err;
2105 		break;
2106 	case SVM_EXIT_RDTSC:
2107 		break;
2108 	case SVM_EXIT_RDPMC:
2109 		if (!ghcb_rcx_is_valid(ghcb))
2110 			goto vmgexit_err;
2111 		break;
2112 	case SVM_EXIT_CPUID:
2113 		if (!ghcb_rax_is_valid(ghcb) ||
2114 		    !ghcb_rcx_is_valid(ghcb))
2115 			goto vmgexit_err;
2116 		if (ghcb_get_rax(ghcb) == 0xd)
2117 			if (!ghcb_xcr0_is_valid(ghcb))
2118 				goto vmgexit_err;
2119 		break;
2120 	case SVM_EXIT_INVD:
2121 		break;
2122 	case SVM_EXIT_IOIO:
2123 		if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) {
2124 			if (!ghcb_sw_scratch_is_valid(ghcb))
2125 				goto vmgexit_err;
2126 		} else {
2127 			if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK))
2128 				if (!ghcb_rax_is_valid(ghcb))
2129 					goto vmgexit_err;
2130 		}
2131 		break;
2132 	case SVM_EXIT_MSR:
2133 		if (!ghcb_rcx_is_valid(ghcb))
2134 			goto vmgexit_err;
2135 		if (ghcb_get_sw_exit_info_1(ghcb)) {
2136 			if (!ghcb_rax_is_valid(ghcb) ||
2137 			    !ghcb_rdx_is_valid(ghcb))
2138 				goto vmgexit_err;
2139 		}
2140 		break;
2141 	case SVM_EXIT_VMMCALL:
2142 		if (!ghcb_rax_is_valid(ghcb) ||
2143 		    !ghcb_cpl_is_valid(ghcb))
2144 			goto vmgexit_err;
2145 		break;
2146 	case SVM_EXIT_RDTSCP:
2147 		break;
2148 	case SVM_EXIT_WBINVD:
2149 		break;
2150 	case SVM_EXIT_MONITOR:
2151 		if (!ghcb_rax_is_valid(ghcb) ||
2152 		    !ghcb_rcx_is_valid(ghcb) ||
2153 		    !ghcb_rdx_is_valid(ghcb))
2154 			goto vmgexit_err;
2155 		break;
2156 	case SVM_EXIT_MWAIT:
2157 		if (!ghcb_rax_is_valid(ghcb) ||
2158 		    !ghcb_rcx_is_valid(ghcb))
2159 			goto vmgexit_err;
2160 		break;
2161 	case SVM_VMGEXIT_MMIO_READ:
2162 	case SVM_VMGEXIT_MMIO_WRITE:
2163 		if (!ghcb_sw_scratch_is_valid(ghcb))
2164 			goto vmgexit_err;
2165 		break;
2166 	case SVM_VMGEXIT_NMI_COMPLETE:
2167 	case SVM_VMGEXIT_AP_HLT_LOOP:
2168 	case SVM_VMGEXIT_AP_JUMP_TABLE:
2169 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2170 		break;
2171 	default:
2172 		goto vmgexit_err;
2173 	}
2174 
2175 	return 0;
2176 
2177 vmgexit_err:
2178 	vcpu = &svm->vcpu;
2179 
2180 	if (ghcb->ghcb_usage) {
2181 		vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2182 			    ghcb->ghcb_usage);
2183 	} else {
2184 		vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n",
2185 			    exit_code);
2186 		dump_ghcb(svm);
2187 	}
2188 
2189 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2190 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
2191 	vcpu->run->internal.ndata = 2;
2192 	vcpu->run->internal.data[0] = exit_code;
2193 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
2194 
2195 	return -EINVAL;
2196 }
2197 
2198 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2199 {
2200 	if (!svm->ghcb)
2201 		return;
2202 
2203 	if (svm->ghcb_sa_free) {
2204 		/*
2205 		 * The scratch area lives outside the GHCB, so there is a
2206 		 * buffer that, depending on the operation performed, may
2207 		 * need to be synced, then freed.
2208 		 */
2209 		if (svm->ghcb_sa_sync) {
2210 			kvm_write_guest(svm->vcpu.kvm,
2211 					ghcb_get_sw_scratch(svm->ghcb),
2212 					svm->ghcb_sa, svm->ghcb_sa_len);
2213 			svm->ghcb_sa_sync = false;
2214 		}
2215 
2216 		kfree(svm->ghcb_sa);
2217 		svm->ghcb_sa = NULL;
2218 		svm->ghcb_sa_free = false;
2219 	}
2220 
2221 	trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->ghcb);
2222 
2223 	sev_es_sync_to_ghcb(svm);
2224 
2225 	kvm_vcpu_unmap(&svm->vcpu, &svm->ghcb_map, true);
2226 	svm->ghcb = NULL;
2227 }
2228 
2229 void pre_sev_run(struct vcpu_svm *svm, int cpu)
2230 {
2231 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2232 	int asid = sev_get_asid(svm->vcpu.kvm);
2233 
2234 	/* Assign the asid allocated with this SEV guest */
2235 	svm->asid = asid;
2236 
2237 	/*
2238 	 * Flush guest TLB:
2239 	 *
2240 	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2241 	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2242 	 */
2243 	if (sd->sev_vmcbs[asid] == svm->vmcb &&
2244 	    svm->vcpu.arch.last_vmentry_cpu == cpu)
2245 		return;
2246 
2247 	sd->sev_vmcbs[asid] = svm->vmcb;
2248 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2249 	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2250 }
2251 
2252 #define GHCB_SCRATCH_AREA_LIMIT		(16ULL * PAGE_SIZE)
2253 static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2254 {
2255 	struct vmcb_control_area *control = &svm->vmcb->control;
2256 	struct ghcb *ghcb = svm->ghcb;
2257 	u64 ghcb_scratch_beg, ghcb_scratch_end;
2258 	u64 scratch_gpa_beg, scratch_gpa_end;
2259 	void *scratch_va;
2260 
2261 	scratch_gpa_beg = ghcb_get_sw_scratch(ghcb);
2262 	if (!scratch_gpa_beg) {
2263 		pr_err("vmgexit: scratch gpa not provided\n");
2264 		return false;
2265 	}
2266 
2267 	scratch_gpa_end = scratch_gpa_beg + len;
2268 	if (scratch_gpa_end < scratch_gpa_beg) {
2269 		pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2270 		       len, scratch_gpa_beg);
2271 		return false;
2272 	}
2273 
2274 	if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2275 		/* Scratch area begins within GHCB */
2276 		ghcb_scratch_beg = control->ghcb_gpa +
2277 				   offsetof(struct ghcb, shared_buffer);
2278 		ghcb_scratch_end = control->ghcb_gpa +
2279 				   offsetof(struct ghcb, reserved_1);
2280 
2281 		/*
2282 		 * If the scratch area begins within the GHCB, it must be
2283 		 * completely contained in the GHCB shared buffer area.
2284 		 */
2285 		if (scratch_gpa_beg < ghcb_scratch_beg ||
2286 		    scratch_gpa_end > ghcb_scratch_end) {
2287 			pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2288 			       scratch_gpa_beg, scratch_gpa_end);
2289 			return false;
2290 		}
2291 
2292 		scratch_va = (void *)svm->ghcb;
2293 		scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2294 	} else {
2295 		/*
2296 		 * The guest memory must be read into a kernel buffer, so
2297 		 * limit the size
2298 		 */
2299 		if (len > GHCB_SCRATCH_AREA_LIMIT) {
2300 			pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2301 			       len, GHCB_SCRATCH_AREA_LIMIT);
2302 			return false;
2303 		}
2304 		scratch_va = kzalloc(len, GFP_KERNEL_ACCOUNT);
2305 		if (!scratch_va)
2306 			return false;
2307 
2308 		if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2309 			/* Unable to copy scratch area from guest */
2310 			pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2311 
2312 			kfree(scratch_va);
2313 			return false;
2314 		}
2315 
2316 		/*
2317 		 * The scratch area is outside the GHCB. The operation will
2318 		 * dictate whether the buffer needs to be synced before running
2319 		 * the vCPU next time (i.e. a read was requested so the data
2320 		 * must be written back to the guest memory).
2321 		 */
2322 		svm->ghcb_sa_sync = sync;
2323 		svm->ghcb_sa_free = true;
2324 	}
2325 
2326 	svm->ghcb_sa = scratch_va;
2327 	svm->ghcb_sa_len = len;
2328 
2329 	return true;
2330 }
2331 
2332 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2333 			      unsigned int pos)
2334 {
2335 	svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2336 	svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2337 }
2338 
2339 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2340 {
2341 	return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2342 }
2343 
2344 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2345 {
2346 	svm->vmcb->control.ghcb_gpa = value;
2347 }
2348 
2349 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2350 {
2351 	struct vmcb_control_area *control = &svm->vmcb->control;
2352 	struct kvm_vcpu *vcpu = &svm->vcpu;
2353 	u64 ghcb_info;
2354 	int ret = 1;
2355 
2356 	ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2357 
2358 	trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2359 					     control->ghcb_gpa);
2360 
2361 	switch (ghcb_info) {
2362 	case GHCB_MSR_SEV_INFO_REQ:
2363 		set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2364 						    GHCB_VERSION_MIN,
2365 						    sev_enc_bit));
2366 		break;
2367 	case GHCB_MSR_CPUID_REQ: {
2368 		u64 cpuid_fn, cpuid_reg, cpuid_value;
2369 
2370 		cpuid_fn = get_ghcb_msr_bits(svm,
2371 					     GHCB_MSR_CPUID_FUNC_MASK,
2372 					     GHCB_MSR_CPUID_FUNC_POS);
2373 
2374 		/* Initialize the registers needed by the CPUID intercept */
2375 		vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2376 		vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2377 
2378 		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2379 		if (!ret) {
2380 			ret = -EINVAL;
2381 			break;
2382 		}
2383 
2384 		cpuid_reg = get_ghcb_msr_bits(svm,
2385 					      GHCB_MSR_CPUID_REG_MASK,
2386 					      GHCB_MSR_CPUID_REG_POS);
2387 		if (cpuid_reg == 0)
2388 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2389 		else if (cpuid_reg == 1)
2390 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2391 		else if (cpuid_reg == 2)
2392 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2393 		else
2394 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2395 
2396 		set_ghcb_msr_bits(svm, cpuid_value,
2397 				  GHCB_MSR_CPUID_VALUE_MASK,
2398 				  GHCB_MSR_CPUID_VALUE_POS);
2399 
2400 		set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2401 				  GHCB_MSR_INFO_MASK,
2402 				  GHCB_MSR_INFO_POS);
2403 		break;
2404 	}
2405 	case GHCB_MSR_TERM_REQ: {
2406 		u64 reason_set, reason_code;
2407 
2408 		reason_set = get_ghcb_msr_bits(svm,
2409 					       GHCB_MSR_TERM_REASON_SET_MASK,
2410 					       GHCB_MSR_TERM_REASON_SET_POS);
2411 		reason_code = get_ghcb_msr_bits(svm,
2412 						GHCB_MSR_TERM_REASON_MASK,
2413 						GHCB_MSR_TERM_REASON_POS);
2414 		pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2415 			reason_set, reason_code);
2416 		fallthrough;
2417 	}
2418 	default:
2419 		ret = -EINVAL;
2420 	}
2421 
2422 	trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2423 					    control->ghcb_gpa, ret);
2424 
2425 	return ret;
2426 }
2427 
2428 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2429 {
2430 	struct vcpu_svm *svm = to_svm(vcpu);
2431 	struct vmcb_control_area *control = &svm->vmcb->control;
2432 	u64 ghcb_gpa, exit_code;
2433 	struct ghcb *ghcb;
2434 	int ret;
2435 
2436 	/* Validate the GHCB */
2437 	ghcb_gpa = control->ghcb_gpa;
2438 	if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2439 		return sev_handle_vmgexit_msr_protocol(svm);
2440 
2441 	if (!ghcb_gpa) {
2442 		vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2443 		return -EINVAL;
2444 	}
2445 
2446 	if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->ghcb_map)) {
2447 		/* Unable to map GHCB from guest */
2448 		vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2449 			    ghcb_gpa);
2450 		return -EINVAL;
2451 	}
2452 
2453 	svm->ghcb = svm->ghcb_map.hva;
2454 	ghcb = svm->ghcb_map.hva;
2455 
2456 	trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb);
2457 
2458 	exit_code = ghcb_get_sw_exit_code(ghcb);
2459 
2460 	ret = sev_es_validate_vmgexit(svm);
2461 	if (ret)
2462 		return ret;
2463 
2464 	sev_es_sync_from_ghcb(svm);
2465 	ghcb_set_sw_exit_info_1(ghcb, 0);
2466 	ghcb_set_sw_exit_info_2(ghcb, 0);
2467 
2468 	ret = -EINVAL;
2469 	switch (exit_code) {
2470 	case SVM_VMGEXIT_MMIO_READ:
2471 		if (!setup_vmgexit_scratch(svm, true, control->exit_info_2))
2472 			break;
2473 
2474 		ret = kvm_sev_es_mmio_read(vcpu,
2475 					   control->exit_info_1,
2476 					   control->exit_info_2,
2477 					   svm->ghcb_sa);
2478 		break;
2479 	case SVM_VMGEXIT_MMIO_WRITE:
2480 		if (!setup_vmgexit_scratch(svm, false, control->exit_info_2))
2481 			break;
2482 
2483 		ret = kvm_sev_es_mmio_write(vcpu,
2484 					    control->exit_info_1,
2485 					    control->exit_info_2,
2486 					    svm->ghcb_sa);
2487 		break;
2488 	case SVM_VMGEXIT_NMI_COMPLETE:
2489 		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET);
2490 		break;
2491 	case SVM_VMGEXIT_AP_HLT_LOOP:
2492 		ret = kvm_emulate_ap_reset_hold(vcpu);
2493 		break;
2494 	case SVM_VMGEXIT_AP_JUMP_TABLE: {
2495 		struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2496 
2497 		switch (control->exit_info_1) {
2498 		case 0:
2499 			/* Set AP jump table address */
2500 			sev->ap_jump_table = control->exit_info_2;
2501 			break;
2502 		case 1:
2503 			/* Get AP jump table address */
2504 			ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
2505 			break;
2506 		default:
2507 			pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2508 			       control->exit_info_1);
2509 			ghcb_set_sw_exit_info_1(ghcb, 1);
2510 			ghcb_set_sw_exit_info_2(ghcb,
2511 						X86_TRAP_UD |
2512 						SVM_EVTINJ_TYPE_EXEPT |
2513 						SVM_EVTINJ_VALID);
2514 		}
2515 
2516 		ret = 1;
2517 		break;
2518 	}
2519 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2520 		vcpu_unimpl(vcpu,
2521 			    "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2522 			    control->exit_info_1, control->exit_info_2);
2523 		break;
2524 	default:
2525 		ret = svm_invoke_exit_handler(vcpu, exit_code);
2526 	}
2527 
2528 	return ret;
2529 }
2530 
2531 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2532 {
2533 	if (!setup_vmgexit_scratch(svm, in, svm->vmcb->control.exit_info_2))
2534 		return -EINVAL;
2535 
2536 	return kvm_sev_es_string_io(&svm->vcpu, size, port,
2537 				    svm->ghcb_sa, svm->ghcb_sa_len, in);
2538 }
2539 
2540 void sev_es_init_vmcb(struct vcpu_svm *svm)
2541 {
2542 	struct kvm_vcpu *vcpu = &svm->vcpu;
2543 
2544 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
2545 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
2546 
2547 	/*
2548 	 * An SEV-ES guest requires a VMSA area that is a separate from the
2549 	 * VMCB page. Do not include the encryption mask on the VMSA physical
2550 	 * address since hardware will access it using the guest key.
2551 	 */
2552 	svm->vmcb->control.vmsa_pa = __pa(svm->vmsa);
2553 
2554 	/* Can't intercept CR register access, HV can't modify CR registers */
2555 	svm_clr_intercept(svm, INTERCEPT_CR0_READ);
2556 	svm_clr_intercept(svm, INTERCEPT_CR4_READ);
2557 	svm_clr_intercept(svm, INTERCEPT_CR8_READ);
2558 	svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
2559 	svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
2560 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
2561 
2562 	svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
2563 
2564 	/* Track EFER/CR register changes */
2565 	svm_set_intercept(svm, TRAP_EFER_WRITE);
2566 	svm_set_intercept(svm, TRAP_CR0_WRITE);
2567 	svm_set_intercept(svm, TRAP_CR4_WRITE);
2568 	svm_set_intercept(svm, TRAP_CR8_WRITE);
2569 
2570 	/* No support for enable_vmware_backdoor */
2571 	clr_exception_intercept(svm, GP_VECTOR);
2572 
2573 	/* Can't intercept XSETBV, HV can't modify XCR0 directly */
2574 	svm_clr_intercept(svm, INTERCEPT_XSETBV);
2575 
2576 	/* Clear intercepts on selected MSRs */
2577 	set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
2578 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
2579 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
2580 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
2581 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
2582 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
2583 }
2584 
2585 void sev_es_create_vcpu(struct vcpu_svm *svm)
2586 {
2587 	/*
2588 	 * Set the GHCB MSR value as per the GHCB specification when creating
2589 	 * a vCPU for an SEV-ES guest.
2590 	 */
2591 	set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2592 					    GHCB_VERSION_MIN,
2593 					    sev_enc_bit));
2594 }
2595 
2596 void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu)
2597 {
2598 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2599 	struct vmcb_save_area *hostsa;
2600 
2601 	/*
2602 	 * As an SEV-ES guest, hardware will restore the host state on VMEXIT,
2603 	 * of which one step is to perform a VMLOAD. Since hardware does not
2604 	 * perform a VMSAVE on VMRUN, the host savearea must be updated.
2605 	 */
2606 	vmsave(__sme_page_pa(sd->save_area));
2607 
2608 	/* XCR0 is restored on VMEXIT, save the current host value */
2609 	hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400);
2610 	hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
2611 
2612 	/* PKRU is restored on VMEXIT, save the current host value */
2613 	hostsa->pkru = read_pkru();
2614 
2615 	/* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
2616 	hostsa->xss = host_xss;
2617 }
2618 
2619 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
2620 {
2621 	struct vcpu_svm *svm = to_svm(vcpu);
2622 
2623 	/* First SIPI: Use the values as initially set by the VMM */
2624 	if (!svm->received_first_sipi) {
2625 		svm->received_first_sipi = true;
2626 		return;
2627 	}
2628 
2629 	/*
2630 	 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
2631 	 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
2632 	 * non-zero value.
2633 	 */
2634 	if (!svm->ghcb)
2635 		return;
2636 
2637 	ghcb_set_sw_exit_info_2(svm->ghcb, 1);
2638 }
2639