xref: /openbmc/linux/arch/x86/kvm/svm/sev.c (revision 6db6b729)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kvm_types.h>
12 #include <linux/kvm_host.h>
13 #include <linux/kernel.h>
14 #include <linux/highmem.h>
15 #include <linux/psp.h>
16 #include <linux/psp-sev.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/misc_cgroup.h>
20 #include <linux/processor.h>
21 #include <linux/trace_events.h>
22 
23 #include <asm/pkru.h>
24 #include <asm/trapnr.h>
25 #include <asm/fpu/xcr.h>
26 #include <asm/debugreg.h>
27 
28 #include "mmu.h"
29 #include "x86.h"
30 #include "svm.h"
31 #include "svm_ops.h"
32 #include "cpuid.h"
33 #include "trace.h"
34 
35 #ifndef CONFIG_KVM_AMD_SEV
36 /*
37  * When this config is not defined, SEV feature is not supported and APIs in
38  * this file are not used but this file still gets compiled into the KVM AMD
39  * module.
40  *
41  * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
42  * misc_res_type {} defined in linux/misc_cgroup.h.
43  *
44  * Below macros allow compilation to succeed.
45  */
46 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES
47 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
48 #endif
49 
50 #ifdef CONFIG_KVM_AMD_SEV
51 /* enable/disable SEV support */
52 static bool sev_enabled = true;
53 module_param_named(sev, sev_enabled, bool, 0444);
54 
55 /* enable/disable SEV-ES support */
56 static bool sev_es_enabled = true;
57 module_param_named(sev_es, sev_es_enabled, bool, 0444);
58 
59 /* enable/disable SEV-ES DebugSwap support */
60 static bool sev_es_debug_swap_enabled = true;
61 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444);
62 #else
63 #define sev_enabled false
64 #define sev_es_enabled false
65 #define sev_es_debug_swap_enabled false
66 #endif /* CONFIG_KVM_AMD_SEV */
67 
68 static u8 sev_enc_bit;
69 static DECLARE_RWSEM(sev_deactivate_lock);
70 static DEFINE_MUTEX(sev_bitmap_lock);
71 unsigned int max_sev_asid;
72 static unsigned int min_sev_asid;
73 static unsigned long sev_me_mask;
74 static unsigned int nr_asids;
75 static unsigned long *sev_asid_bitmap;
76 static unsigned long *sev_reclaim_asid_bitmap;
77 
78 struct enc_region {
79 	struct list_head list;
80 	unsigned long npages;
81 	struct page **pages;
82 	unsigned long uaddr;
83 	unsigned long size;
84 };
85 
86 /* Called with the sev_bitmap_lock held, or on shutdown  */
87 static int sev_flush_asids(int min_asid, int max_asid)
88 {
89 	int ret, asid, error = 0;
90 
91 	/* Check if there are any ASIDs to reclaim before performing a flush */
92 	asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
93 	if (asid > max_asid)
94 		return -EBUSY;
95 
96 	/*
97 	 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
98 	 * so it must be guarded.
99 	 */
100 	down_write(&sev_deactivate_lock);
101 
102 	wbinvd_on_all_cpus();
103 	ret = sev_guest_df_flush(&error);
104 
105 	up_write(&sev_deactivate_lock);
106 
107 	if (ret)
108 		pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
109 
110 	return ret;
111 }
112 
113 static inline bool is_mirroring_enc_context(struct kvm *kvm)
114 {
115 	return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
116 }
117 
118 /* Must be called with the sev_bitmap_lock held */
119 static bool __sev_recycle_asids(int min_asid, int max_asid)
120 {
121 	if (sev_flush_asids(min_asid, max_asid))
122 		return false;
123 
124 	/* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
125 	bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
126 		   nr_asids);
127 	bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
128 
129 	return true;
130 }
131 
132 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
133 {
134 	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
135 	return misc_cg_try_charge(type, sev->misc_cg, 1);
136 }
137 
138 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
139 {
140 	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
141 	misc_cg_uncharge(type, sev->misc_cg, 1);
142 }
143 
144 static int sev_asid_new(struct kvm_sev_info *sev)
145 {
146 	int asid, min_asid, max_asid, ret;
147 	bool retry = true;
148 
149 	WARN_ON(sev->misc_cg);
150 	sev->misc_cg = get_current_misc_cg();
151 	ret = sev_misc_cg_try_charge(sev);
152 	if (ret) {
153 		put_misc_cg(sev->misc_cg);
154 		sev->misc_cg = NULL;
155 		return ret;
156 	}
157 
158 	mutex_lock(&sev_bitmap_lock);
159 
160 	/*
161 	 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
162 	 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
163 	 */
164 	min_asid = sev->es_active ? 1 : min_sev_asid;
165 	max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
166 again:
167 	asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
168 	if (asid > max_asid) {
169 		if (retry && __sev_recycle_asids(min_asid, max_asid)) {
170 			retry = false;
171 			goto again;
172 		}
173 		mutex_unlock(&sev_bitmap_lock);
174 		ret = -EBUSY;
175 		goto e_uncharge;
176 	}
177 
178 	__set_bit(asid, sev_asid_bitmap);
179 
180 	mutex_unlock(&sev_bitmap_lock);
181 
182 	return asid;
183 e_uncharge:
184 	sev_misc_cg_uncharge(sev);
185 	put_misc_cg(sev->misc_cg);
186 	sev->misc_cg = NULL;
187 	return ret;
188 }
189 
190 static int sev_get_asid(struct kvm *kvm)
191 {
192 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
193 
194 	return sev->asid;
195 }
196 
197 static void sev_asid_free(struct kvm_sev_info *sev)
198 {
199 	struct svm_cpu_data *sd;
200 	int cpu;
201 
202 	mutex_lock(&sev_bitmap_lock);
203 
204 	__set_bit(sev->asid, sev_reclaim_asid_bitmap);
205 
206 	for_each_possible_cpu(cpu) {
207 		sd = per_cpu_ptr(&svm_data, cpu);
208 		sd->sev_vmcbs[sev->asid] = NULL;
209 	}
210 
211 	mutex_unlock(&sev_bitmap_lock);
212 
213 	sev_misc_cg_uncharge(sev);
214 	put_misc_cg(sev->misc_cg);
215 	sev->misc_cg = NULL;
216 }
217 
218 static void sev_decommission(unsigned int handle)
219 {
220 	struct sev_data_decommission decommission;
221 
222 	if (!handle)
223 		return;
224 
225 	decommission.handle = handle;
226 	sev_guest_decommission(&decommission, NULL);
227 }
228 
229 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
230 {
231 	struct sev_data_deactivate deactivate;
232 
233 	if (!handle)
234 		return;
235 
236 	deactivate.handle = handle;
237 
238 	/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
239 	down_read(&sev_deactivate_lock);
240 	sev_guest_deactivate(&deactivate, NULL);
241 	up_read(&sev_deactivate_lock);
242 
243 	sev_decommission(handle);
244 }
245 
246 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
247 {
248 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
249 	int asid, ret;
250 
251 	if (kvm->created_vcpus)
252 		return -EINVAL;
253 
254 	ret = -EBUSY;
255 	if (unlikely(sev->active))
256 		return ret;
257 
258 	sev->active = true;
259 	sev->es_active = argp->id == KVM_SEV_ES_INIT;
260 	asid = sev_asid_new(sev);
261 	if (asid < 0)
262 		goto e_no_asid;
263 	sev->asid = asid;
264 
265 	ret = sev_platform_init(&argp->error);
266 	if (ret)
267 		goto e_free;
268 
269 	INIT_LIST_HEAD(&sev->regions_list);
270 	INIT_LIST_HEAD(&sev->mirror_vms);
271 
272 	kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
273 
274 	return 0;
275 
276 e_free:
277 	sev_asid_free(sev);
278 	sev->asid = 0;
279 e_no_asid:
280 	sev->es_active = false;
281 	sev->active = false;
282 	return ret;
283 }
284 
285 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
286 {
287 	struct sev_data_activate activate;
288 	int asid = sev_get_asid(kvm);
289 	int ret;
290 
291 	/* activate ASID on the given handle */
292 	activate.handle = handle;
293 	activate.asid   = asid;
294 	ret = sev_guest_activate(&activate, error);
295 
296 	return ret;
297 }
298 
299 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
300 {
301 	struct fd f;
302 	int ret;
303 
304 	f = fdget(fd);
305 	if (!f.file)
306 		return -EBADF;
307 
308 	ret = sev_issue_cmd_external_user(f.file, id, data, error);
309 
310 	fdput(f);
311 	return ret;
312 }
313 
314 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
315 {
316 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
317 
318 	return __sev_issue_cmd(sev->fd, id, data, error);
319 }
320 
321 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
322 {
323 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
324 	struct sev_data_launch_start start;
325 	struct kvm_sev_launch_start params;
326 	void *dh_blob, *session_blob;
327 	int *error = &argp->error;
328 	int ret;
329 
330 	if (!sev_guest(kvm))
331 		return -ENOTTY;
332 
333 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
334 		return -EFAULT;
335 
336 	memset(&start, 0, sizeof(start));
337 
338 	dh_blob = NULL;
339 	if (params.dh_uaddr) {
340 		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
341 		if (IS_ERR(dh_blob))
342 			return PTR_ERR(dh_blob);
343 
344 		start.dh_cert_address = __sme_set(__pa(dh_blob));
345 		start.dh_cert_len = params.dh_len;
346 	}
347 
348 	session_blob = NULL;
349 	if (params.session_uaddr) {
350 		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
351 		if (IS_ERR(session_blob)) {
352 			ret = PTR_ERR(session_blob);
353 			goto e_free_dh;
354 		}
355 
356 		start.session_address = __sme_set(__pa(session_blob));
357 		start.session_len = params.session_len;
358 	}
359 
360 	start.handle = params.handle;
361 	start.policy = params.policy;
362 
363 	/* create memory encryption context */
364 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
365 	if (ret)
366 		goto e_free_session;
367 
368 	/* Bind ASID to this guest */
369 	ret = sev_bind_asid(kvm, start.handle, error);
370 	if (ret) {
371 		sev_decommission(start.handle);
372 		goto e_free_session;
373 	}
374 
375 	/* return handle to userspace */
376 	params.handle = start.handle;
377 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
378 		sev_unbind_asid(kvm, start.handle);
379 		ret = -EFAULT;
380 		goto e_free_session;
381 	}
382 
383 	sev->handle = start.handle;
384 	sev->fd = argp->sev_fd;
385 
386 e_free_session:
387 	kfree(session_blob);
388 e_free_dh:
389 	kfree(dh_blob);
390 	return ret;
391 }
392 
393 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
394 				    unsigned long ulen, unsigned long *n,
395 				    int write)
396 {
397 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
398 	unsigned long npages, size;
399 	int npinned;
400 	unsigned long locked, lock_limit;
401 	struct page **pages;
402 	unsigned long first, last;
403 	int ret;
404 
405 	lockdep_assert_held(&kvm->lock);
406 
407 	if (ulen == 0 || uaddr + ulen < uaddr)
408 		return ERR_PTR(-EINVAL);
409 
410 	/* Calculate number of pages. */
411 	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
412 	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
413 	npages = (last - first + 1);
414 
415 	locked = sev->pages_locked + npages;
416 	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
417 	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
418 		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
419 		return ERR_PTR(-ENOMEM);
420 	}
421 
422 	if (WARN_ON_ONCE(npages > INT_MAX))
423 		return ERR_PTR(-EINVAL);
424 
425 	/* Avoid using vmalloc for smaller buffers. */
426 	size = npages * sizeof(struct page *);
427 	if (size > PAGE_SIZE)
428 		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
429 	else
430 		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
431 
432 	if (!pages)
433 		return ERR_PTR(-ENOMEM);
434 
435 	/* Pin the user virtual address. */
436 	npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
437 	if (npinned != npages) {
438 		pr_err("SEV: Failure locking %lu pages.\n", npages);
439 		ret = -ENOMEM;
440 		goto err;
441 	}
442 
443 	*n = npages;
444 	sev->pages_locked = locked;
445 
446 	return pages;
447 
448 err:
449 	if (npinned > 0)
450 		unpin_user_pages(pages, npinned);
451 
452 	kvfree(pages);
453 	return ERR_PTR(ret);
454 }
455 
456 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
457 			     unsigned long npages)
458 {
459 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
460 
461 	unpin_user_pages(pages, npages);
462 	kvfree(pages);
463 	sev->pages_locked -= npages;
464 }
465 
466 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
467 {
468 	uint8_t *page_virtual;
469 	unsigned long i;
470 
471 	if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
472 	    pages == NULL)
473 		return;
474 
475 	for (i = 0; i < npages; i++) {
476 		page_virtual = kmap_local_page(pages[i]);
477 		clflush_cache_range(page_virtual, PAGE_SIZE);
478 		kunmap_local(page_virtual);
479 		cond_resched();
480 	}
481 }
482 
483 static unsigned long get_num_contig_pages(unsigned long idx,
484 				struct page **inpages, unsigned long npages)
485 {
486 	unsigned long paddr, next_paddr;
487 	unsigned long i = idx + 1, pages = 1;
488 
489 	/* find the number of contiguous pages starting from idx */
490 	paddr = __sme_page_pa(inpages[idx]);
491 	while (i < npages) {
492 		next_paddr = __sme_page_pa(inpages[i++]);
493 		if ((paddr + PAGE_SIZE) == next_paddr) {
494 			pages++;
495 			paddr = next_paddr;
496 			continue;
497 		}
498 		break;
499 	}
500 
501 	return pages;
502 }
503 
504 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
505 {
506 	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
507 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
508 	struct kvm_sev_launch_update_data params;
509 	struct sev_data_launch_update_data data;
510 	struct page **inpages;
511 	int ret;
512 
513 	if (!sev_guest(kvm))
514 		return -ENOTTY;
515 
516 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
517 		return -EFAULT;
518 
519 	vaddr = params.uaddr;
520 	size = params.len;
521 	vaddr_end = vaddr + size;
522 
523 	/* Lock the user memory. */
524 	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
525 	if (IS_ERR(inpages))
526 		return PTR_ERR(inpages);
527 
528 	/*
529 	 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
530 	 * place; the cache may contain the data that was written unencrypted.
531 	 */
532 	sev_clflush_pages(inpages, npages);
533 
534 	data.reserved = 0;
535 	data.handle = sev->handle;
536 
537 	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
538 		int offset, len;
539 
540 		/*
541 		 * If the user buffer is not page-aligned, calculate the offset
542 		 * within the page.
543 		 */
544 		offset = vaddr & (PAGE_SIZE - 1);
545 
546 		/* Calculate the number of pages that can be encrypted in one go. */
547 		pages = get_num_contig_pages(i, inpages, npages);
548 
549 		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
550 
551 		data.len = len;
552 		data.address = __sme_page_pa(inpages[i]) + offset;
553 		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
554 		if (ret)
555 			goto e_unpin;
556 
557 		size -= len;
558 		next_vaddr = vaddr + len;
559 	}
560 
561 e_unpin:
562 	/* content of memory is updated, mark pages dirty */
563 	for (i = 0; i < npages; i++) {
564 		set_page_dirty_lock(inpages[i]);
565 		mark_page_accessed(inpages[i]);
566 	}
567 	/* unlock the user pages */
568 	sev_unpin_memory(kvm, inpages, npages);
569 	return ret;
570 }
571 
572 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
573 {
574 	struct sev_es_save_area *save = svm->sev_es.vmsa;
575 
576 	/* Check some debug related fields before encrypting the VMSA */
577 	if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
578 		return -EINVAL;
579 
580 	/*
581 	 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
582 	 * the traditional VMSA that is part of the VMCB. Copy the
583 	 * traditional VMSA as it has been built so far (in prep
584 	 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
585 	 */
586 	memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
587 
588 	/* Sync registgers */
589 	save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
590 	save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
591 	save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
592 	save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
593 	save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
594 	save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
595 	save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
596 	save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
597 #ifdef CONFIG_X86_64
598 	save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
599 	save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
600 	save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
601 	save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
602 	save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
603 	save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
604 	save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
605 	save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
606 #endif
607 	save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
608 
609 	/* Sync some non-GPR registers before encrypting */
610 	save->xcr0 = svm->vcpu.arch.xcr0;
611 	save->pkru = svm->vcpu.arch.pkru;
612 	save->xss  = svm->vcpu.arch.ia32_xss;
613 	save->dr6  = svm->vcpu.arch.dr6;
614 
615 	if (sev_es_debug_swap_enabled)
616 		save->sev_features |= SVM_SEV_FEAT_DEBUG_SWAP;
617 
618 	pr_debug("Virtual Machine Save Area (VMSA):\n");
619 	print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
620 
621 	return 0;
622 }
623 
624 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
625 				    int *error)
626 {
627 	struct sev_data_launch_update_vmsa vmsa;
628 	struct vcpu_svm *svm = to_svm(vcpu);
629 	int ret;
630 
631 	if (vcpu->guest_debug) {
632 		pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported");
633 		return -EINVAL;
634 	}
635 
636 	/* Perform some pre-encryption checks against the VMSA */
637 	ret = sev_es_sync_vmsa(svm);
638 	if (ret)
639 		return ret;
640 
641 	/*
642 	 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
643 	 * the VMSA memory content (i.e it will write the same memory region
644 	 * with the guest's key), so invalidate it first.
645 	 */
646 	clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
647 
648 	vmsa.reserved = 0;
649 	vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
650 	vmsa.address = __sme_pa(svm->sev_es.vmsa);
651 	vmsa.len = PAGE_SIZE;
652 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
653 	if (ret)
654 	  return ret;
655 
656 	vcpu->arch.guest_state_protected = true;
657 	return 0;
658 }
659 
660 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
661 {
662 	struct kvm_vcpu *vcpu;
663 	unsigned long i;
664 	int ret;
665 
666 	if (!sev_es_guest(kvm))
667 		return -ENOTTY;
668 
669 	kvm_for_each_vcpu(i, vcpu, kvm) {
670 		ret = mutex_lock_killable(&vcpu->mutex);
671 		if (ret)
672 			return ret;
673 
674 		ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
675 
676 		mutex_unlock(&vcpu->mutex);
677 		if (ret)
678 			return ret;
679 	}
680 
681 	return 0;
682 }
683 
684 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
685 {
686 	void __user *measure = (void __user *)(uintptr_t)argp->data;
687 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
688 	struct sev_data_launch_measure data;
689 	struct kvm_sev_launch_measure params;
690 	void __user *p = NULL;
691 	void *blob = NULL;
692 	int ret;
693 
694 	if (!sev_guest(kvm))
695 		return -ENOTTY;
696 
697 	if (copy_from_user(&params, measure, sizeof(params)))
698 		return -EFAULT;
699 
700 	memset(&data, 0, sizeof(data));
701 
702 	/* User wants to query the blob length */
703 	if (!params.len)
704 		goto cmd;
705 
706 	p = (void __user *)(uintptr_t)params.uaddr;
707 	if (p) {
708 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
709 			return -EINVAL;
710 
711 		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
712 		if (!blob)
713 			return -ENOMEM;
714 
715 		data.address = __psp_pa(blob);
716 		data.len = params.len;
717 	}
718 
719 cmd:
720 	data.handle = sev->handle;
721 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
722 
723 	/*
724 	 * If we query the session length, FW responded with expected data.
725 	 */
726 	if (!params.len)
727 		goto done;
728 
729 	if (ret)
730 		goto e_free_blob;
731 
732 	if (blob) {
733 		if (copy_to_user(p, blob, params.len))
734 			ret = -EFAULT;
735 	}
736 
737 done:
738 	params.len = data.len;
739 	if (copy_to_user(measure, &params, sizeof(params)))
740 		ret = -EFAULT;
741 e_free_blob:
742 	kfree(blob);
743 	return ret;
744 }
745 
746 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
747 {
748 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
749 	struct sev_data_launch_finish data;
750 
751 	if (!sev_guest(kvm))
752 		return -ENOTTY;
753 
754 	data.handle = sev->handle;
755 	return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
756 }
757 
758 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
759 {
760 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
761 	struct kvm_sev_guest_status params;
762 	struct sev_data_guest_status data;
763 	int ret;
764 
765 	if (!sev_guest(kvm))
766 		return -ENOTTY;
767 
768 	memset(&data, 0, sizeof(data));
769 
770 	data.handle = sev->handle;
771 	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
772 	if (ret)
773 		return ret;
774 
775 	params.policy = data.policy;
776 	params.state = data.state;
777 	params.handle = data.handle;
778 
779 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
780 		ret = -EFAULT;
781 
782 	return ret;
783 }
784 
785 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
786 			       unsigned long dst, int size,
787 			       int *error, bool enc)
788 {
789 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
790 	struct sev_data_dbg data;
791 
792 	data.reserved = 0;
793 	data.handle = sev->handle;
794 	data.dst_addr = dst;
795 	data.src_addr = src;
796 	data.len = size;
797 
798 	return sev_issue_cmd(kvm,
799 			     enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
800 			     &data, error);
801 }
802 
803 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
804 			     unsigned long dst_paddr, int sz, int *err)
805 {
806 	int offset;
807 
808 	/*
809 	 * Its safe to read more than we are asked, caller should ensure that
810 	 * destination has enough space.
811 	 */
812 	offset = src_paddr & 15;
813 	src_paddr = round_down(src_paddr, 16);
814 	sz = round_up(sz + offset, 16);
815 
816 	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
817 }
818 
819 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
820 				  void __user *dst_uaddr,
821 				  unsigned long dst_paddr,
822 				  int size, int *err)
823 {
824 	struct page *tpage = NULL;
825 	int ret, offset;
826 
827 	/* if inputs are not 16-byte then use intermediate buffer */
828 	if (!IS_ALIGNED(dst_paddr, 16) ||
829 	    !IS_ALIGNED(paddr,     16) ||
830 	    !IS_ALIGNED(size,      16)) {
831 		tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
832 		if (!tpage)
833 			return -ENOMEM;
834 
835 		dst_paddr = __sme_page_pa(tpage);
836 	}
837 
838 	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
839 	if (ret)
840 		goto e_free;
841 
842 	if (tpage) {
843 		offset = paddr & 15;
844 		if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
845 			ret = -EFAULT;
846 	}
847 
848 e_free:
849 	if (tpage)
850 		__free_page(tpage);
851 
852 	return ret;
853 }
854 
855 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
856 				  void __user *vaddr,
857 				  unsigned long dst_paddr,
858 				  void __user *dst_vaddr,
859 				  int size, int *error)
860 {
861 	struct page *src_tpage = NULL;
862 	struct page *dst_tpage = NULL;
863 	int ret, len = size;
864 
865 	/* If source buffer is not aligned then use an intermediate buffer */
866 	if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
867 		src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
868 		if (!src_tpage)
869 			return -ENOMEM;
870 
871 		if (copy_from_user(page_address(src_tpage), vaddr, size)) {
872 			__free_page(src_tpage);
873 			return -EFAULT;
874 		}
875 
876 		paddr = __sme_page_pa(src_tpage);
877 	}
878 
879 	/*
880 	 *  If destination buffer or length is not aligned then do read-modify-write:
881 	 *   - decrypt destination in an intermediate buffer
882 	 *   - copy the source buffer in an intermediate buffer
883 	 *   - use the intermediate buffer as source buffer
884 	 */
885 	if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
886 		int dst_offset;
887 
888 		dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
889 		if (!dst_tpage) {
890 			ret = -ENOMEM;
891 			goto e_free;
892 		}
893 
894 		ret = __sev_dbg_decrypt(kvm, dst_paddr,
895 					__sme_page_pa(dst_tpage), size, error);
896 		if (ret)
897 			goto e_free;
898 
899 		/*
900 		 *  If source is kernel buffer then use memcpy() otherwise
901 		 *  copy_from_user().
902 		 */
903 		dst_offset = dst_paddr & 15;
904 
905 		if (src_tpage)
906 			memcpy(page_address(dst_tpage) + dst_offset,
907 			       page_address(src_tpage), size);
908 		else {
909 			if (copy_from_user(page_address(dst_tpage) + dst_offset,
910 					   vaddr, size)) {
911 				ret = -EFAULT;
912 				goto e_free;
913 			}
914 		}
915 
916 		paddr = __sme_page_pa(dst_tpage);
917 		dst_paddr = round_down(dst_paddr, 16);
918 		len = round_up(size, 16);
919 	}
920 
921 	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
922 
923 e_free:
924 	if (src_tpage)
925 		__free_page(src_tpage);
926 	if (dst_tpage)
927 		__free_page(dst_tpage);
928 	return ret;
929 }
930 
931 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
932 {
933 	unsigned long vaddr, vaddr_end, next_vaddr;
934 	unsigned long dst_vaddr;
935 	struct page **src_p, **dst_p;
936 	struct kvm_sev_dbg debug;
937 	unsigned long n;
938 	unsigned int size;
939 	int ret;
940 
941 	if (!sev_guest(kvm))
942 		return -ENOTTY;
943 
944 	if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
945 		return -EFAULT;
946 
947 	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
948 		return -EINVAL;
949 	if (!debug.dst_uaddr)
950 		return -EINVAL;
951 
952 	vaddr = debug.src_uaddr;
953 	size = debug.len;
954 	vaddr_end = vaddr + size;
955 	dst_vaddr = debug.dst_uaddr;
956 
957 	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
958 		int len, s_off, d_off;
959 
960 		/* lock userspace source and destination page */
961 		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
962 		if (IS_ERR(src_p))
963 			return PTR_ERR(src_p);
964 
965 		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
966 		if (IS_ERR(dst_p)) {
967 			sev_unpin_memory(kvm, src_p, n);
968 			return PTR_ERR(dst_p);
969 		}
970 
971 		/*
972 		 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
973 		 * the pages; flush the destination too so that future accesses do not
974 		 * see stale data.
975 		 */
976 		sev_clflush_pages(src_p, 1);
977 		sev_clflush_pages(dst_p, 1);
978 
979 		/*
980 		 * Since user buffer may not be page aligned, calculate the
981 		 * offset within the page.
982 		 */
983 		s_off = vaddr & ~PAGE_MASK;
984 		d_off = dst_vaddr & ~PAGE_MASK;
985 		len = min_t(size_t, (PAGE_SIZE - s_off), size);
986 
987 		if (dec)
988 			ret = __sev_dbg_decrypt_user(kvm,
989 						     __sme_page_pa(src_p[0]) + s_off,
990 						     (void __user *)dst_vaddr,
991 						     __sme_page_pa(dst_p[0]) + d_off,
992 						     len, &argp->error);
993 		else
994 			ret = __sev_dbg_encrypt_user(kvm,
995 						     __sme_page_pa(src_p[0]) + s_off,
996 						     (void __user *)vaddr,
997 						     __sme_page_pa(dst_p[0]) + d_off,
998 						     (void __user *)dst_vaddr,
999 						     len, &argp->error);
1000 
1001 		sev_unpin_memory(kvm, src_p, n);
1002 		sev_unpin_memory(kvm, dst_p, n);
1003 
1004 		if (ret)
1005 			goto err;
1006 
1007 		next_vaddr = vaddr + len;
1008 		dst_vaddr = dst_vaddr + len;
1009 		size -= len;
1010 	}
1011 err:
1012 	return ret;
1013 }
1014 
1015 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1016 {
1017 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1018 	struct sev_data_launch_secret data;
1019 	struct kvm_sev_launch_secret params;
1020 	struct page **pages;
1021 	void *blob, *hdr;
1022 	unsigned long n, i;
1023 	int ret, offset;
1024 
1025 	if (!sev_guest(kvm))
1026 		return -ENOTTY;
1027 
1028 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1029 		return -EFAULT;
1030 
1031 	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1032 	if (IS_ERR(pages))
1033 		return PTR_ERR(pages);
1034 
1035 	/*
1036 	 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1037 	 * place; the cache may contain the data that was written unencrypted.
1038 	 */
1039 	sev_clflush_pages(pages, n);
1040 
1041 	/*
1042 	 * The secret must be copied into contiguous memory region, lets verify
1043 	 * that userspace memory pages are contiguous before we issue command.
1044 	 */
1045 	if (get_num_contig_pages(0, pages, n) != n) {
1046 		ret = -EINVAL;
1047 		goto e_unpin_memory;
1048 	}
1049 
1050 	memset(&data, 0, sizeof(data));
1051 
1052 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1053 	data.guest_address = __sme_page_pa(pages[0]) + offset;
1054 	data.guest_len = params.guest_len;
1055 
1056 	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1057 	if (IS_ERR(blob)) {
1058 		ret = PTR_ERR(blob);
1059 		goto e_unpin_memory;
1060 	}
1061 
1062 	data.trans_address = __psp_pa(blob);
1063 	data.trans_len = params.trans_len;
1064 
1065 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1066 	if (IS_ERR(hdr)) {
1067 		ret = PTR_ERR(hdr);
1068 		goto e_free_blob;
1069 	}
1070 	data.hdr_address = __psp_pa(hdr);
1071 	data.hdr_len = params.hdr_len;
1072 
1073 	data.handle = sev->handle;
1074 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1075 
1076 	kfree(hdr);
1077 
1078 e_free_blob:
1079 	kfree(blob);
1080 e_unpin_memory:
1081 	/* content of memory is updated, mark pages dirty */
1082 	for (i = 0; i < n; i++) {
1083 		set_page_dirty_lock(pages[i]);
1084 		mark_page_accessed(pages[i]);
1085 	}
1086 	sev_unpin_memory(kvm, pages, n);
1087 	return ret;
1088 }
1089 
1090 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1091 {
1092 	void __user *report = (void __user *)(uintptr_t)argp->data;
1093 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1094 	struct sev_data_attestation_report data;
1095 	struct kvm_sev_attestation_report params;
1096 	void __user *p;
1097 	void *blob = NULL;
1098 	int ret;
1099 
1100 	if (!sev_guest(kvm))
1101 		return -ENOTTY;
1102 
1103 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1104 		return -EFAULT;
1105 
1106 	memset(&data, 0, sizeof(data));
1107 
1108 	/* User wants to query the blob length */
1109 	if (!params.len)
1110 		goto cmd;
1111 
1112 	p = (void __user *)(uintptr_t)params.uaddr;
1113 	if (p) {
1114 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
1115 			return -EINVAL;
1116 
1117 		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1118 		if (!blob)
1119 			return -ENOMEM;
1120 
1121 		data.address = __psp_pa(blob);
1122 		data.len = params.len;
1123 		memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1124 	}
1125 cmd:
1126 	data.handle = sev->handle;
1127 	ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1128 	/*
1129 	 * If we query the session length, FW responded with expected data.
1130 	 */
1131 	if (!params.len)
1132 		goto done;
1133 
1134 	if (ret)
1135 		goto e_free_blob;
1136 
1137 	if (blob) {
1138 		if (copy_to_user(p, blob, params.len))
1139 			ret = -EFAULT;
1140 	}
1141 
1142 done:
1143 	params.len = data.len;
1144 	if (copy_to_user(report, &params, sizeof(params)))
1145 		ret = -EFAULT;
1146 e_free_blob:
1147 	kfree(blob);
1148 	return ret;
1149 }
1150 
1151 /* Userspace wants to query session length. */
1152 static int
1153 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1154 				      struct kvm_sev_send_start *params)
1155 {
1156 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1157 	struct sev_data_send_start data;
1158 	int ret;
1159 
1160 	memset(&data, 0, sizeof(data));
1161 	data.handle = sev->handle;
1162 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1163 
1164 	params->session_len = data.session_len;
1165 	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1166 				sizeof(struct kvm_sev_send_start)))
1167 		ret = -EFAULT;
1168 
1169 	return ret;
1170 }
1171 
1172 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1173 {
1174 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1175 	struct sev_data_send_start data;
1176 	struct kvm_sev_send_start params;
1177 	void *amd_certs, *session_data;
1178 	void *pdh_cert, *plat_certs;
1179 	int ret;
1180 
1181 	if (!sev_guest(kvm))
1182 		return -ENOTTY;
1183 
1184 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1185 				sizeof(struct kvm_sev_send_start)))
1186 		return -EFAULT;
1187 
1188 	/* if session_len is zero, userspace wants to query the session length */
1189 	if (!params.session_len)
1190 		return __sev_send_start_query_session_length(kvm, argp,
1191 				&params);
1192 
1193 	/* some sanity checks */
1194 	if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1195 	    !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1196 		return -EINVAL;
1197 
1198 	/* allocate the memory to hold the session data blob */
1199 	session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1200 	if (!session_data)
1201 		return -ENOMEM;
1202 
1203 	/* copy the certificate blobs from userspace */
1204 	pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1205 				params.pdh_cert_len);
1206 	if (IS_ERR(pdh_cert)) {
1207 		ret = PTR_ERR(pdh_cert);
1208 		goto e_free_session;
1209 	}
1210 
1211 	plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1212 				params.plat_certs_len);
1213 	if (IS_ERR(plat_certs)) {
1214 		ret = PTR_ERR(plat_certs);
1215 		goto e_free_pdh;
1216 	}
1217 
1218 	amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1219 				params.amd_certs_len);
1220 	if (IS_ERR(amd_certs)) {
1221 		ret = PTR_ERR(amd_certs);
1222 		goto e_free_plat_cert;
1223 	}
1224 
1225 	/* populate the FW SEND_START field with system physical address */
1226 	memset(&data, 0, sizeof(data));
1227 	data.pdh_cert_address = __psp_pa(pdh_cert);
1228 	data.pdh_cert_len = params.pdh_cert_len;
1229 	data.plat_certs_address = __psp_pa(plat_certs);
1230 	data.plat_certs_len = params.plat_certs_len;
1231 	data.amd_certs_address = __psp_pa(amd_certs);
1232 	data.amd_certs_len = params.amd_certs_len;
1233 	data.session_address = __psp_pa(session_data);
1234 	data.session_len = params.session_len;
1235 	data.handle = sev->handle;
1236 
1237 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1238 
1239 	if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1240 			session_data, params.session_len)) {
1241 		ret = -EFAULT;
1242 		goto e_free_amd_cert;
1243 	}
1244 
1245 	params.policy = data.policy;
1246 	params.session_len = data.session_len;
1247 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params,
1248 				sizeof(struct kvm_sev_send_start)))
1249 		ret = -EFAULT;
1250 
1251 e_free_amd_cert:
1252 	kfree(amd_certs);
1253 e_free_plat_cert:
1254 	kfree(plat_certs);
1255 e_free_pdh:
1256 	kfree(pdh_cert);
1257 e_free_session:
1258 	kfree(session_data);
1259 	return ret;
1260 }
1261 
1262 /* Userspace wants to query either header or trans length. */
1263 static int
1264 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1265 				     struct kvm_sev_send_update_data *params)
1266 {
1267 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1268 	struct sev_data_send_update_data data;
1269 	int ret;
1270 
1271 	memset(&data, 0, sizeof(data));
1272 	data.handle = sev->handle;
1273 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1274 
1275 	params->hdr_len = data.hdr_len;
1276 	params->trans_len = data.trans_len;
1277 
1278 	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1279 			 sizeof(struct kvm_sev_send_update_data)))
1280 		ret = -EFAULT;
1281 
1282 	return ret;
1283 }
1284 
1285 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1286 {
1287 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1288 	struct sev_data_send_update_data data;
1289 	struct kvm_sev_send_update_data params;
1290 	void *hdr, *trans_data;
1291 	struct page **guest_page;
1292 	unsigned long n;
1293 	int ret, offset;
1294 
1295 	if (!sev_guest(kvm))
1296 		return -ENOTTY;
1297 
1298 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1299 			sizeof(struct kvm_sev_send_update_data)))
1300 		return -EFAULT;
1301 
1302 	/* userspace wants to query either header or trans length */
1303 	if (!params.trans_len || !params.hdr_len)
1304 		return __sev_send_update_data_query_lengths(kvm, argp, &params);
1305 
1306 	if (!params.trans_uaddr || !params.guest_uaddr ||
1307 	    !params.guest_len || !params.hdr_uaddr)
1308 		return -EINVAL;
1309 
1310 	/* Check if we are crossing the page boundary */
1311 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1312 	if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1313 		return -EINVAL;
1314 
1315 	/* Pin guest memory */
1316 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1317 				    PAGE_SIZE, &n, 0);
1318 	if (IS_ERR(guest_page))
1319 		return PTR_ERR(guest_page);
1320 
1321 	/* allocate memory for header and transport buffer */
1322 	ret = -ENOMEM;
1323 	hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1324 	if (!hdr)
1325 		goto e_unpin;
1326 
1327 	trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1328 	if (!trans_data)
1329 		goto e_free_hdr;
1330 
1331 	memset(&data, 0, sizeof(data));
1332 	data.hdr_address = __psp_pa(hdr);
1333 	data.hdr_len = params.hdr_len;
1334 	data.trans_address = __psp_pa(trans_data);
1335 	data.trans_len = params.trans_len;
1336 
1337 	/* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1338 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1339 	data.guest_address |= sev_me_mask;
1340 	data.guest_len = params.guest_len;
1341 	data.handle = sev->handle;
1342 
1343 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1344 
1345 	if (ret)
1346 		goto e_free_trans_data;
1347 
1348 	/* copy transport buffer to user space */
1349 	if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1350 			 trans_data, params.trans_len)) {
1351 		ret = -EFAULT;
1352 		goto e_free_trans_data;
1353 	}
1354 
1355 	/* Copy packet header to userspace. */
1356 	if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1357 			 params.hdr_len))
1358 		ret = -EFAULT;
1359 
1360 e_free_trans_data:
1361 	kfree(trans_data);
1362 e_free_hdr:
1363 	kfree(hdr);
1364 e_unpin:
1365 	sev_unpin_memory(kvm, guest_page, n);
1366 
1367 	return ret;
1368 }
1369 
1370 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1371 {
1372 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1373 	struct sev_data_send_finish data;
1374 
1375 	if (!sev_guest(kvm))
1376 		return -ENOTTY;
1377 
1378 	data.handle = sev->handle;
1379 	return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1380 }
1381 
1382 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1383 {
1384 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1385 	struct sev_data_send_cancel data;
1386 
1387 	if (!sev_guest(kvm))
1388 		return -ENOTTY;
1389 
1390 	data.handle = sev->handle;
1391 	return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1392 }
1393 
1394 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1395 {
1396 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1397 	struct sev_data_receive_start start;
1398 	struct kvm_sev_receive_start params;
1399 	int *error = &argp->error;
1400 	void *session_data;
1401 	void *pdh_data;
1402 	int ret;
1403 
1404 	if (!sev_guest(kvm))
1405 		return -ENOTTY;
1406 
1407 	/* Get parameter from the userspace */
1408 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1409 			sizeof(struct kvm_sev_receive_start)))
1410 		return -EFAULT;
1411 
1412 	/* some sanity checks */
1413 	if (!params.pdh_uaddr || !params.pdh_len ||
1414 	    !params.session_uaddr || !params.session_len)
1415 		return -EINVAL;
1416 
1417 	pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1418 	if (IS_ERR(pdh_data))
1419 		return PTR_ERR(pdh_data);
1420 
1421 	session_data = psp_copy_user_blob(params.session_uaddr,
1422 			params.session_len);
1423 	if (IS_ERR(session_data)) {
1424 		ret = PTR_ERR(session_data);
1425 		goto e_free_pdh;
1426 	}
1427 
1428 	memset(&start, 0, sizeof(start));
1429 	start.handle = params.handle;
1430 	start.policy = params.policy;
1431 	start.pdh_cert_address = __psp_pa(pdh_data);
1432 	start.pdh_cert_len = params.pdh_len;
1433 	start.session_address = __psp_pa(session_data);
1434 	start.session_len = params.session_len;
1435 
1436 	/* create memory encryption context */
1437 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1438 				error);
1439 	if (ret)
1440 		goto e_free_session;
1441 
1442 	/* Bind ASID to this guest */
1443 	ret = sev_bind_asid(kvm, start.handle, error);
1444 	if (ret) {
1445 		sev_decommission(start.handle);
1446 		goto e_free_session;
1447 	}
1448 
1449 	params.handle = start.handle;
1450 	if (copy_to_user((void __user *)(uintptr_t)argp->data,
1451 			 &params, sizeof(struct kvm_sev_receive_start))) {
1452 		ret = -EFAULT;
1453 		sev_unbind_asid(kvm, start.handle);
1454 		goto e_free_session;
1455 	}
1456 
1457     	sev->handle = start.handle;
1458 	sev->fd = argp->sev_fd;
1459 
1460 e_free_session:
1461 	kfree(session_data);
1462 e_free_pdh:
1463 	kfree(pdh_data);
1464 
1465 	return ret;
1466 }
1467 
1468 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1469 {
1470 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1471 	struct kvm_sev_receive_update_data params;
1472 	struct sev_data_receive_update_data data;
1473 	void *hdr = NULL, *trans = NULL;
1474 	struct page **guest_page;
1475 	unsigned long n;
1476 	int ret, offset;
1477 
1478 	if (!sev_guest(kvm))
1479 		return -EINVAL;
1480 
1481 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1482 			sizeof(struct kvm_sev_receive_update_data)))
1483 		return -EFAULT;
1484 
1485 	if (!params.hdr_uaddr || !params.hdr_len ||
1486 	    !params.guest_uaddr || !params.guest_len ||
1487 	    !params.trans_uaddr || !params.trans_len)
1488 		return -EINVAL;
1489 
1490 	/* Check if we are crossing the page boundary */
1491 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1492 	if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1493 		return -EINVAL;
1494 
1495 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1496 	if (IS_ERR(hdr))
1497 		return PTR_ERR(hdr);
1498 
1499 	trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1500 	if (IS_ERR(trans)) {
1501 		ret = PTR_ERR(trans);
1502 		goto e_free_hdr;
1503 	}
1504 
1505 	memset(&data, 0, sizeof(data));
1506 	data.hdr_address = __psp_pa(hdr);
1507 	data.hdr_len = params.hdr_len;
1508 	data.trans_address = __psp_pa(trans);
1509 	data.trans_len = params.trans_len;
1510 
1511 	/* Pin guest memory */
1512 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1513 				    PAGE_SIZE, &n, 1);
1514 	if (IS_ERR(guest_page)) {
1515 		ret = PTR_ERR(guest_page);
1516 		goto e_free_trans;
1517 	}
1518 
1519 	/*
1520 	 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1521 	 * encrypts the written data with the guest's key, and the cache may
1522 	 * contain dirty, unencrypted data.
1523 	 */
1524 	sev_clflush_pages(guest_page, n);
1525 
1526 	/* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1527 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1528 	data.guest_address |= sev_me_mask;
1529 	data.guest_len = params.guest_len;
1530 	data.handle = sev->handle;
1531 
1532 	ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1533 				&argp->error);
1534 
1535 	sev_unpin_memory(kvm, guest_page, n);
1536 
1537 e_free_trans:
1538 	kfree(trans);
1539 e_free_hdr:
1540 	kfree(hdr);
1541 
1542 	return ret;
1543 }
1544 
1545 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1546 {
1547 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1548 	struct sev_data_receive_finish data;
1549 
1550 	if (!sev_guest(kvm))
1551 		return -ENOTTY;
1552 
1553 	data.handle = sev->handle;
1554 	return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1555 }
1556 
1557 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1558 {
1559 	/*
1560 	 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1561 	 * active mirror VMs. Also allow the debugging and status commands.
1562 	 */
1563 	if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1564 	    cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1565 	    cmd_id == KVM_SEV_DBG_ENCRYPT)
1566 		return true;
1567 
1568 	return false;
1569 }
1570 
1571 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1572 {
1573 	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1574 	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1575 	int r = -EBUSY;
1576 
1577 	if (dst_kvm == src_kvm)
1578 		return -EINVAL;
1579 
1580 	/*
1581 	 * Bail if these VMs are already involved in a migration to avoid
1582 	 * deadlock between two VMs trying to migrate to/from each other.
1583 	 */
1584 	if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1585 		return -EBUSY;
1586 
1587 	if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1588 		goto release_dst;
1589 
1590 	r = -EINTR;
1591 	if (mutex_lock_killable(&dst_kvm->lock))
1592 		goto release_src;
1593 	if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1594 		goto unlock_dst;
1595 	return 0;
1596 
1597 unlock_dst:
1598 	mutex_unlock(&dst_kvm->lock);
1599 release_src:
1600 	atomic_set_release(&src_sev->migration_in_progress, 0);
1601 release_dst:
1602 	atomic_set_release(&dst_sev->migration_in_progress, 0);
1603 	return r;
1604 }
1605 
1606 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1607 {
1608 	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1609 	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1610 
1611 	mutex_unlock(&dst_kvm->lock);
1612 	mutex_unlock(&src_kvm->lock);
1613 	atomic_set_release(&dst_sev->migration_in_progress, 0);
1614 	atomic_set_release(&src_sev->migration_in_progress, 0);
1615 }
1616 
1617 /* vCPU mutex subclasses.  */
1618 enum sev_migration_role {
1619 	SEV_MIGRATION_SOURCE = 0,
1620 	SEV_MIGRATION_TARGET,
1621 	SEV_NR_MIGRATION_ROLES,
1622 };
1623 
1624 static int sev_lock_vcpus_for_migration(struct kvm *kvm,
1625 					enum sev_migration_role role)
1626 {
1627 	struct kvm_vcpu *vcpu;
1628 	unsigned long i, j;
1629 
1630 	kvm_for_each_vcpu(i, vcpu, kvm) {
1631 		if (mutex_lock_killable_nested(&vcpu->mutex, role))
1632 			goto out_unlock;
1633 
1634 #ifdef CONFIG_PROVE_LOCKING
1635 		if (!i)
1636 			/*
1637 			 * Reset the role to one that avoids colliding with
1638 			 * the role used for the first vcpu mutex.
1639 			 */
1640 			role = SEV_NR_MIGRATION_ROLES;
1641 		else
1642 			mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
1643 #endif
1644 	}
1645 
1646 	return 0;
1647 
1648 out_unlock:
1649 
1650 	kvm_for_each_vcpu(j, vcpu, kvm) {
1651 		if (i == j)
1652 			break;
1653 
1654 #ifdef CONFIG_PROVE_LOCKING
1655 		if (j)
1656 			mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
1657 #endif
1658 
1659 		mutex_unlock(&vcpu->mutex);
1660 	}
1661 	return -EINTR;
1662 }
1663 
1664 static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1665 {
1666 	struct kvm_vcpu *vcpu;
1667 	unsigned long i;
1668 	bool first = true;
1669 
1670 	kvm_for_each_vcpu(i, vcpu, kvm) {
1671 		if (first)
1672 			first = false;
1673 		else
1674 			mutex_acquire(&vcpu->mutex.dep_map,
1675 				      SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
1676 
1677 		mutex_unlock(&vcpu->mutex);
1678 	}
1679 }
1680 
1681 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1682 {
1683 	struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
1684 	struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
1685 	struct kvm_vcpu *dst_vcpu, *src_vcpu;
1686 	struct vcpu_svm *dst_svm, *src_svm;
1687 	struct kvm_sev_info *mirror;
1688 	unsigned long i;
1689 
1690 	dst->active = true;
1691 	dst->asid = src->asid;
1692 	dst->handle = src->handle;
1693 	dst->pages_locked = src->pages_locked;
1694 	dst->enc_context_owner = src->enc_context_owner;
1695 	dst->es_active = src->es_active;
1696 
1697 	src->asid = 0;
1698 	src->active = false;
1699 	src->handle = 0;
1700 	src->pages_locked = 0;
1701 	src->enc_context_owner = NULL;
1702 	src->es_active = false;
1703 
1704 	list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1705 
1706 	/*
1707 	 * If this VM has mirrors, "transfer" each mirror's refcount of the
1708 	 * source to the destination (this KVM).  The caller holds a reference
1709 	 * to the source, so there's no danger of use-after-free.
1710 	 */
1711 	list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
1712 	list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
1713 		kvm_get_kvm(dst_kvm);
1714 		kvm_put_kvm(src_kvm);
1715 		mirror->enc_context_owner = dst_kvm;
1716 	}
1717 
1718 	/*
1719 	 * If this VM is a mirror, remove the old mirror from the owners list
1720 	 * and add the new mirror to the list.
1721 	 */
1722 	if (is_mirroring_enc_context(dst_kvm)) {
1723 		struct kvm_sev_info *owner_sev_info =
1724 			&to_kvm_svm(dst->enc_context_owner)->sev_info;
1725 
1726 		list_del(&src->mirror_entry);
1727 		list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
1728 	}
1729 
1730 	kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
1731 		dst_svm = to_svm(dst_vcpu);
1732 
1733 		sev_init_vmcb(dst_svm);
1734 
1735 		if (!dst->es_active)
1736 			continue;
1737 
1738 		/*
1739 		 * Note, the source is not required to have the same number of
1740 		 * vCPUs as the destination when migrating a vanilla SEV VM.
1741 		 */
1742 		src_vcpu = kvm_get_vcpu(src_kvm, i);
1743 		src_svm = to_svm(src_vcpu);
1744 
1745 		/*
1746 		 * Transfer VMSA and GHCB state to the destination.  Nullify and
1747 		 * clear source fields as appropriate, the state now belongs to
1748 		 * the destination.
1749 		 */
1750 		memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
1751 		dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
1752 		dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
1753 		dst_vcpu->arch.guest_state_protected = true;
1754 
1755 		memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
1756 		src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
1757 		src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
1758 		src_vcpu->arch.guest_state_protected = false;
1759 	}
1760 }
1761 
1762 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
1763 {
1764 	struct kvm_vcpu *src_vcpu;
1765 	unsigned long i;
1766 
1767 	if (!sev_es_guest(src))
1768 		return 0;
1769 
1770 	if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
1771 		return -EINVAL;
1772 
1773 	kvm_for_each_vcpu(i, src_vcpu, src) {
1774 		if (!src_vcpu->arch.guest_state_protected)
1775 			return -EINVAL;
1776 	}
1777 
1778 	return 0;
1779 }
1780 
1781 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
1782 {
1783 	struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
1784 	struct kvm_sev_info *src_sev, *cg_cleanup_sev;
1785 	struct fd f = fdget(source_fd);
1786 	struct kvm *source_kvm;
1787 	bool charged = false;
1788 	int ret;
1789 
1790 	if (!f.file)
1791 		return -EBADF;
1792 
1793 	if (!file_is_kvm(f.file)) {
1794 		ret = -EBADF;
1795 		goto out_fput;
1796 	}
1797 
1798 	source_kvm = f.file->private_data;
1799 	ret = sev_lock_two_vms(kvm, source_kvm);
1800 	if (ret)
1801 		goto out_fput;
1802 
1803 	if (sev_guest(kvm) || !sev_guest(source_kvm)) {
1804 		ret = -EINVAL;
1805 		goto out_unlock;
1806 	}
1807 
1808 	src_sev = &to_kvm_svm(source_kvm)->sev_info;
1809 
1810 	dst_sev->misc_cg = get_current_misc_cg();
1811 	cg_cleanup_sev = dst_sev;
1812 	if (dst_sev->misc_cg != src_sev->misc_cg) {
1813 		ret = sev_misc_cg_try_charge(dst_sev);
1814 		if (ret)
1815 			goto out_dst_cgroup;
1816 		charged = true;
1817 	}
1818 
1819 	ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
1820 	if (ret)
1821 		goto out_dst_cgroup;
1822 	ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
1823 	if (ret)
1824 		goto out_dst_vcpu;
1825 
1826 	ret = sev_check_source_vcpus(kvm, source_kvm);
1827 	if (ret)
1828 		goto out_source_vcpu;
1829 
1830 	sev_migrate_from(kvm, source_kvm);
1831 	kvm_vm_dead(source_kvm);
1832 	cg_cleanup_sev = src_sev;
1833 	ret = 0;
1834 
1835 out_source_vcpu:
1836 	sev_unlock_vcpus_for_migration(source_kvm);
1837 out_dst_vcpu:
1838 	sev_unlock_vcpus_for_migration(kvm);
1839 out_dst_cgroup:
1840 	/* Operates on the source on success, on the destination on failure.  */
1841 	if (charged)
1842 		sev_misc_cg_uncharge(cg_cleanup_sev);
1843 	put_misc_cg(cg_cleanup_sev->misc_cg);
1844 	cg_cleanup_sev->misc_cg = NULL;
1845 out_unlock:
1846 	sev_unlock_two_vms(kvm, source_kvm);
1847 out_fput:
1848 	fdput(f);
1849 	return ret;
1850 }
1851 
1852 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
1853 {
1854 	struct kvm_sev_cmd sev_cmd;
1855 	int r;
1856 
1857 	if (!sev_enabled)
1858 		return -ENOTTY;
1859 
1860 	if (!argp)
1861 		return 0;
1862 
1863 	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1864 		return -EFAULT;
1865 
1866 	mutex_lock(&kvm->lock);
1867 
1868 	/* Only the enc_context_owner handles some memory enc operations. */
1869 	if (is_mirroring_enc_context(kvm) &&
1870 	    !is_cmd_allowed_from_mirror(sev_cmd.id)) {
1871 		r = -EINVAL;
1872 		goto out;
1873 	}
1874 
1875 	switch (sev_cmd.id) {
1876 	case KVM_SEV_ES_INIT:
1877 		if (!sev_es_enabled) {
1878 			r = -ENOTTY;
1879 			goto out;
1880 		}
1881 		fallthrough;
1882 	case KVM_SEV_INIT:
1883 		r = sev_guest_init(kvm, &sev_cmd);
1884 		break;
1885 	case KVM_SEV_LAUNCH_START:
1886 		r = sev_launch_start(kvm, &sev_cmd);
1887 		break;
1888 	case KVM_SEV_LAUNCH_UPDATE_DATA:
1889 		r = sev_launch_update_data(kvm, &sev_cmd);
1890 		break;
1891 	case KVM_SEV_LAUNCH_UPDATE_VMSA:
1892 		r = sev_launch_update_vmsa(kvm, &sev_cmd);
1893 		break;
1894 	case KVM_SEV_LAUNCH_MEASURE:
1895 		r = sev_launch_measure(kvm, &sev_cmd);
1896 		break;
1897 	case KVM_SEV_LAUNCH_FINISH:
1898 		r = sev_launch_finish(kvm, &sev_cmd);
1899 		break;
1900 	case KVM_SEV_GUEST_STATUS:
1901 		r = sev_guest_status(kvm, &sev_cmd);
1902 		break;
1903 	case KVM_SEV_DBG_DECRYPT:
1904 		r = sev_dbg_crypt(kvm, &sev_cmd, true);
1905 		break;
1906 	case KVM_SEV_DBG_ENCRYPT:
1907 		r = sev_dbg_crypt(kvm, &sev_cmd, false);
1908 		break;
1909 	case KVM_SEV_LAUNCH_SECRET:
1910 		r = sev_launch_secret(kvm, &sev_cmd);
1911 		break;
1912 	case KVM_SEV_GET_ATTESTATION_REPORT:
1913 		r = sev_get_attestation_report(kvm, &sev_cmd);
1914 		break;
1915 	case KVM_SEV_SEND_START:
1916 		r = sev_send_start(kvm, &sev_cmd);
1917 		break;
1918 	case KVM_SEV_SEND_UPDATE_DATA:
1919 		r = sev_send_update_data(kvm, &sev_cmd);
1920 		break;
1921 	case KVM_SEV_SEND_FINISH:
1922 		r = sev_send_finish(kvm, &sev_cmd);
1923 		break;
1924 	case KVM_SEV_SEND_CANCEL:
1925 		r = sev_send_cancel(kvm, &sev_cmd);
1926 		break;
1927 	case KVM_SEV_RECEIVE_START:
1928 		r = sev_receive_start(kvm, &sev_cmd);
1929 		break;
1930 	case KVM_SEV_RECEIVE_UPDATE_DATA:
1931 		r = sev_receive_update_data(kvm, &sev_cmd);
1932 		break;
1933 	case KVM_SEV_RECEIVE_FINISH:
1934 		r = sev_receive_finish(kvm, &sev_cmd);
1935 		break;
1936 	default:
1937 		r = -EINVAL;
1938 		goto out;
1939 	}
1940 
1941 	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1942 		r = -EFAULT;
1943 
1944 out:
1945 	mutex_unlock(&kvm->lock);
1946 	return r;
1947 }
1948 
1949 int sev_mem_enc_register_region(struct kvm *kvm,
1950 				struct kvm_enc_region *range)
1951 {
1952 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1953 	struct enc_region *region;
1954 	int ret = 0;
1955 
1956 	if (!sev_guest(kvm))
1957 		return -ENOTTY;
1958 
1959 	/* If kvm is mirroring encryption context it isn't responsible for it */
1960 	if (is_mirroring_enc_context(kvm))
1961 		return -EINVAL;
1962 
1963 	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1964 		return -EINVAL;
1965 
1966 	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1967 	if (!region)
1968 		return -ENOMEM;
1969 
1970 	mutex_lock(&kvm->lock);
1971 	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
1972 	if (IS_ERR(region->pages)) {
1973 		ret = PTR_ERR(region->pages);
1974 		mutex_unlock(&kvm->lock);
1975 		goto e_free;
1976 	}
1977 
1978 	region->uaddr = range->addr;
1979 	region->size = range->size;
1980 
1981 	list_add_tail(&region->list, &sev->regions_list);
1982 	mutex_unlock(&kvm->lock);
1983 
1984 	/*
1985 	 * The guest may change the memory encryption attribute from C=0 -> C=1
1986 	 * or vice versa for this memory range. Lets make sure caches are
1987 	 * flushed to ensure that guest data gets written into memory with
1988 	 * correct C-bit.
1989 	 */
1990 	sev_clflush_pages(region->pages, region->npages);
1991 
1992 	return ret;
1993 
1994 e_free:
1995 	kfree(region);
1996 	return ret;
1997 }
1998 
1999 static struct enc_region *
2000 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
2001 {
2002 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2003 	struct list_head *head = &sev->regions_list;
2004 	struct enc_region *i;
2005 
2006 	list_for_each_entry(i, head, list) {
2007 		if (i->uaddr == range->addr &&
2008 		    i->size == range->size)
2009 			return i;
2010 	}
2011 
2012 	return NULL;
2013 }
2014 
2015 static void __unregister_enc_region_locked(struct kvm *kvm,
2016 					   struct enc_region *region)
2017 {
2018 	sev_unpin_memory(kvm, region->pages, region->npages);
2019 	list_del(&region->list);
2020 	kfree(region);
2021 }
2022 
2023 int sev_mem_enc_unregister_region(struct kvm *kvm,
2024 				  struct kvm_enc_region *range)
2025 {
2026 	struct enc_region *region;
2027 	int ret;
2028 
2029 	/* If kvm is mirroring encryption context it isn't responsible for it */
2030 	if (is_mirroring_enc_context(kvm))
2031 		return -EINVAL;
2032 
2033 	mutex_lock(&kvm->lock);
2034 
2035 	if (!sev_guest(kvm)) {
2036 		ret = -ENOTTY;
2037 		goto failed;
2038 	}
2039 
2040 	region = find_enc_region(kvm, range);
2041 	if (!region) {
2042 		ret = -EINVAL;
2043 		goto failed;
2044 	}
2045 
2046 	/*
2047 	 * Ensure that all guest tagged cache entries are flushed before
2048 	 * releasing the pages back to the system for use. CLFLUSH will
2049 	 * not do this, so issue a WBINVD.
2050 	 */
2051 	wbinvd_on_all_cpus();
2052 
2053 	__unregister_enc_region_locked(kvm, region);
2054 
2055 	mutex_unlock(&kvm->lock);
2056 	return 0;
2057 
2058 failed:
2059 	mutex_unlock(&kvm->lock);
2060 	return ret;
2061 }
2062 
2063 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2064 {
2065 	struct fd f = fdget(source_fd);
2066 	struct kvm *source_kvm;
2067 	struct kvm_sev_info *source_sev, *mirror_sev;
2068 	int ret;
2069 
2070 	if (!f.file)
2071 		return -EBADF;
2072 
2073 	if (!file_is_kvm(f.file)) {
2074 		ret = -EBADF;
2075 		goto e_source_fput;
2076 	}
2077 
2078 	source_kvm = f.file->private_data;
2079 	ret = sev_lock_two_vms(kvm, source_kvm);
2080 	if (ret)
2081 		goto e_source_fput;
2082 
2083 	/*
2084 	 * Mirrors of mirrors should work, but let's not get silly.  Also
2085 	 * disallow out-of-band SEV/SEV-ES init if the target is already an
2086 	 * SEV guest, or if vCPUs have been created.  KVM relies on vCPUs being
2087 	 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2088 	 */
2089 	if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2090 	    is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2091 		ret = -EINVAL;
2092 		goto e_unlock;
2093 	}
2094 
2095 	/*
2096 	 * The mirror kvm holds an enc_context_owner ref so its asid can't
2097 	 * disappear until we're done with it
2098 	 */
2099 	source_sev = &to_kvm_svm(source_kvm)->sev_info;
2100 	kvm_get_kvm(source_kvm);
2101 	mirror_sev = &to_kvm_svm(kvm)->sev_info;
2102 	list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2103 
2104 	/* Set enc_context_owner and copy its encryption context over */
2105 	mirror_sev->enc_context_owner = source_kvm;
2106 	mirror_sev->active = true;
2107 	mirror_sev->asid = source_sev->asid;
2108 	mirror_sev->fd = source_sev->fd;
2109 	mirror_sev->es_active = source_sev->es_active;
2110 	mirror_sev->handle = source_sev->handle;
2111 	INIT_LIST_HEAD(&mirror_sev->regions_list);
2112 	INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2113 	ret = 0;
2114 
2115 	/*
2116 	 * Do not copy ap_jump_table. Since the mirror does not share the same
2117 	 * KVM contexts as the original, and they may have different
2118 	 * memory-views.
2119 	 */
2120 
2121 e_unlock:
2122 	sev_unlock_two_vms(kvm, source_kvm);
2123 e_source_fput:
2124 	fdput(f);
2125 	return ret;
2126 }
2127 
2128 void sev_vm_destroy(struct kvm *kvm)
2129 {
2130 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2131 	struct list_head *head = &sev->regions_list;
2132 	struct list_head *pos, *q;
2133 
2134 	if (!sev_guest(kvm))
2135 		return;
2136 
2137 	WARN_ON(!list_empty(&sev->mirror_vms));
2138 
2139 	/* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2140 	if (is_mirroring_enc_context(kvm)) {
2141 		struct kvm *owner_kvm = sev->enc_context_owner;
2142 
2143 		mutex_lock(&owner_kvm->lock);
2144 		list_del(&sev->mirror_entry);
2145 		mutex_unlock(&owner_kvm->lock);
2146 		kvm_put_kvm(owner_kvm);
2147 		return;
2148 	}
2149 
2150 	/*
2151 	 * Ensure that all guest tagged cache entries are flushed before
2152 	 * releasing the pages back to the system for use. CLFLUSH will
2153 	 * not do this, so issue a WBINVD.
2154 	 */
2155 	wbinvd_on_all_cpus();
2156 
2157 	/*
2158 	 * if userspace was terminated before unregistering the memory regions
2159 	 * then lets unpin all the registered memory.
2160 	 */
2161 	if (!list_empty(head)) {
2162 		list_for_each_safe(pos, q, head) {
2163 			__unregister_enc_region_locked(kvm,
2164 				list_entry(pos, struct enc_region, list));
2165 			cond_resched();
2166 		}
2167 	}
2168 
2169 	sev_unbind_asid(kvm, sev->handle);
2170 	sev_asid_free(sev);
2171 }
2172 
2173 void __init sev_set_cpu_caps(void)
2174 {
2175 	if (!sev_enabled)
2176 		kvm_cpu_cap_clear(X86_FEATURE_SEV);
2177 	if (!sev_es_enabled)
2178 		kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
2179 }
2180 
2181 void __init sev_hardware_setup(void)
2182 {
2183 #ifdef CONFIG_KVM_AMD_SEV
2184 	unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2185 	bool sev_es_supported = false;
2186 	bool sev_supported = false;
2187 
2188 	if (!sev_enabled || !npt_enabled || !nrips)
2189 		goto out;
2190 
2191 	/*
2192 	 * SEV must obviously be supported in hardware.  Sanity check that the
2193 	 * CPU supports decode assists, which is mandatory for SEV guests to
2194 	 * support instruction emulation.
2195 	 */
2196 	if (!boot_cpu_has(X86_FEATURE_SEV) ||
2197 	    WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)))
2198 		goto out;
2199 
2200 	/* Retrieve SEV CPUID information */
2201 	cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2202 
2203 	/* Set encryption bit location for SEV-ES guests */
2204 	sev_enc_bit = ebx & 0x3f;
2205 
2206 	/* Maximum number of encrypted guests supported simultaneously */
2207 	max_sev_asid = ecx;
2208 	if (!max_sev_asid)
2209 		goto out;
2210 
2211 	/* Minimum ASID value that should be used for SEV guest */
2212 	min_sev_asid = edx;
2213 	sev_me_mask = 1UL << (ebx & 0x3f);
2214 
2215 	/*
2216 	 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2217 	 * even though it's never used, so that the bitmap is indexed by the
2218 	 * actual ASID.
2219 	 */
2220 	nr_asids = max_sev_asid + 1;
2221 	sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2222 	if (!sev_asid_bitmap)
2223 		goto out;
2224 
2225 	sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2226 	if (!sev_reclaim_asid_bitmap) {
2227 		bitmap_free(sev_asid_bitmap);
2228 		sev_asid_bitmap = NULL;
2229 		goto out;
2230 	}
2231 
2232 	sev_asid_count = max_sev_asid - min_sev_asid + 1;
2233 	WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count));
2234 	sev_supported = true;
2235 
2236 	/* SEV-ES support requested? */
2237 	if (!sev_es_enabled)
2238 		goto out;
2239 
2240 	/*
2241 	 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
2242 	 * instruction stream, i.e. can't emulate in response to a #NPF and
2243 	 * instead relies on #NPF(RSVD) being reflected into the guest as #VC
2244 	 * (the guest can then do a #VMGEXIT to request MMIO emulation).
2245 	 */
2246 	if (!enable_mmio_caching)
2247 		goto out;
2248 
2249 	/* Does the CPU support SEV-ES? */
2250 	if (!boot_cpu_has(X86_FEATURE_SEV_ES))
2251 		goto out;
2252 
2253 	/* Has the system been allocated ASIDs for SEV-ES? */
2254 	if (min_sev_asid == 1)
2255 		goto out;
2256 
2257 	sev_es_asid_count = min_sev_asid - 1;
2258 	WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count));
2259 	sev_es_supported = true;
2260 
2261 out:
2262 	if (boot_cpu_has(X86_FEATURE_SEV))
2263 		pr_info("SEV %s (ASIDs %u - %u)\n",
2264 			sev_supported ? "enabled" : "disabled",
2265 			min_sev_asid, max_sev_asid);
2266 	if (boot_cpu_has(X86_FEATURE_SEV_ES))
2267 		pr_info("SEV-ES %s (ASIDs %u - %u)\n",
2268 			sev_es_supported ? "enabled" : "disabled",
2269 			min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
2270 
2271 	sev_enabled = sev_supported;
2272 	sev_es_enabled = sev_es_supported;
2273 	if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) ||
2274 	    !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP))
2275 		sev_es_debug_swap_enabled = false;
2276 #endif
2277 }
2278 
2279 void sev_hardware_unsetup(void)
2280 {
2281 	if (!sev_enabled)
2282 		return;
2283 
2284 	/* No need to take sev_bitmap_lock, all VMs have been destroyed. */
2285 	sev_flush_asids(1, max_sev_asid);
2286 
2287 	bitmap_free(sev_asid_bitmap);
2288 	bitmap_free(sev_reclaim_asid_bitmap);
2289 
2290 	misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
2291 	misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
2292 }
2293 
2294 int sev_cpu_init(struct svm_cpu_data *sd)
2295 {
2296 	if (!sev_enabled)
2297 		return 0;
2298 
2299 	sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
2300 	if (!sd->sev_vmcbs)
2301 		return -ENOMEM;
2302 
2303 	return 0;
2304 }
2305 
2306 /*
2307  * Pages used by hardware to hold guest encrypted state must be flushed before
2308  * returning them to the system.
2309  */
2310 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
2311 {
2312 	int asid = to_kvm_svm(vcpu->kvm)->sev_info.asid;
2313 
2314 	/*
2315 	 * Note!  The address must be a kernel address, as regular page walk
2316 	 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
2317 	 * address is non-deterministic and unsafe.  This function deliberately
2318 	 * takes a pointer to deter passing in a user address.
2319 	 */
2320 	unsigned long addr = (unsigned long)va;
2321 
2322 	/*
2323 	 * If CPU enforced cache coherency for encrypted mappings of the
2324 	 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
2325 	 * flush is still needed in order to work properly with DMA devices.
2326 	 */
2327 	if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
2328 		clflush_cache_range(va, PAGE_SIZE);
2329 		return;
2330 	}
2331 
2332 	/*
2333 	 * VM Page Flush takes a host virtual address and a guest ASID.  Fall
2334 	 * back to WBINVD if this faults so as not to make any problems worse
2335 	 * by leaving stale encrypted data in the cache.
2336 	 */
2337 	if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
2338 		goto do_wbinvd;
2339 
2340 	return;
2341 
2342 do_wbinvd:
2343 	wbinvd_on_all_cpus();
2344 }
2345 
2346 void sev_guest_memory_reclaimed(struct kvm *kvm)
2347 {
2348 	if (!sev_guest(kvm))
2349 		return;
2350 
2351 	wbinvd_on_all_cpus();
2352 }
2353 
2354 void sev_free_vcpu(struct kvm_vcpu *vcpu)
2355 {
2356 	struct vcpu_svm *svm;
2357 
2358 	if (!sev_es_guest(vcpu->kvm))
2359 		return;
2360 
2361 	svm = to_svm(vcpu);
2362 
2363 	if (vcpu->arch.guest_state_protected)
2364 		sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
2365 
2366 	__free_page(virt_to_page(svm->sev_es.vmsa));
2367 
2368 	if (svm->sev_es.ghcb_sa_free)
2369 		kvfree(svm->sev_es.ghcb_sa);
2370 }
2371 
2372 static void dump_ghcb(struct vcpu_svm *svm)
2373 {
2374 	struct ghcb *ghcb = svm->sev_es.ghcb;
2375 	unsigned int nbits;
2376 
2377 	/* Re-use the dump_invalid_vmcb module parameter */
2378 	if (!dump_invalid_vmcb) {
2379 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2380 		return;
2381 	}
2382 
2383 	nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2384 
2385 	pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2386 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2387 	       ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2388 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2389 	       ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2390 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2391 	       ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2392 	pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2393 	       ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2394 	pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2395 }
2396 
2397 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2398 {
2399 	struct kvm_vcpu *vcpu = &svm->vcpu;
2400 	struct ghcb *ghcb = svm->sev_es.ghcb;
2401 
2402 	/*
2403 	 * The GHCB protocol so far allows for the following data
2404 	 * to be returned:
2405 	 *   GPRs RAX, RBX, RCX, RDX
2406 	 *
2407 	 * Copy their values, even if they may not have been written during the
2408 	 * VM-Exit.  It's the guest's responsibility to not consume random data.
2409 	 */
2410 	ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2411 	ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2412 	ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2413 	ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2414 }
2415 
2416 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2417 {
2418 	struct vmcb_control_area *control = &svm->vmcb->control;
2419 	struct kvm_vcpu *vcpu = &svm->vcpu;
2420 	struct ghcb *ghcb = svm->sev_es.ghcb;
2421 	u64 exit_code;
2422 
2423 	/*
2424 	 * The GHCB protocol so far allows for the following data
2425 	 * to be supplied:
2426 	 *   GPRs RAX, RBX, RCX, RDX
2427 	 *   XCR0
2428 	 *   CPL
2429 	 *
2430 	 * VMMCALL allows the guest to provide extra registers. KVM also
2431 	 * expects RSI for hypercalls, so include that, too.
2432 	 *
2433 	 * Copy their values to the appropriate location if supplied.
2434 	 */
2435 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2436 
2437 	BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
2438 	memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));
2439 
2440 	vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb);
2441 	vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb);
2442 	vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb);
2443 	vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb);
2444 	vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb);
2445 
2446 	svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb);
2447 
2448 	if (kvm_ghcb_xcr0_is_valid(svm)) {
2449 		vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2450 		kvm_update_cpuid_runtime(vcpu);
2451 	}
2452 
2453 	/* Copy the GHCB exit information into the VMCB fields */
2454 	exit_code = ghcb_get_sw_exit_code(ghcb);
2455 	control->exit_code = lower_32_bits(exit_code);
2456 	control->exit_code_hi = upper_32_bits(exit_code);
2457 	control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2458 	control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2459 	svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb);
2460 
2461 	/* Clear the valid entries fields */
2462 	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2463 }
2464 
2465 static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
2466 {
2467 	return (((u64)control->exit_code_hi) << 32) | control->exit_code;
2468 }
2469 
2470 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2471 {
2472 	struct vmcb_control_area *control = &svm->vmcb->control;
2473 	struct kvm_vcpu *vcpu = &svm->vcpu;
2474 	u64 exit_code;
2475 	u64 reason;
2476 
2477 	/*
2478 	 * Retrieve the exit code now even though it may not be marked valid
2479 	 * as it could help with debugging.
2480 	 */
2481 	exit_code = kvm_ghcb_get_sw_exit_code(control);
2482 
2483 	/* Only GHCB Usage code 0 is supported */
2484 	if (svm->sev_es.ghcb->ghcb_usage) {
2485 		reason = GHCB_ERR_INVALID_USAGE;
2486 		goto vmgexit_err;
2487 	}
2488 
2489 	reason = GHCB_ERR_MISSING_INPUT;
2490 
2491 	if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
2492 	    !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
2493 	    !kvm_ghcb_sw_exit_info_2_is_valid(svm))
2494 		goto vmgexit_err;
2495 
2496 	switch (exit_code) {
2497 	case SVM_EXIT_READ_DR7:
2498 		break;
2499 	case SVM_EXIT_WRITE_DR7:
2500 		if (!kvm_ghcb_rax_is_valid(svm))
2501 			goto vmgexit_err;
2502 		break;
2503 	case SVM_EXIT_RDTSC:
2504 		break;
2505 	case SVM_EXIT_RDPMC:
2506 		if (!kvm_ghcb_rcx_is_valid(svm))
2507 			goto vmgexit_err;
2508 		break;
2509 	case SVM_EXIT_CPUID:
2510 		if (!kvm_ghcb_rax_is_valid(svm) ||
2511 		    !kvm_ghcb_rcx_is_valid(svm))
2512 			goto vmgexit_err;
2513 		if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
2514 			if (!kvm_ghcb_xcr0_is_valid(svm))
2515 				goto vmgexit_err;
2516 		break;
2517 	case SVM_EXIT_INVD:
2518 		break;
2519 	case SVM_EXIT_IOIO:
2520 		if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
2521 			if (!kvm_ghcb_sw_scratch_is_valid(svm))
2522 				goto vmgexit_err;
2523 		} else {
2524 			if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
2525 				if (!kvm_ghcb_rax_is_valid(svm))
2526 					goto vmgexit_err;
2527 		}
2528 		break;
2529 	case SVM_EXIT_MSR:
2530 		if (!kvm_ghcb_rcx_is_valid(svm))
2531 			goto vmgexit_err;
2532 		if (control->exit_info_1) {
2533 			if (!kvm_ghcb_rax_is_valid(svm) ||
2534 			    !kvm_ghcb_rdx_is_valid(svm))
2535 				goto vmgexit_err;
2536 		}
2537 		break;
2538 	case SVM_EXIT_VMMCALL:
2539 		if (!kvm_ghcb_rax_is_valid(svm) ||
2540 		    !kvm_ghcb_cpl_is_valid(svm))
2541 			goto vmgexit_err;
2542 		break;
2543 	case SVM_EXIT_RDTSCP:
2544 		break;
2545 	case SVM_EXIT_WBINVD:
2546 		break;
2547 	case SVM_EXIT_MONITOR:
2548 		if (!kvm_ghcb_rax_is_valid(svm) ||
2549 		    !kvm_ghcb_rcx_is_valid(svm) ||
2550 		    !kvm_ghcb_rdx_is_valid(svm))
2551 			goto vmgexit_err;
2552 		break;
2553 	case SVM_EXIT_MWAIT:
2554 		if (!kvm_ghcb_rax_is_valid(svm) ||
2555 		    !kvm_ghcb_rcx_is_valid(svm))
2556 			goto vmgexit_err;
2557 		break;
2558 	case SVM_VMGEXIT_MMIO_READ:
2559 	case SVM_VMGEXIT_MMIO_WRITE:
2560 		if (!kvm_ghcb_sw_scratch_is_valid(svm))
2561 			goto vmgexit_err;
2562 		break;
2563 	case SVM_VMGEXIT_NMI_COMPLETE:
2564 	case SVM_VMGEXIT_AP_HLT_LOOP:
2565 	case SVM_VMGEXIT_AP_JUMP_TABLE:
2566 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2567 		break;
2568 	default:
2569 		reason = GHCB_ERR_INVALID_EVENT;
2570 		goto vmgexit_err;
2571 	}
2572 
2573 	return 0;
2574 
2575 vmgexit_err:
2576 	if (reason == GHCB_ERR_INVALID_USAGE) {
2577 		vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2578 			    svm->sev_es.ghcb->ghcb_usage);
2579 	} else if (reason == GHCB_ERR_INVALID_EVENT) {
2580 		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
2581 			    exit_code);
2582 	} else {
2583 		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
2584 			    exit_code);
2585 		dump_ghcb(svm);
2586 	}
2587 
2588 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2589 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason);
2590 
2591 	/* Resume the guest to "return" the error code. */
2592 	return 1;
2593 }
2594 
2595 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2596 {
2597 	if (!svm->sev_es.ghcb)
2598 		return;
2599 
2600 	if (svm->sev_es.ghcb_sa_free) {
2601 		/*
2602 		 * The scratch area lives outside the GHCB, so there is a
2603 		 * buffer that, depending on the operation performed, may
2604 		 * need to be synced, then freed.
2605 		 */
2606 		if (svm->sev_es.ghcb_sa_sync) {
2607 			kvm_write_guest(svm->vcpu.kvm,
2608 					svm->sev_es.sw_scratch,
2609 					svm->sev_es.ghcb_sa,
2610 					svm->sev_es.ghcb_sa_len);
2611 			svm->sev_es.ghcb_sa_sync = false;
2612 		}
2613 
2614 		kvfree(svm->sev_es.ghcb_sa);
2615 		svm->sev_es.ghcb_sa = NULL;
2616 		svm->sev_es.ghcb_sa_free = false;
2617 	}
2618 
2619 	trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
2620 
2621 	sev_es_sync_to_ghcb(svm);
2622 
2623 	kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
2624 	svm->sev_es.ghcb = NULL;
2625 }
2626 
2627 void pre_sev_run(struct vcpu_svm *svm, int cpu)
2628 {
2629 	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
2630 	int asid = sev_get_asid(svm->vcpu.kvm);
2631 
2632 	/* Assign the asid allocated with this SEV guest */
2633 	svm->asid = asid;
2634 
2635 	/*
2636 	 * Flush guest TLB:
2637 	 *
2638 	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2639 	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2640 	 */
2641 	if (sd->sev_vmcbs[asid] == svm->vmcb &&
2642 	    svm->vcpu.arch.last_vmentry_cpu == cpu)
2643 		return;
2644 
2645 	sd->sev_vmcbs[asid] = svm->vmcb;
2646 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2647 	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2648 }
2649 
2650 #define GHCB_SCRATCH_AREA_LIMIT		(16ULL * PAGE_SIZE)
2651 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2652 {
2653 	struct vmcb_control_area *control = &svm->vmcb->control;
2654 	u64 ghcb_scratch_beg, ghcb_scratch_end;
2655 	u64 scratch_gpa_beg, scratch_gpa_end;
2656 	void *scratch_va;
2657 
2658 	scratch_gpa_beg = svm->sev_es.sw_scratch;
2659 	if (!scratch_gpa_beg) {
2660 		pr_err("vmgexit: scratch gpa not provided\n");
2661 		goto e_scratch;
2662 	}
2663 
2664 	scratch_gpa_end = scratch_gpa_beg + len;
2665 	if (scratch_gpa_end < scratch_gpa_beg) {
2666 		pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2667 		       len, scratch_gpa_beg);
2668 		goto e_scratch;
2669 	}
2670 
2671 	if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2672 		/* Scratch area begins within GHCB */
2673 		ghcb_scratch_beg = control->ghcb_gpa +
2674 				   offsetof(struct ghcb, shared_buffer);
2675 		ghcb_scratch_end = control->ghcb_gpa +
2676 				   offsetof(struct ghcb, reserved_0xff0);
2677 
2678 		/*
2679 		 * If the scratch area begins within the GHCB, it must be
2680 		 * completely contained in the GHCB shared buffer area.
2681 		 */
2682 		if (scratch_gpa_beg < ghcb_scratch_beg ||
2683 		    scratch_gpa_end > ghcb_scratch_end) {
2684 			pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2685 			       scratch_gpa_beg, scratch_gpa_end);
2686 			goto e_scratch;
2687 		}
2688 
2689 		scratch_va = (void *)svm->sev_es.ghcb;
2690 		scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2691 	} else {
2692 		/*
2693 		 * The guest memory must be read into a kernel buffer, so
2694 		 * limit the size
2695 		 */
2696 		if (len > GHCB_SCRATCH_AREA_LIMIT) {
2697 			pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2698 			       len, GHCB_SCRATCH_AREA_LIMIT);
2699 			goto e_scratch;
2700 		}
2701 		scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
2702 		if (!scratch_va)
2703 			return -ENOMEM;
2704 
2705 		if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2706 			/* Unable to copy scratch area from guest */
2707 			pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2708 
2709 			kvfree(scratch_va);
2710 			return -EFAULT;
2711 		}
2712 
2713 		/*
2714 		 * The scratch area is outside the GHCB. The operation will
2715 		 * dictate whether the buffer needs to be synced before running
2716 		 * the vCPU next time (i.e. a read was requested so the data
2717 		 * must be written back to the guest memory).
2718 		 */
2719 		svm->sev_es.ghcb_sa_sync = sync;
2720 		svm->sev_es.ghcb_sa_free = true;
2721 	}
2722 
2723 	svm->sev_es.ghcb_sa = scratch_va;
2724 	svm->sev_es.ghcb_sa_len = len;
2725 
2726 	return 0;
2727 
2728 e_scratch:
2729 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2730 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
2731 
2732 	return 1;
2733 }
2734 
2735 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2736 			      unsigned int pos)
2737 {
2738 	svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2739 	svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2740 }
2741 
2742 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2743 {
2744 	return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2745 }
2746 
2747 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2748 {
2749 	svm->vmcb->control.ghcb_gpa = value;
2750 }
2751 
2752 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2753 {
2754 	struct vmcb_control_area *control = &svm->vmcb->control;
2755 	struct kvm_vcpu *vcpu = &svm->vcpu;
2756 	u64 ghcb_info;
2757 	int ret = 1;
2758 
2759 	ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2760 
2761 	trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2762 					     control->ghcb_gpa);
2763 
2764 	switch (ghcb_info) {
2765 	case GHCB_MSR_SEV_INFO_REQ:
2766 		set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2767 						    GHCB_VERSION_MIN,
2768 						    sev_enc_bit));
2769 		break;
2770 	case GHCB_MSR_CPUID_REQ: {
2771 		u64 cpuid_fn, cpuid_reg, cpuid_value;
2772 
2773 		cpuid_fn = get_ghcb_msr_bits(svm,
2774 					     GHCB_MSR_CPUID_FUNC_MASK,
2775 					     GHCB_MSR_CPUID_FUNC_POS);
2776 
2777 		/* Initialize the registers needed by the CPUID intercept */
2778 		vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2779 		vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2780 
2781 		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2782 		if (!ret) {
2783 			/* Error, keep GHCB MSR value as-is */
2784 			break;
2785 		}
2786 
2787 		cpuid_reg = get_ghcb_msr_bits(svm,
2788 					      GHCB_MSR_CPUID_REG_MASK,
2789 					      GHCB_MSR_CPUID_REG_POS);
2790 		if (cpuid_reg == 0)
2791 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2792 		else if (cpuid_reg == 1)
2793 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2794 		else if (cpuid_reg == 2)
2795 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2796 		else
2797 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2798 
2799 		set_ghcb_msr_bits(svm, cpuid_value,
2800 				  GHCB_MSR_CPUID_VALUE_MASK,
2801 				  GHCB_MSR_CPUID_VALUE_POS);
2802 
2803 		set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2804 				  GHCB_MSR_INFO_MASK,
2805 				  GHCB_MSR_INFO_POS);
2806 		break;
2807 	}
2808 	case GHCB_MSR_TERM_REQ: {
2809 		u64 reason_set, reason_code;
2810 
2811 		reason_set = get_ghcb_msr_bits(svm,
2812 					       GHCB_MSR_TERM_REASON_SET_MASK,
2813 					       GHCB_MSR_TERM_REASON_SET_POS);
2814 		reason_code = get_ghcb_msr_bits(svm,
2815 						GHCB_MSR_TERM_REASON_MASK,
2816 						GHCB_MSR_TERM_REASON_POS);
2817 		pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2818 			reason_set, reason_code);
2819 
2820 		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
2821 		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
2822 		vcpu->run->system_event.ndata = 1;
2823 		vcpu->run->system_event.data[0] = control->ghcb_gpa;
2824 
2825 		return 0;
2826 	}
2827 	default:
2828 		/* Error, keep GHCB MSR value as-is */
2829 		break;
2830 	}
2831 
2832 	trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2833 					    control->ghcb_gpa, ret);
2834 
2835 	return ret;
2836 }
2837 
2838 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2839 {
2840 	struct vcpu_svm *svm = to_svm(vcpu);
2841 	struct vmcb_control_area *control = &svm->vmcb->control;
2842 	u64 ghcb_gpa, exit_code;
2843 	int ret;
2844 
2845 	/* Validate the GHCB */
2846 	ghcb_gpa = control->ghcb_gpa;
2847 	if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2848 		return sev_handle_vmgexit_msr_protocol(svm);
2849 
2850 	if (!ghcb_gpa) {
2851 		vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2852 
2853 		/* Without a GHCB, just return right back to the guest */
2854 		return 1;
2855 	}
2856 
2857 	if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
2858 		/* Unable to map GHCB from guest */
2859 		vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2860 			    ghcb_gpa);
2861 
2862 		/* Without a GHCB, just return right back to the guest */
2863 		return 1;
2864 	}
2865 
2866 	svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
2867 
2868 	trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb);
2869 
2870 	sev_es_sync_from_ghcb(svm);
2871 	ret = sev_es_validate_vmgexit(svm);
2872 	if (ret)
2873 		return ret;
2874 
2875 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0);
2876 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0);
2877 
2878 	exit_code = kvm_ghcb_get_sw_exit_code(control);
2879 	switch (exit_code) {
2880 	case SVM_VMGEXIT_MMIO_READ:
2881 		ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
2882 		if (ret)
2883 			break;
2884 
2885 		ret = kvm_sev_es_mmio_read(vcpu,
2886 					   control->exit_info_1,
2887 					   control->exit_info_2,
2888 					   svm->sev_es.ghcb_sa);
2889 		break;
2890 	case SVM_VMGEXIT_MMIO_WRITE:
2891 		ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
2892 		if (ret)
2893 			break;
2894 
2895 		ret = kvm_sev_es_mmio_write(vcpu,
2896 					    control->exit_info_1,
2897 					    control->exit_info_2,
2898 					    svm->sev_es.ghcb_sa);
2899 		break;
2900 	case SVM_VMGEXIT_NMI_COMPLETE:
2901 		++vcpu->stat.nmi_window_exits;
2902 		svm->nmi_masked = false;
2903 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2904 		ret = 1;
2905 		break;
2906 	case SVM_VMGEXIT_AP_HLT_LOOP:
2907 		ret = kvm_emulate_ap_reset_hold(vcpu);
2908 		break;
2909 	case SVM_VMGEXIT_AP_JUMP_TABLE: {
2910 		struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2911 
2912 		switch (control->exit_info_1) {
2913 		case 0:
2914 			/* Set AP jump table address */
2915 			sev->ap_jump_table = control->exit_info_2;
2916 			break;
2917 		case 1:
2918 			/* Get AP jump table address */
2919 			ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table);
2920 			break;
2921 		default:
2922 			pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2923 			       control->exit_info_1);
2924 			ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2925 			ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
2926 		}
2927 
2928 		ret = 1;
2929 		break;
2930 	}
2931 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2932 		vcpu_unimpl(vcpu,
2933 			    "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2934 			    control->exit_info_1, control->exit_info_2);
2935 		ret = -EINVAL;
2936 		break;
2937 	default:
2938 		ret = svm_invoke_exit_handler(vcpu, exit_code);
2939 	}
2940 
2941 	return ret;
2942 }
2943 
2944 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2945 {
2946 	int count;
2947 	int bytes;
2948 	int r;
2949 
2950 	if (svm->vmcb->control.exit_info_2 > INT_MAX)
2951 		return -EINVAL;
2952 
2953 	count = svm->vmcb->control.exit_info_2;
2954 	if (unlikely(check_mul_overflow(count, size, &bytes)))
2955 		return -EINVAL;
2956 
2957 	r = setup_vmgexit_scratch(svm, in, bytes);
2958 	if (r)
2959 		return r;
2960 
2961 	return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
2962 				    count, in);
2963 }
2964 
2965 static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm)
2966 {
2967 	struct kvm_vcpu *vcpu = &svm->vcpu;
2968 
2969 	if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
2970 		bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
2971 				 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
2972 
2973 		set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux);
2974 	}
2975 }
2976 
2977 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
2978 {
2979 	struct kvm_vcpu *vcpu = &svm->vcpu;
2980 	struct kvm_cpuid_entry2 *best;
2981 
2982 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
2983 	best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
2984 	if (best)
2985 		vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
2986 
2987 	if (sev_es_guest(svm->vcpu.kvm))
2988 		sev_es_vcpu_after_set_cpuid(svm);
2989 }
2990 
2991 static void sev_es_init_vmcb(struct vcpu_svm *svm)
2992 {
2993 	struct vmcb *vmcb = svm->vmcb01.ptr;
2994 	struct kvm_vcpu *vcpu = &svm->vcpu;
2995 
2996 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
2997 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
2998 
2999 	/*
3000 	 * An SEV-ES guest requires a VMSA area that is a separate from the
3001 	 * VMCB page. Do not include the encryption mask on the VMSA physical
3002 	 * address since hardware will access it using the guest key.  Note,
3003 	 * the VMSA will be NULL if this vCPU is the destination for intrahost
3004 	 * migration, and will be copied later.
3005 	 */
3006 	if (svm->sev_es.vmsa)
3007 		svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
3008 
3009 	/* Can't intercept CR register access, HV can't modify CR registers */
3010 	svm_clr_intercept(svm, INTERCEPT_CR0_READ);
3011 	svm_clr_intercept(svm, INTERCEPT_CR4_READ);
3012 	svm_clr_intercept(svm, INTERCEPT_CR8_READ);
3013 	svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
3014 	svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
3015 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3016 
3017 	svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
3018 
3019 	/* Track EFER/CR register changes */
3020 	svm_set_intercept(svm, TRAP_EFER_WRITE);
3021 	svm_set_intercept(svm, TRAP_CR0_WRITE);
3022 	svm_set_intercept(svm, TRAP_CR4_WRITE);
3023 	svm_set_intercept(svm, TRAP_CR8_WRITE);
3024 
3025 	vmcb->control.intercepts[INTERCEPT_DR] = 0;
3026 	if (!sev_es_debug_swap_enabled) {
3027 		vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
3028 		vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
3029 		recalc_intercepts(svm);
3030 	} else {
3031 		/*
3032 		 * Disable #DB intercept iff DebugSwap is enabled.  KVM doesn't
3033 		 * allow debugging SEV-ES guests, and enables DebugSwap iff
3034 		 * NO_NESTED_DATA_BP is supported, so there's no reason to
3035 		 * intercept #DB when DebugSwap is enabled.  For simplicity
3036 		 * with respect to guest debug, intercept #DB for other VMs
3037 		 * even if NO_NESTED_DATA_BP is supported, i.e. even if the
3038 		 * guest can't DoS the CPU with infinite #DB vectoring.
3039 		 */
3040 		clr_exception_intercept(svm, DB_VECTOR);
3041 	}
3042 
3043 	/* Can't intercept XSETBV, HV can't modify XCR0 directly */
3044 	svm_clr_intercept(svm, INTERCEPT_XSETBV);
3045 
3046 	/* Clear intercepts on selected MSRs */
3047 	set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
3048 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
3049 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
3050 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
3051 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
3052 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
3053 }
3054 
3055 void sev_init_vmcb(struct vcpu_svm *svm)
3056 {
3057 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
3058 	clr_exception_intercept(svm, UD_VECTOR);
3059 
3060 	/*
3061 	 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as
3062 	 * KVM can't decrypt guest memory to decode the faulting instruction.
3063 	 */
3064 	clr_exception_intercept(svm, GP_VECTOR);
3065 
3066 	if (sev_es_guest(svm->vcpu.kvm))
3067 		sev_es_init_vmcb(svm);
3068 }
3069 
3070 void sev_es_vcpu_reset(struct vcpu_svm *svm)
3071 {
3072 	/*
3073 	 * Set the GHCB MSR value as per the GHCB specification when emulating
3074 	 * vCPU RESET for an SEV-ES guest.
3075 	 */
3076 	set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
3077 					    GHCB_VERSION_MIN,
3078 					    sev_enc_bit));
3079 }
3080 
3081 void sev_es_prepare_switch_to_guest(struct sev_es_save_area *hostsa)
3082 {
3083 	/*
3084 	 * All host state for SEV-ES guests is categorized into three swap types
3085 	 * based on how it is handled by hardware during a world switch:
3086 	 *
3087 	 * A: VMRUN:   Host state saved in host save area
3088 	 *    VMEXIT:  Host state loaded from host save area
3089 	 *
3090 	 * B: VMRUN:   Host state _NOT_ saved in host save area
3091 	 *    VMEXIT:  Host state loaded from host save area
3092 	 *
3093 	 * C: VMRUN:   Host state _NOT_ saved in host save area
3094 	 *    VMEXIT:  Host state initialized to default(reset) values
3095 	 *
3096 	 * Manually save type-B state, i.e. state that is loaded by VMEXIT but
3097 	 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed
3098 	 * by common SVM code).
3099 	 */
3100 	hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
3101 	hostsa->pkru = read_pkru();
3102 	hostsa->xss = host_xss;
3103 
3104 	/*
3105 	 * If DebugSwap is enabled, debug registers are loaded but NOT saved by
3106 	 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both
3107 	 * saves and loads debug registers (Type-A).
3108 	 */
3109 	if (sev_es_debug_swap_enabled) {
3110 		hostsa->dr0 = native_get_debugreg(0);
3111 		hostsa->dr1 = native_get_debugreg(1);
3112 		hostsa->dr2 = native_get_debugreg(2);
3113 		hostsa->dr3 = native_get_debugreg(3);
3114 		hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0);
3115 		hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1);
3116 		hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2);
3117 		hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3);
3118 	}
3119 }
3120 
3121 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
3122 {
3123 	struct vcpu_svm *svm = to_svm(vcpu);
3124 
3125 	/* First SIPI: Use the values as initially set by the VMM */
3126 	if (!svm->sev_es.received_first_sipi) {
3127 		svm->sev_es.received_first_sipi = true;
3128 		return;
3129 	}
3130 
3131 	/*
3132 	 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
3133 	 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
3134 	 * non-zero value.
3135 	 */
3136 	if (!svm->sev_es.ghcb)
3137 		return;
3138 
3139 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
3140 }
3141