1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 10 #include <linux/kvm_types.h> 11 #include <linux/kvm_host.h> 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/psp-sev.h> 15 #include <linux/pagemap.h> 16 #include <linux/swap.h> 17 #include <linux/processor.h> 18 #include <linux/trace_events.h> 19 #include <asm/fpu/internal.h> 20 21 #include <asm/trapnr.h> 22 23 #include "x86.h" 24 #include "svm.h" 25 #include "svm_ops.h" 26 #include "cpuid.h" 27 #include "trace.h" 28 29 #define __ex(x) __kvm_handle_fault_on_reboot(x) 30 31 static u8 sev_enc_bit; 32 static int sev_flush_asids(void); 33 static DECLARE_RWSEM(sev_deactivate_lock); 34 static DEFINE_MUTEX(sev_bitmap_lock); 35 unsigned int max_sev_asid; 36 static unsigned int min_sev_asid; 37 static unsigned long *sev_asid_bitmap; 38 static unsigned long *sev_reclaim_asid_bitmap; 39 40 struct enc_region { 41 struct list_head list; 42 unsigned long npages; 43 struct page **pages; 44 unsigned long uaddr; 45 unsigned long size; 46 }; 47 48 static int sev_flush_asids(void) 49 { 50 int ret, error = 0; 51 52 /* 53 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 54 * so it must be guarded. 55 */ 56 down_write(&sev_deactivate_lock); 57 58 wbinvd_on_all_cpus(); 59 ret = sev_guest_df_flush(&error); 60 61 up_write(&sev_deactivate_lock); 62 63 if (ret) 64 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error); 65 66 return ret; 67 } 68 69 /* Must be called with the sev_bitmap_lock held */ 70 static bool __sev_recycle_asids(int min_asid, int max_asid) 71 { 72 int pos; 73 74 /* Check if there are any ASIDs to reclaim before performing a flush */ 75 pos = find_next_bit(sev_reclaim_asid_bitmap, max_sev_asid, min_asid); 76 if (pos >= max_asid) 77 return false; 78 79 if (sev_flush_asids()) 80 return false; 81 82 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 83 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 84 max_sev_asid); 85 bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid); 86 87 return true; 88 } 89 90 static int sev_asid_new(struct kvm_sev_info *sev) 91 { 92 int pos, min_asid, max_asid; 93 bool retry = true; 94 95 mutex_lock(&sev_bitmap_lock); 96 97 /* 98 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 99 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 100 */ 101 min_asid = sev->es_active ? 0 : min_sev_asid - 1; 102 max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 103 again: 104 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_asid); 105 if (pos >= max_asid) { 106 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 107 retry = false; 108 goto again; 109 } 110 mutex_unlock(&sev_bitmap_lock); 111 return -EBUSY; 112 } 113 114 __set_bit(pos, sev_asid_bitmap); 115 116 mutex_unlock(&sev_bitmap_lock); 117 118 return pos + 1; 119 } 120 121 static int sev_get_asid(struct kvm *kvm) 122 { 123 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 124 125 return sev->asid; 126 } 127 128 static void sev_asid_free(int asid) 129 { 130 struct svm_cpu_data *sd; 131 int cpu, pos; 132 133 mutex_lock(&sev_bitmap_lock); 134 135 pos = asid - 1; 136 __set_bit(pos, sev_reclaim_asid_bitmap); 137 138 for_each_possible_cpu(cpu) { 139 sd = per_cpu(svm_data, cpu); 140 sd->sev_vmcbs[pos] = NULL; 141 } 142 143 mutex_unlock(&sev_bitmap_lock); 144 } 145 146 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 147 { 148 struct sev_data_decommission *decommission; 149 struct sev_data_deactivate *data; 150 151 if (!handle) 152 return; 153 154 data = kzalloc(sizeof(*data), GFP_KERNEL); 155 if (!data) 156 return; 157 158 /* deactivate handle */ 159 data->handle = handle; 160 161 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 162 down_read(&sev_deactivate_lock); 163 sev_guest_deactivate(data, NULL); 164 up_read(&sev_deactivate_lock); 165 166 kfree(data); 167 168 decommission = kzalloc(sizeof(*decommission), GFP_KERNEL); 169 if (!decommission) 170 return; 171 172 /* decommission handle */ 173 decommission->handle = handle; 174 sev_guest_decommission(decommission, NULL); 175 176 kfree(decommission); 177 } 178 179 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 180 { 181 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 182 int asid, ret; 183 184 ret = -EBUSY; 185 if (unlikely(sev->active)) 186 return ret; 187 188 asid = sev_asid_new(sev); 189 if (asid < 0) 190 return ret; 191 192 ret = sev_platform_init(&argp->error); 193 if (ret) 194 goto e_free; 195 196 sev->active = true; 197 sev->asid = asid; 198 INIT_LIST_HEAD(&sev->regions_list); 199 200 return 0; 201 202 e_free: 203 sev_asid_free(asid); 204 return ret; 205 } 206 207 static int sev_es_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 208 { 209 if (!sev_es) 210 return -ENOTTY; 211 212 to_kvm_svm(kvm)->sev_info.es_active = true; 213 214 return sev_guest_init(kvm, argp); 215 } 216 217 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 218 { 219 struct sev_data_activate *data; 220 int asid = sev_get_asid(kvm); 221 int ret; 222 223 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 224 if (!data) 225 return -ENOMEM; 226 227 /* activate ASID on the given handle */ 228 data->handle = handle; 229 data->asid = asid; 230 ret = sev_guest_activate(data, error); 231 kfree(data); 232 233 return ret; 234 } 235 236 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 237 { 238 struct fd f; 239 int ret; 240 241 f = fdget(fd); 242 if (!f.file) 243 return -EBADF; 244 245 ret = sev_issue_cmd_external_user(f.file, id, data, error); 246 247 fdput(f); 248 return ret; 249 } 250 251 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 252 { 253 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 254 255 return __sev_issue_cmd(sev->fd, id, data, error); 256 } 257 258 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 259 { 260 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 261 struct sev_data_launch_start *start; 262 struct kvm_sev_launch_start params; 263 void *dh_blob, *session_blob; 264 int *error = &argp->error; 265 int ret; 266 267 if (!sev_guest(kvm)) 268 return -ENOTTY; 269 270 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 271 return -EFAULT; 272 273 start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT); 274 if (!start) 275 return -ENOMEM; 276 277 dh_blob = NULL; 278 if (params.dh_uaddr) { 279 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 280 if (IS_ERR(dh_blob)) { 281 ret = PTR_ERR(dh_blob); 282 goto e_free; 283 } 284 285 start->dh_cert_address = __sme_set(__pa(dh_blob)); 286 start->dh_cert_len = params.dh_len; 287 } 288 289 session_blob = NULL; 290 if (params.session_uaddr) { 291 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 292 if (IS_ERR(session_blob)) { 293 ret = PTR_ERR(session_blob); 294 goto e_free_dh; 295 } 296 297 start->session_address = __sme_set(__pa(session_blob)); 298 start->session_len = params.session_len; 299 } 300 301 start->handle = params.handle; 302 start->policy = params.policy; 303 304 /* create memory encryption context */ 305 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error); 306 if (ret) 307 goto e_free_session; 308 309 /* Bind ASID to this guest */ 310 ret = sev_bind_asid(kvm, start->handle, error); 311 if (ret) 312 goto e_free_session; 313 314 /* return handle to userspace */ 315 params.handle = start->handle; 316 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { 317 sev_unbind_asid(kvm, start->handle); 318 ret = -EFAULT; 319 goto e_free_session; 320 } 321 322 sev->handle = start->handle; 323 sev->fd = argp->sev_fd; 324 325 e_free_session: 326 kfree(session_blob); 327 e_free_dh: 328 kfree(dh_blob); 329 e_free: 330 kfree(start); 331 return ret; 332 } 333 334 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 335 unsigned long ulen, unsigned long *n, 336 int write) 337 { 338 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 339 unsigned long npages, size; 340 int npinned; 341 unsigned long locked, lock_limit; 342 struct page **pages; 343 unsigned long first, last; 344 int ret; 345 346 lockdep_assert_held(&kvm->lock); 347 348 if (ulen == 0 || uaddr + ulen < uaddr) 349 return ERR_PTR(-EINVAL); 350 351 /* Calculate number of pages. */ 352 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 353 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 354 npages = (last - first + 1); 355 356 locked = sev->pages_locked + npages; 357 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 358 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 359 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 360 return ERR_PTR(-ENOMEM); 361 } 362 363 if (WARN_ON_ONCE(npages > INT_MAX)) 364 return ERR_PTR(-EINVAL); 365 366 /* Avoid using vmalloc for smaller buffers. */ 367 size = npages * sizeof(struct page *); 368 if (size > PAGE_SIZE) 369 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 370 else 371 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 372 373 if (!pages) 374 return ERR_PTR(-ENOMEM); 375 376 /* Pin the user virtual address. */ 377 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); 378 if (npinned != npages) { 379 pr_err("SEV: Failure locking %lu pages.\n", npages); 380 ret = -ENOMEM; 381 goto err; 382 } 383 384 *n = npages; 385 sev->pages_locked = locked; 386 387 return pages; 388 389 err: 390 if (npinned > 0) 391 unpin_user_pages(pages, npinned); 392 393 kvfree(pages); 394 return ERR_PTR(ret); 395 } 396 397 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 398 unsigned long npages) 399 { 400 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 401 402 unpin_user_pages(pages, npages); 403 kvfree(pages); 404 sev->pages_locked -= npages; 405 } 406 407 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 408 { 409 uint8_t *page_virtual; 410 unsigned long i; 411 412 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 413 pages == NULL) 414 return; 415 416 for (i = 0; i < npages; i++) { 417 page_virtual = kmap_atomic(pages[i]); 418 clflush_cache_range(page_virtual, PAGE_SIZE); 419 kunmap_atomic(page_virtual); 420 } 421 } 422 423 static unsigned long get_num_contig_pages(unsigned long idx, 424 struct page **inpages, unsigned long npages) 425 { 426 unsigned long paddr, next_paddr; 427 unsigned long i = idx + 1, pages = 1; 428 429 /* find the number of contiguous pages starting from idx */ 430 paddr = __sme_page_pa(inpages[idx]); 431 while (i < npages) { 432 next_paddr = __sme_page_pa(inpages[i++]); 433 if ((paddr + PAGE_SIZE) == next_paddr) { 434 pages++; 435 paddr = next_paddr; 436 continue; 437 } 438 break; 439 } 440 441 return pages; 442 } 443 444 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 445 { 446 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 447 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 448 struct kvm_sev_launch_update_data params; 449 struct sev_data_launch_update_data *data; 450 struct page **inpages; 451 int ret; 452 453 if (!sev_guest(kvm)) 454 return -ENOTTY; 455 456 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 457 return -EFAULT; 458 459 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 460 if (!data) 461 return -ENOMEM; 462 463 vaddr = params.uaddr; 464 size = params.len; 465 vaddr_end = vaddr + size; 466 467 /* Lock the user memory. */ 468 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); 469 if (IS_ERR(inpages)) { 470 ret = PTR_ERR(inpages); 471 goto e_free; 472 } 473 474 /* 475 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 476 * place; the cache may contain the data that was written unencrypted. 477 */ 478 sev_clflush_pages(inpages, npages); 479 480 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 481 int offset, len; 482 483 /* 484 * If the user buffer is not page-aligned, calculate the offset 485 * within the page. 486 */ 487 offset = vaddr & (PAGE_SIZE - 1); 488 489 /* Calculate the number of pages that can be encrypted in one go. */ 490 pages = get_num_contig_pages(i, inpages, npages); 491 492 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 493 494 data->handle = sev->handle; 495 data->len = len; 496 data->address = __sme_page_pa(inpages[i]) + offset; 497 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error); 498 if (ret) 499 goto e_unpin; 500 501 size -= len; 502 next_vaddr = vaddr + len; 503 } 504 505 e_unpin: 506 /* content of memory is updated, mark pages dirty */ 507 for (i = 0; i < npages; i++) { 508 set_page_dirty_lock(inpages[i]); 509 mark_page_accessed(inpages[i]); 510 } 511 /* unlock the user pages */ 512 sev_unpin_memory(kvm, inpages, npages); 513 e_free: 514 kfree(data); 515 return ret; 516 } 517 518 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 519 { 520 struct vmcb_save_area *save = &svm->vmcb->save; 521 522 /* Check some debug related fields before encrypting the VMSA */ 523 if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1)) 524 return -EINVAL; 525 526 /* Sync registgers */ 527 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 528 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 529 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 530 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 531 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 532 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 533 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 534 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 535 #ifdef CONFIG_X86_64 536 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 537 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 538 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 539 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 540 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 541 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 542 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 543 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 544 #endif 545 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 546 547 /* Sync some non-GPR registers before encrypting */ 548 save->xcr0 = svm->vcpu.arch.xcr0; 549 save->pkru = svm->vcpu.arch.pkru; 550 save->xss = svm->vcpu.arch.ia32_xss; 551 552 /* 553 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 554 * the traditional VMSA that is part of the VMCB. Copy the 555 * traditional VMSA as it has been built so far (in prep 556 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 557 */ 558 memcpy(svm->vmsa, save, sizeof(*save)); 559 560 return 0; 561 } 562 563 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 564 { 565 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 566 struct sev_data_launch_update_vmsa *vmsa; 567 int i, ret; 568 569 if (!sev_es_guest(kvm)) 570 return -ENOTTY; 571 572 vmsa = kzalloc(sizeof(*vmsa), GFP_KERNEL); 573 if (!vmsa) 574 return -ENOMEM; 575 576 for (i = 0; i < kvm->created_vcpus; i++) { 577 struct vcpu_svm *svm = to_svm(kvm->vcpus[i]); 578 579 /* Perform some pre-encryption checks against the VMSA */ 580 ret = sev_es_sync_vmsa(svm); 581 if (ret) 582 goto e_free; 583 584 /* 585 * The LAUNCH_UPDATE_VMSA command will perform in-place 586 * encryption of the VMSA memory content (i.e it will write 587 * the same memory region with the guest's key), so invalidate 588 * it first. 589 */ 590 clflush_cache_range(svm->vmsa, PAGE_SIZE); 591 592 vmsa->handle = sev->handle; 593 vmsa->address = __sme_pa(svm->vmsa); 594 vmsa->len = PAGE_SIZE; 595 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, vmsa, 596 &argp->error); 597 if (ret) 598 goto e_free; 599 600 svm->vcpu.arch.guest_state_protected = true; 601 } 602 603 e_free: 604 kfree(vmsa); 605 return ret; 606 } 607 608 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 609 { 610 void __user *measure = (void __user *)(uintptr_t)argp->data; 611 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 612 struct sev_data_launch_measure *data; 613 struct kvm_sev_launch_measure params; 614 void __user *p = NULL; 615 void *blob = NULL; 616 int ret; 617 618 if (!sev_guest(kvm)) 619 return -ENOTTY; 620 621 if (copy_from_user(¶ms, measure, sizeof(params))) 622 return -EFAULT; 623 624 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 625 if (!data) 626 return -ENOMEM; 627 628 /* User wants to query the blob length */ 629 if (!params.len) 630 goto cmd; 631 632 p = (void __user *)(uintptr_t)params.uaddr; 633 if (p) { 634 if (params.len > SEV_FW_BLOB_MAX_SIZE) { 635 ret = -EINVAL; 636 goto e_free; 637 } 638 639 ret = -ENOMEM; 640 blob = kmalloc(params.len, GFP_KERNEL); 641 if (!blob) 642 goto e_free; 643 644 data->address = __psp_pa(blob); 645 data->len = params.len; 646 } 647 648 cmd: 649 data->handle = sev->handle; 650 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error); 651 652 /* 653 * If we query the session length, FW responded with expected data. 654 */ 655 if (!params.len) 656 goto done; 657 658 if (ret) 659 goto e_free_blob; 660 661 if (blob) { 662 if (copy_to_user(p, blob, params.len)) 663 ret = -EFAULT; 664 } 665 666 done: 667 params.len = data->len; 668 if (copy_to_user(measure, ¶ms, sizeof(params))) 669 ret = -EFAULT; 670 e_free_blob: 671 kfree(blob); 672 e_free: 673 kfree(data); 674 return ret; 675 } 676 677 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 678 { 679 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 680 struct sev_data_launch_finish *data; 681 int ret; 682 683 if (!sev_guest(kvm)) 684 return -ENOTTY; 685 686 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 687 if (!data) 688 return -ENOMEM; 689 690 data->handle = sev->handle; 691 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error); 692 693 kfree(data); 694 return ret; 695 } 696 697 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 698 { 699 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 700 struct kvm_sev_guest_status params; 701 struct sev_data_guest_status *data; 702 int ret; 703 704 if (!sev_guest(kvm)) 705 return -ENOTTY; 706 707 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 708 if (!data) 709 return -ENOMEM; 710 711 data->handle = sev->handle; 712 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error); 713 if (ret) 714 goto e_free; 715 716 params.policy = data->policy; 717 params.state = data->state; 718 params.handle = data->handle; 719 720 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) 721 ret = -EFAULT; 722 e_free: 723 kfree(data); 724 return ret; 725 } 726 727 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 728 unsigned long dst, int size, 729 int *error, bool enc) 730 { 731 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 732 struct sev_data_dbg *data; 733 int ret; 734 735 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 736 if (!data) 737 return -ENOMEM; 738 739 data->handle = sev->handle; 740 data->dst_addr = dst; 741 data->src_addr = src; 742 data->len = size; 743 744 ret = sev_issue_cmd(kvm, 745 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 746 data, error); 747 kfree(data); 748 return ret; 749 } 750 751 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 752 unsigned long dst_paddr, int sz, int *err) 753 { 754 int offset; 755 756 /* 757 * Its safe to read more than we are asked, caller should ensure that 758 * destination has enough space. 759 */ 760 offset = src_paddr & 15; 761 src_paddr = round_down(src_paddr, 16); 762 sz = round_up(sz + offset, 16); 763 764 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 765 } 766 767 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 768 unsigned long __user dst_uaddr, 769 unsigned long dst_paddr, 770 int size, int *err) 771 { 772 struct page *tpage = NULL; 773 int ret, offset; 774 775 /* if inputs are not 16-byte then use intermediate buffer */ 776 if (!IS_ALIGNED(dst_paddr, 16) || 777 !IS_ALIGNED(paddr, 16) || 778 !IS_ALIGNED(size, 16)) { 779 tpage = (void *)alloc_page(GFP_KERNEL); 780 if (!tpage) 781 return -ENOMEM; 782 783 dst_paddr = __sme_page_pa(tpage); 784 } 785 786 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 787 if (ret) 788 goto e_free; 789 790 if (tpage) { 791 offset = paddr & 15; 792 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr, 793 page_address(tpage) + offset, size)) 794 ret = -EFAULT; 795 } 796 797 e_free: 798 if (tpage) 799 __free_page(tpage); 800 801 return ret; 802 } 803 804 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 805 unsigned long __user vaddr, 806 unsigned long dst_paddr, 807 unsigned long __user dst_vaddr, 808 int size, int *error) 809 { 810 struct page *src_tpage = NULL; 811 struct page *dst_tpage = NULL; 812 int ret, len = size; 813 814 /* If source buffer is not aligned then use an intermediate buffer */ 815 if (!IS_ALIGNED(vaddr, 16)) { 816 src_tpage = alloc_page(GFP_KERNEL); 817 if (!src_tpage) 818 return -ENOMEM; 819 820 if (copy_from_user(page_address(src_tpage), 821 (void __user *)(uintptr_t)vaddr, size)) { 822 __free_page(src_tpage); 823 return -EFAULT; 824 } 825 826 paddr = __sme_page_pa(src_tpage); 827 } 828 829 /* 830 * If destination buffer or length is not aligned then do read-modify-write: 831 * - decrypt destination in an intermediate buffer 832 * - copy the source buffer in an intermediate buffer 833 * - use the intermediate buffer as source buffer 834 */ 835 if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 836 int dst_offset; 837 838 dst_tpage = alloc_page(GFP_KERNEL); 839 if (!dst_tpage) { 840 ret = -ENOMEM; 841 goto e_free; 842 } 843 844 ret = __sev_dbg_decrypt(kvm, dst_paddr, 845 __sme_page_pa(dst_tpage), size, error); 846 if (ret) 847 goto e_free; 848 849 /* 850 * If source is kernel buffer then use memcpy() otherwise 851 * copy_from_user(). 852 */ 853 dst_offset = dst_paddr & 15; 854 855 if (src_tpage) 856 memcpy(page_address(dst_tpage) + dst_offset, 857 page_address(src_tpage), size); 858 else { 859 if (copy_from_user(page_address(dst_tpage) + dst_offset, 860 (void __user *)(uintptr_t)vaddr, size)) { 861 ret = -EFAULT; 862 goto e_free; 863 } 864 } 865 866 paddr = __sme_page_pa(dst_tpage); 867 dst_paddr = round_down(dst_paddr, 16); 868 len = round_up(size, 16); 869 } 870 871 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 872 873 e_free: 874 if (src_tpage) 875 __free_page(src_tpage); 876 if (dst_tpage) 877 __free_page(dst_tpage); 878 return ret; 879 } 880 881 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 882 { 883 unsigned long vaddr, vaddr_end, next_vaddr; 884 unsigned long dst_vaddr; 885 struct page **src_p, **dst_p; 886 struct kvm_sev_dbg debug; 887 unsigned long n; 888 unsigned int size; 889 int ret; 890 891 if (!sev_guest(kvm)) 892 return -ENOTTY; 893 894 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) 895 return -EFAULT; 896 897 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 898 return -EINVAL; 899 if (!debug.dst_uaddr) 900 return -EINVAL; 901 902 vaddr = debug.src_uaddr; 903 size = debug.len; 904 vaddr_end = vaddr + size; 905 dst_vaddr = debug.dst_uaddr; 906 907 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 908 int len, s_off, d_off; 909 910 /* lock userspace source and destination page */ 911 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 912 if (IS_ERR(src_p)) 913 return PTR_ERR(src_p); 914 915 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); 916 if (IS_ERR(dst_p)) { 917 sev_unpin_memory(kvm, src_p, n); 918 return PTR_ERR(dst_p); 919 } 920 921 /* 922 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 923 * the pages; flush the destination too so that future accesses do not 924 * see stale data. 925 */ 926 sev_clflush_pages(src_p, 1); 927 sev_clflush_pages(dst_p, 1); 928 929 /* 930 * Since user buffer may not be page aligned, calculate the 931 * offset within the page. 932 */ 933 s_off = vaddr & ~PAGE_MASK; 934 d_off = dst_vaddr & ~PAGE_MASK; 935 len = min_t(size_t, (PAGE_SIZE - s_off), size); 936 937 if (dec) 938 ret = __sev_dbg_decrypt_user(kvm, 939 __sme_page_pa(src_p[0]) + s_off, 940 dst_vaddr, 941 __sme_page_pa(dst_p[0]) + d_off, 942 len, &argp->error); 943 else 944 ret = __sev_dbg_encrypt_user(kvm, 945 __sme_page_pa(src_p[0]) + s_off, 946 vaddr, 947 __sme_page_pa(dst_p[0]) + d_off, 948 dst_vaddr, 949 len, &argp->error); 950 951 sev_unpin_memory(kvm, src_p, n); 952 sev_unpin_memory(kvm, dst_p, n); 953 954 if (ret) 955 goto err; 956 957 next_vaddr = vaddr + len; 958 dst_vaddr = dst_vaddr + len; 959 size -= len; 960 } 961 err: 962 return ret; 963 } 964 965 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 966 { 967 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 968 struct sev_data_launch_secret *data; 969 struct kvm_sev_launch_secret params; 970 struct page **pages; 971 void *blob, *hdr; 972 unsigned long n, i; 973 int ret, offset; 974 975 if (!sev_guest(kvm)) 976 return -ENOTTY; 977 978 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 979 return -EFAULT; 980 981 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); 982 if (IS_ERR(pages)) 983 return PTR_ERR(pages); 984 985 /* 986 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 987 * place; the cache may contain the data that was written unencrypted. 988 */ 989 sev_clflush_pages(pages, n); 990 991 /* 992 * The secret must be copied into contiguous memory region, lets verify 993 * that userspace memory pages are contiguous before we issue command. 994 */ 995 if (get_num_contig_pages(0, pages, n) != n) { 996 ret = -EINVAL; 997 goto e_unpin_memory; 998 } 999 1000 ret = -ENOMEM; 1001 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 1002 if (!data) 1003 goto e_unpin_memory; 1004 1005 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1006 data->guest_address = __sme_page_pa(pages[0]) + offset; 1007 data->guest_len = params.guest_len; 1008 1009 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1010 if (IS_ERR(blob)) { 1011 ret = PTR_ERR(blob); 1012 goto e_free; 1013 } 1014 1015 data->trans_address = __psp_pa(blob); 1016 data->trans_len = params.trans_len; 1017 1018 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1019 if (IS_ERR(hdr)) { 1020 ret = PTR_ERR(hdr); 1021 goto e_free_blob; 1022 } 1023 data->hdr_address = __psp_pa(hdr); 1024 data->hdr_len = params.hdr_len; 1025 1026 data->handle = sev->handle; 1027 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error); 1028 1029 kfree(hdr); 1030 1031 e_free_blob: 1032 kfree(blob); 1033 e_free: 1034 kfree(data); 1035 e_unpin_memory: 1036 /* content of memory is updated, mark pages dirty */ 1037 for (i = 0; i < n; i++) { 1038 set_page_dirty_lock(pages[i]); 1039 mark_page_accessed(pages[i]); 1040 } 1041 sev_unpin_memory(kvm, pages, n); 1042 return ret; 1043 } 1044 1045 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1046 { 1047 void __user *report = (void __user *)(uintptr_t)argp->data; 1048 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1049 struct sev_data_attestation_report *data; 1050 struct kvm_sev_attestation_report params; 1051 void __user *p; 1052 void *blob = NULL; 1053 int ret; 1054 1055 if (!sev_guest(kvm)) 1056 return -ENOTTY; 1057 1058 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1059 return -EFAULT; 1060 1061 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 1062 if (!data) 1063 return -ENOMEM; 1064 1065 /* User wants to query the blob length */ 1066 if (!params.len) 1067 goto cmd; 1068 1069 p = (void __user *)(uintptr_t)params.uaddr; 1070 if (p) { 1071 if (params.len > SEV_FW_BLOB_MAX_SIZE) { 1072 ret = -EINVAL; 1073 goto e_free; 1074 } 1075 1076 ret = -ENOMEM; 1077 blob = kmalloc(params.len, GFP_KERNEL); 1078 if (!blob) 1079 goto e_free; 1080 1081 data->address = __psp_pa(blob); 1082 data->len = params.len; 1083 memcpy(data->mnonce, params.mnonce, sizeof(params.mnonce)); 1084 } 1085 cmd: 1086 data->handle = sev->handle; 1087 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, data, &argp->error); 1088 /* 1089 * If we query the session length, FW responded with expected data. 1090 */ 1091 if (!params.len) 1092 goto done; 1093 1094 if (ret) 1095 goto e_free_blob; 1096 1097 if (blob) { 1098 if (copy_to_user(p, blob, params.len)) 1099 ret = -EFAULT; 1100 } 1101 1102 done: 1103 params.len = data->len; 1104 if (copy_to_user(report, ¶ms, sizeof(params))) 1105 ret = -EFAULT; 1106 e_free_blob: 1107 kfree(blob); 1108 e_free: 1109 kfree(data); 1110 return ret; 1111 } 1112 1113 int svm_mem_enc_op(struct kvm *kvm, void __user *argp) 1114 { 1115 struct kvm_sev_cmd sev_cmd; 1116 int r; 1117 1118 if (!svm_sev_enabled() || !sev) 1119 return -ENOTTY; 1120 1121 if (!argp) 1122 return 0; 1123 1124 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 1125 return -EFAULT; 1126 1127 mutex_lock(&kvm->lock); 1128 1129 switch (sev_cmd.id) { 1130 case KVM_SEV_INIT: 1131 r = sev_guest_init(kvm, &sev_cmd); 1132 break; 1133 case KVM_SEV_ES_INIT: 1134 r = sev_es_guest_init(kvm, &sev_cmd); 1135 break; 1136 case KVM_SEV_LAUNCH_START: 1137 r = sev_launch_start(kvm, &sev_cmd); 1138 break; 1139 case KVM_SEV_LAUNCH_UPDATE_DATA: 1140 r = sev_launch_update_data(kvm, &sev_cmd); 1141 break; 1142 case KVM_SEV_LAUNCH_UPDATE_VMSA: 1143 r = sev_launch_update_vmsa(kvm, &sev_cmd); 1144 break; 1145 case KVM_SEV_LAUNCH_MEASURE: 1146 r = sev_launch_measure(kvm, &sev_cmd); 1147 break; 1148 case KVM_SEV_LAUNCH_FINISH: 1149 r = sev_launch_finish(kvm, &sev_cmd); 1150 break; 1151 case KVM_SEV_GUEST_STATUS: 1152 r = sev_guest_status(kvm, &sev_cmd); 1153 break; 1154 case KVM_SEV_DBG_DECRYPT: 1155 r = sev_dbg_crypt(kvm, &sev_cmd, true); 1156 break; 1157 case KVM_SEV_DBG_ENCRYPT: 1158 r = sev_dbg_crypt(kvm, &sev_cmd, false); 1159 break; 1160 case KVM_SEV_LAUNCH_SECRET: 1161 r = sev_launch_secret(kvm, &sev_cmd); 1162 break; 1163 case KVM_SEV_GET_ATTESTATION_REPORT: 1164 r = sev_get_attestation_report(kvm, &sev_cmd); 1165 break; 1166 default: 1167 r = -EINVAL; 1168 goto out; 1169 } 1170 1171 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 1172 r = -EFAULT; 1173 1174 out: 1175 mutex_unlock(&kvm->lock); 1176 return r; 1177 } 1178 1179 int svm_register_enc_region(struct kvm *kvm, 1180 struct kvm_enc_region *range) 1181 { 1182 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1183 struct enc_region *region; 1184 int ret = 0; 1185 1186 if (!sev_guest(kvm)) 1187 return -ENOTTY; 1188 1189 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 1190 return -EINVAL; 1191 1192 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 1193 if (!region) 1194 return -ENOMEM; 1195 1196 mutex_lock(&kvm->lock); 1197 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); 1198 if (IS_ERR(region->pages)) { 1199 ret = PTR_ERR(region->pages); 1200 mutex_unlock(&kvm->lock); 1201 goto e_free; 1202 } 1203 1204 region->uaddr = range->addr; 1205 region->size = range->size; 1206 1207 list_add_tail(®ion->list, &sev->regions_list); 1208 mutex_unlock(&kvm->lock); 1209 1210 /* 1211 * The guest may change the memory encryption attribute from C=0 -> C=1 1212 * or vice versa for this memory range. Lets make sure caches are 1213 * flushed to ensure that guest data gets written into memory with 1214 * correct C-bit. 1215 */ 1216 sev_clflush_pages(region->pages, region->npages); 1217 1218 return ret; 1219 1220 e_free: 1221 kfree(region); 1222 return ret; 1223 } 1224 1225 static struct enc_region * 1226 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 1227 { 1228 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1229 struct list_head *head = &sev->regions_list; 1230 struct enc_region *i; 1231 1232 list_for_each_entry(i, head, list) { 1233 if (i->uaddr == range->addr && 1234 i->size == range->size) 1235 return i; 1236 } 1237 1238 return NULL; 1239 } 1240 1241 static void __unregister_enc_region_locked(struct kvm *kvm, 1242 struct enc_region *region) 1243 { 1244 sev_unpin_memory(kvm, region->pages, region->npages); 1245 list_del(®ion->list); 1246 kfree(region); 1247 } 1248 1249 int svm_unregister_enc_region(struct kvm *kvm, 1250 struct kvm_enc_region *range) 1251 { 1252 struct enc_region *region; 1253 int ret; 1254 1255 mutex_lock(&kvm->lock); 1256 1257 if (!sev_guest(kvm)) { 1258 ret = -ENOTTY; 1259 goto failed; 1260 } 1261 1262 region = find_enc_region(kvm, range); 1263 if (!region) { 1264 ret = -EINVAL; 1265 goto failed; 1266 } 1267 1268 /* 1269 * Ensure that all guest tagged cache entries are flushed before 1270 * releasing the pages back to the system for use. CLFLUSH will 1271 * not do this, so issue a WBINVD. 1272 */ 1273 wbinvd_on_all_cpus(); 1274 1275 __unregister_enc_region_locked(kvm, region); 1276 1277 mutex_unlock(&kvm->lock); 1278 return 0; 1279 1280 failed: 1281 mutex_unlock(&kvm->lock); 1282 return ret; 1283 } 1284 1285 void sev_vm_destroy(struct kvm *kvm) 1286 { 1287 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1288 struct list_head *head = &sev->regions_list; 1289 struct list_head *pos, *q; 1290 1291 if (!sev_guest(kvm)) 1292 return; 1293 1294 mutex_lock(&kvm->lock); 1295 1296 /* 1297 * Ensure that all guest tagged cache entries are flushed before 1298 * releasing the pages back to the system for use. CLFLUSH will 1299 * not do this, so issue a WBINVD. 1300 */ 1301 wbinvd_on_all_cpus(); 1302 1303 /* 1304 * if userspace was terminated before unregistering the memory regions 1305 * then lets unpin all the registered memory. 1306 */ 1307 if (!list_empty(head)) { 1308 list_for_each_safe(pos, q, head) { 1309 __unregister_enc_region_locked(kvm, 1310 list_entry(pos, struct enc_region, list)); 1311 cond_resched(); 1312 } 1313 } 1314 1315 mutex_unlock(&kvm->lock); 1316 1317 sev_unbind_asid(kvm, sev->handle); 1318 sev_asid_free(sev->asid); 1319 } 1320 1321 void __init sev_hardware_setup(void) 1322 { 1323 unsigned int eax, ebx, ecx, edx; 1324 bool sev_es_supported = false; 1325 bool sev_supported = false; 1326 1327 /* Does the CPU support SEV? */ 1328 if (!boot_cpu_has(X86_FEATURE_SEV)) 1329 goto out; 1330 1331 /* Retrieve SEV CPUID information */ 1332 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 1333 1334 /* Set encryption bit location for SEV-ES guests */ 1335 sev_enc_bit = ebx & 0x3f; 1336 1337 /* Maximum number of encrypted guests supported simultaneously */ 1338 max_sev_asid = ecx; 1339 1340 if (!svm_sev_enabled()) 1341 goto out; 1342 1343 /* Minimum ASID value that should be used for SEV guest */ 1344 min_sev_asid = edx; 1345 1346 /* Initialize SEV ASID bitmaps */ 1347 sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); 1348 if (!sev_asid_bitmap) 1349 goto out; 1350 1351 sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); 1352 if (!sev_reclaim_asid_bitmap) 1353 goto out; 1354 1355 pr_info("SEV supported: %u ASIDs\n", max_sev_asid - min_sev_asid + 1); 1356 sev_supported = true; 1357 1358 /* SEV-ES support requested? */ 1359 if (!sev_es) 1360 goto out; 1361 1362 /* Does the CPU support SEV-ES? */ 1363 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 1364 goto out; 1365 1366 /* Has the system been allocated ASIDs for SEV-ES? */ 1367 if (min_sev_asid == 1) 1368 goto out; 1369 1370 pr_info("SEV-ES supported: %u ASIDs\n", min_sev_asid - 1); 1371 sev_es_supported = true; 1372 1373 out: 1374 sev = sev_supported; 1375 sev_es = sev_es_supported; 1376 } 1377 1378 void sev_hardware_teardown(void) 1379 { 1380 if (!svm_sev_enabled()) 1381 return; 1382 1383 bitmap_free(sev_asid_bitmap); 1384 bitmap_free(sev_reclaim_asid_bitmap); 1385 1386 sev_flush_asids(); 1387 } 1388 1389 /* 1390 * Pages used by hardware to hold guest encrypted state must be flushed before 1391 * returning them to the system. 1392 */ 1393 static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va, 1394 unsigned long len) 1395 { 1396 /* 1397 * If hardware enforced cache coherency for encrypted mappings of the 1398 * same physical page is supported, nothing to do. 1399 */ 1400 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) 1401 return; 1402 1403 /* 1404 * If the VM Page Flush MSR is supported, use it to flush the page 1405 * (using the page virtual address and the guest ASID). 1406 */ 1407 if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) { 1408 struct kvm_sev_info *sev; 1409 unsigned long va_start; 1410 u64 start, stop; 1411 1412 /* Align start and stop to page boundaries. */ 1413 va_start = (unsigned long)va; 1414 start = (u64)va_start & PAGE_MASK; 1415 stop = PAGE_ALIGN((u64)va_start + len); 1416 1417 if (start < stop) { 1418 sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info; 1419 1420 while (start < stop) { 1421 wrmsrl(MSR_AMD64_VM_PAGE_FLUSH, 1422 start | sev->asid); 1423 1424 start += PAGE_SIZE; 1425 } 1426 1427 return; 1428 } 1429 1430 WARN(1, "Address overflow, using WBINVD\n"); 1431 } 1432 1433 /* 1434 * Hardware should always have one of the above features, 1435 * but if not, use WBINVD and issue a warning. 1436 */ 1437 WARN_ONCE(1, "Using WBINVD to flush guest memory\n"); 1438 wbinvd_on_all_cpus(); 1439 } 1440 1441 void sev_free_vcpu(struct kvm_vcpu *vcpu) 1442 { 1443 struct vcpu_svm *svm; 1444 1445 if (!sev_es_guest(vcpu->kvm)) 1446 return; 1447 1448 svm = to_svm(vcpu); 1449 1450 if (vcpu->arch.guest_state_protected) 1451 sev_flush_guest_memory(svm, svm->vmsa, PAGE_SIZE); 1452 __free_page(virt_to_page(svm->vmsa)); 1453 1454 if (svm->ghcb_sa_free) 1455 kfree(svm->ghcb_sa); 1456 } 1457 1458 static void dump_ghcb(struct vcpu_svm *svm) 1459 { 1460 struct ghcb *ghcb = svm->ghcb; 1461 unsigned int nbits; 1462 1463 /* Re-use the dump_invalid_vmcb module parameter */ 1464 if (!dump_invalid_vmcb) { 1465 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 1466 return; 1467 } 1468 1469 nbits = sizeof(ghcb->save.valid_bitmap) * 8; 1470 1471 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); 1472 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 1473 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); 1474 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 1475 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); 1476 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 1477 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); 1478 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 1479 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); 1480 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); 1481 } 1482 1483 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 1484 { 1485 struct kvm_vcpu *vcpu = &svm->vcpu; 1486 struct ghcb *ghcb = svm->ghcb; 1487 1488 /* 1489 * The GHCB protocol so far allows for the following data 1490 * to be returned: 1491 * GPRs RAX, RBX, RCX, RDX 1492 * 1493 * Copy their values, even if they may not have been written during the 1494 * VM-Exit. It's the guest's responsibility to not consume random data. 1495 */ 1496 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 1497 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 1498 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 1499 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 1500 } 1501 1502 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 1503 { 1504 struct vmcb_control_area *control = &svm->vmcb->control; 1505 struct kvm_vcpu *vcpu = &svm->vcpu; 1506 struct ghcb *ghcb = svm->ghcb; 1507 u64 exit_code; 1508 1509 /* 1510 * The GHCB protocol so far allows for the following data 1511 * to be supplied: 1512 * GPRs RAX, RBX, RCX, RDX 1513 * XCR0 1514 * CPL 1515 * 1516 * VMMCALL allows the guest to provide extra registers. KVM also 1517 * expects RSI for hypercalls, so include that, too. 1518 * 1519 * Copy their values to the appropriate location if supplied. 1520 */ 1521 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 1522 1523 vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb); 1524 vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb); 1525 vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb); 1526 vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb); 1527 vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb); 1528 1529 svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb); 1530 1531 if (ghcb_xcr0_is_valid(ghcb)) { 1532 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 1533 kvm_update_cpuid_runtime(vcpu); 1534 } 1535 1536 /* Copy the GHCB exit information into the VMCB fields */ 1537 exit_code = ghcb_get_sw_exit_code(ghcb); 1538 control->exit_code = lower_32_bits(exit_code); 1539 control->exit_code_hi = upper_32_bits(exit_code); 1540 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 1541 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 1542 1543 /* Clear the valid entries fields */ 1544 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 1545 } 1546 1547 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 1548 { 1549 struct kvm_vcpu *vcpu; 1550 struct ghcb *ghcb; 1551 u64 exit_code = 0; 1552 1553 ghcb = svm->ghcb; 1554 1555 /* Only GHCB Usage code 0 is supported */ 1556 if (ghcb->ghcb_usage) 1557 goto vmgexit_err; 1558 1559 /* 1560 * Retrieve the exit code now even though is may not be marked valid 1561 * as it could help with debugging. 1562 */ 1563 exit_code = ghcb_get_sw_exit_code(ghcb); 1564 1565 if (!ghcb_sw_exit_code_is_valid(ghcb) || 1566 !ghcb_sw_exit_info_1_is_valid(ghcb) || 1567 !ghcb_sw_exit_info_2_is_valid(ghcb)) 1568 goto vmgexit_err; 1569 1570 switch (ghcb_get_sw_exit_code(ghcb)) { 1571 case SVM_EXIT_READ_DR7: 1572 break; 1573 case SVM_EXIT_WRITE_DR7: 1574 if (!ghcb_rax_is_valid(ghcb)) 1575 goto vmgexit_err; 1576 break; 1577 case SVM_EXIT_RDTSC: 1578 break; 1579 case SVM_EXIT_RDPMC: 1580 if (!ghcb_rcx_is_valid(ghcb)) 1581 goto vmgexit_err; 1582 break; 1583 case SVM_EXIT_CPUID: 1584 if (!ghcb_rax_is_valid(ghcb) || 1585 !ghcb_rcx_is_valid(ghcb)) 1586 goto vmgexit_err; 1587 if (ghcb_get_rax(ghcb) == 0xd) 1588 if (!ghcb_xcr0_is_valid(ghcb)) 1589 goto vmgexit_err; 1590 break; 1591 case SVM_EXIT_INVD: 1592 break; 1593 case SVM_EXIT_IOIO: 1594 if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) { 1595 if (!ghcb_sw_scratch_is_valid(ghcb)) 1596 goto vmgexit_err; 1597 } else { 1598 if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK)) 1599 if (!ghcb_rax_is_valid(ghcb)) 1600 goto vmgexit_err; 1601 } 1602 break; 1603 case SVM_EXIT_MSR: 1604 if (!ghcb_rcx_is_valid(ghcb)) 1605 goto vmgexit_err; 1606 if (ghcb_get_sw_exit_info_1(ghcb)) { 1607 if (!ghcb_rax_is_valid(ghcb) || 1608 !ghcb_rdx_is_valid(ghcb)) 1609 goto vmgexit_err; 1610 } 1611 break; 1612 case SVM_EXIT_VMMCALL: 1613 if (!ghcb_rax_is_valid(ghcb) || 1614 !ghcb_cpl_is_valid(ghcb)) 1615 goto vmgexit_err; 1616 break; 1617 case SVM_EXIT_RDTSCP: 1618 break; 1619 case SVM_EXIT_WBINVD: 1620 break; 1621 case SVM_EXIT_MONITOR: 1622 if (!ghcb_rax_is_valid(ghcb) || 1623 !ghcb_rcx_is_valid(ghcb) || 1624 !ghcb_rdx_is_valid(ghcb)) 1625 goto vmgexit_err; 1626 break; 1627 case SVM_EXIT_MWAIT: 1628 if (!ghcb_rax_is_valid(ghcb) || 1629 !ghcb_rcx_is_valid(ghcb)) 1630 goto vmgexit_err; 1631 break; 1632 case SVM_VMGEXIT_MMIO_READ: 1633 case SVM_VMGEXIT_MMIO_WRITE: 1634 if (!ghcb_sw_scratch_is_valid(ghcb)) 1635 goto vmgexit_err; 1636 break; 1637 case SVM_VMGEXIT_NMI_COMPLETE: 1638 case SVM_VMGEXIT_AP_HLT_LOOP: 1639 case SVM_VMGEXIT_AP_JUMP_TABLE: 1640 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 1641 break; 1642 default: 1643 goto vmgexit_err; 1644 } 1645 1646 return 0; 1647 1648 vmgexit_err: 1649 vcpu = &svm->vcpu; 1650 1651 if (ghcb->ghcb_usage) { 1652 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 1653 ghcb->ghcb_usage); 1654 } else { 1655 vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n", 1656 exit_code); 1657 dump_ghcb(svm); 1658 } 1659 1660 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1661 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 1662 vcpu->run->internal.ndata = 2; 1663 vcpu->run->internal.data[0] = exit_code; 1664 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 1665 1666 return -EINVAL; 1667 } 1668 1669 static void pre_sev_es_run(struct vcpu_svm *svm) 1670 { 1671 if (!svm->ghcb) 1672 return; 1673 1674 if (svm->ghcb_sa_free) { 1675 /* 1676 * The scratch area lives outside the GHCB, so there is a 1677 * buffer that, depending on the operation performed, may 1678 * need to be synced, then freed. 1679 */ 1680 if (svm->ghcb_sa_sync) { 1681 kvm_write_guest(svm->vcpu.kvm, 1682 ghcb_get_sw_scratch(svm->ghcb), 1683 svm->ghcb_sa, svm->ghcb_sa_len); 1684 svm->ghcb_sa_sync = false; 1685 } 1686 1687 kfree(svm->ghcb_sa); 1688 svm->ghcb_sa = NULL; 1689 svm->ghcb_sa_free = false; 1690 } 1691 1692 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->ghcb); 1693 1694 sev_es_sync_to_ghcb(svm); 1695 1696 kvm_vcpu_unmap(&svm->vcpu, &svm->ghcb_map, true); 1697 svm->ghcb = NULL; 1698 } 1699 1700 void pre_sev_run(struct vcpu_svm *svm, int cpu) 1701 { 1702 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 1703 int asid = sev_get_asid(svm->vcpu.kvm); 1704 1705 /* Perform any SEV-ES pre-run actions */ 1706 pre_sev_es_run(svm); 1707 1708 /* Assign the asid allocated with this SEV guest */ 1709 svm->asid = asid; 1710 1711 /* 1712 * Flush guest TLB: 1713 * 1714 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 1715 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 1716 */ 1717 if (sd->sev_vmcbs[asid] == svm->vmcb && 1718 svm->vcpu.arch.last_vmentry_cpu == cpu) 1719 return; 1720 1721 sd->sev_vmcbs[asid] = svm->vmcb; 1722 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 1723 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1724 } 1725 1726 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 1727 static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 1728 { 1729 struct vmcb_control_area *control = &svm->vmcb->control; 1730 struct ghcb *ghcb = svm->ghcb; 1731 u64 ghcb_scratch_beg, ghcb_scratch_end; 1732 u64 scratch_gpa_beg, scratch_gpa_end; 1733 void *scratch_va; 1734 1735 scratch_gpa_beg = ghcb_get_sw_scratch(ghcb); 1736 if (!scratch_gpa_beg) { 1737 pr_err("vmgexit: scratch gpa not provided\n"); 1738 return false; 1739 } 1740 1741 scratch_gpa_end = scratch_gpa_beg + len; 1742 if (scratch_gpa_end < scratch_gpa_beg) { 1743 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 1744 len, scratch_gpa_beg); 1745 return false; 1746 } 1747 1748 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 1749 /* Scratch area begins within GHCB */ 1750 ghcb_scratch_beg = control->ghcb_gpa + 1751 offsetof(struct ghcb, shared_buffer); 1752 ghcb_scratch_end = control->ghcb_gpa + 1753 offsetof(struct ghcb, reserved_1); 1754 1755 /* 1756 * If the scratch area begins within the GHCB, it must be 1757 * completely contained in the GHCB shared buffer area. 1758 */ 1759 if (scratch_gpa_beg < ghcb_scratch_beg || 1760 scratch_gpa_end > ghcb_scratch_end) { 1761 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 1762 scratch_gpa_beg, scratch_gpa_end); 1763 return false; 1764 } 1765 1766 scratch_va = (void *)svm->ghcb; 1767 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 1768 } else { 1769 /* 1770 * The guest memory must be read into a kernel buffer, so 1771 * limit the size 1772 */ 1773 if (len > GHCB_SCRATCH_AREA_LIMIT) { 1774 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 1775 len, GHCB_SCRATCH_AREA_LIMIT); 1776 return false; 1777 } 1778 scratch_va = kzalloc(len, GFP_KERNEL); 1779 if (!scratch_va) 1780 return false; 1781 1782 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 1783 /* Unable to copy scratch area from guest */ 1784 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 1785 1786 kfree(scratch_va); 1787 return false; 1788 } 1789 1790 /* 1791 * The scratch area is outside the GHCB. The operation will 1792 * dictate whether the buffer needs to be synced before running 1793 * the vCPU next time (i.e. a read was requested so the data 1794 * must be written back to the guest memory). 1795 */ 1796 svm->ghcb_sa_sync = sync; 1797 svm->ghcb_sa_free = true; 1798 } 1799 1800 svm->ghcb_sa = scratch_va; 1801 svm->ghcb_sa_len = len; 1802 1803 return true; 1804 } 1805 1806 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 1807 unsigned int pos) 1808 { 1809 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 1810 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 1811 } 1812 1813 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 1814 { 1815 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 1816 } 1817 1818 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 1819 { 1820 svm->vmcb->control.ghcb_gpa = value; 1821 } 1822 1823 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 1824 { 1825 struct vmcb_control_area *control = &svm->vmcb->control; 1826 struct kvm_vcpu *vcpu = &svm->vcpu; 1827 u64 ghcb_info; 1828 int ret = 1; 1829 1830 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 1831 1832 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 1833 control->ghcb_gpa); 1834 1835 switch (ghcb_info) { 1836 case GHCB_MSR_SEV_INFO_REQ: 1837 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 1838 GHCB_VERSION_MIN, 1839 sev_enc_bit)); 1840 break; 1841 case GHCB_MSR_CPUID_REQ: { 1842 u64 cpuid_fn, cpuid_reg, cpuid_value; 1843 1844 cpuid_fn = get_ghcb_msr_bits(svm, 1845 GHCB_MSR_CPUID_FUNC_MASK, 1846 GHCB_MSR_CPUID_FUNC_POS); 1847 1848 /* Initialize the registers needed by the CPUID intercept */ 1849 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 1850 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 1851 1852 ret = svm_invoke_exit_handler(svm, SVM_EXIT_CPUID); 1853 if (!ret) { 1854 ret = -EINVAL; 1855 break; 1856 } 1857 1858 cpuid_reg = get_ghcb_msr_bits(svm, 1859 GHCB_MSR_CPUID_REG_MASK, 1860 GHCB_MSR_CPUID_REG_POS); 1861 if (cpuid_reg == 0) 1862 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 1863 else if (cpuid_reg == 1) 1864 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 1865 else if (cpuid_reg == 2) 1866 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 1867 else 1868 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 1869 1870 set_ghcb_msr_bits(svm, cpuid_value, 1871 GHCB_MSR_CPUID_VALUE_MASK, 1872 GHCB_MSR_CPUID_VALUE_POS); 1873 1874 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 1875 GHCB_MSR_INFO_MASK, 1876 GHCB_MSR_INFO_POS); 1877 break; 1878 } 1879 case GHCB_MSR_TERM_REQ: { 1880 u64 reason_set, reason_code; 1881 1882 reason_set = get_ghcb_msr_bits(svm, 1883 GHCB_MSR_TERM_REASON_SET_MASK, 1884 GHCB_MSR_TERM_REASON_SET_POS); 1885 reason_code = get_ghcb_msr_bits(svm, 1886 GHCB_MSR_TERM_REASON_MASK, 1887 GHCB_MSR_TERM_REASON_POS); 1888 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 1889 reason_set, reason_code); 1890 fallthrough; 1891 } 1892 default: 1893 ret = -EINVAL; 1894 } 1895 1896 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 1897 control->ghcb_gpa, ret); 1898 1899 return ret; 1900 } 1901 1902 int sev_handle_vmgexit(struct vcpu_svm *svm) 1903 { 1904 struct vmcb_control_area *control = &svm->vmcb->control; 1905 u64 ghcb_gpa, exit_code; 1906 struct ghcb *ghcb; 1907 int ret; 1908 1909 /* Validate the GHCB */ 1910 ghcb_gpa = control->ghcb_gpa; 1911 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 1912 return sev_handle_vmgexit_msr_protocol(svm); 1913 1914 if (!ghcb_gpa) { 1915 vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB gpa is not set\n"); 1916 return -EINVAL; 1917 } 1918 1919 if (kvm_vcpu_map(&svm->vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->ghcb_map)) { 1920 /* Unable to map GHCB from guest */ 1921 vcpu_unimpl(&svm->vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 1922 ghcb_gpa); 1923 return -EINVAL; 1924 } 1925 1926 svm->ghcb = svm->ghcb_map.hva; 1927 ghcb = svm->ghcb_map.hva; 1928 1929 trace_kvm_vmgexit_enter(svm->vcpu.vcpu_id, ghcb); 1930 1931 exit_code = ghcb_get_sw_exit_code(ghcb); 1932 1933 ret = sev_es_validate_vmgexit(svm); 1934 if (ret) 1935 return ret; 1936 1937 sev_es_sync_from_ghcb(svm); 1938 ghcb_set_sw_exit_info_1(ghcb, 0); 1939 ghcb_set_sw_exit_info_2(ghcb, 0); 1940 1941 ret = -EINVAL; 1942 switch (exit_code) { 1943 case SVM_VMGEXIT_MMIO_READ: 1944 if (!setup_vmgexit_scratch(svm, true, control->exit_info_2)) 1945 break; 1946 1947 ret = kvm_sev_es_mmio_read(&svm->vcpu, 1948 control->exit_info_1, 1949 control->exit_info_2, 1950 svm->ghcb_sa); 1951 break; 1952 case SVM_VMGEXIT_MMIO_WRITE: 1953 if (!setup_vmgexit_scratch(svm, false, control->exit_info_2)) 1954 break; 1955 1956 ret = kvm_sev_es_mmio_write(&svm->vcpu, 1957 control->exit_info_1, 1958 control->exit_info_2, 1959 svm->ghcb_sa); 1960 break; 1961 case SVM_VMGEXIT_NMI_COMPLETE: 1962 ret = svm_invoke_exit_handler(svm, SVM_EXIT_IRET); 1963 break; 1964 case SVM_VMGEXIT_AP_HLT_LOOP: 1965 ret = kvm_emulate_ap_reset_hold(&svm->vcpu); 1966 break; 1967 case SVM_VMGEXIT_AP_JUMP_TABLE: { 1968 struct kvm_sev_info *sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info; 1969 1970 switch (control->exit_info_1) { 1971 case 0: 1972 /* Set AP jump table address */ 1973 sev->ap_jump_table = control->exit_info_2; 1974 break; 1975 case 1: 1976 /* Get AP jump table address */ 1977 ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table); 1978 break; 1979 default: 1980 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 1981 control->exit_info_1); 1982 ghcb_set_sw_exit_info_1(ghcb, 1); 1983 ghcb_set_sw_exit_info_2(ghcb, 1984 X86_TRAP_UD | 1985 SVM_EVTINJ_TYPE_EXEPT | 1986 SVM_EVTINJ_VALID); 1987 } 1988 1989 ret = 1; 1990 break; 1991 } 1992 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 1993 vcpu_unimpl(&svm->vcpu, 1994 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 1995 control->exit_info_1, control->exit_info_2); 1996 break; 1997 default: 1998 ret = svm_invoke_exit_handler(svm, exit_code); 1999 } 2000 2001 return ret; 2002 } 2003 2004 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 2005 { 2006 if (!setup_vmgexit_scratch(svm, in, svm->vmcb->control.exit_info_2)) 2007 return -EINVAL; 2008 2009 return kvm_sev_es_string_io(&svm->vcpu, size, port, 2010 svm->ghcb_sa, svm->ghcb_sa_len, in); 2011 } 2012 2013 void sev_es_init_vmcb(struct vcpu_svm *svm) 2014 { 2015 struct kvm_vcpu *vcpu = &svm->vcpu; 2016 2017 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 2018 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 2019 2020 /* 2021 * An SEV-ES guest requires a VMSA area that is a separate from the 2022 * VMCB page. Do not include the encryption mask on the VMSA physical 2023 * address since hardware will access it using the guest key. 2024 */ 2025 svm->vmcb->control.vmsa_pa = __pa(svm->vmsa); 2026 2027 /* Can't intercept CR register access, HV can't modify CR registers */ 2028 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 2029 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 2030 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 2031 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 2032 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 2033 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 2034 2035 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 2036 2037 /* Track EFER/CR register changes */ 2038 svm_set_intercept(svm, TRAP_EFER_WRITE); 2039 svm_set_intercept(svm, TRAP_CR0_WRITE); 2040 svm_set_intercept(svm, TRAP_CR4_WRITE); 2041 svm_set_intercept(svm, TRAP_CR8_WRITE); 2042 2043 /* No support for enable_vmware_backdoor */ 2044 clr_exception_intercept(svm, GP_VECTOR); 2045 2046 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 2047 svm_clr_intercept(svm, INTERCEPT_XSETBV); 2048 2049 /* Clear intercepts on selected MSRs */ 2050 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); 2051 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); 2052 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 2053 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 2054 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 2055 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 2056 } 2057 2058 void sev_es_create_vcpu(struct vcpu_svm *svm) 2059 { 2060 /* 2061 * Set the GHCB MSR value as per the GHCB specification when creating 2062 * a vCPU for an SEV-ES guest. 2063 */ 2064 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2065 GHCB_VERSION_MIN, 2066 sev_enc_bit)); 2067 } 2068 2069 void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu) 2070 { 2071 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 2072 struct vmcb_save_area *hostsa; 2073 2074 /* 2075 * As an SEV-ES guest, hardware will restore the host state on VMEXIT, 2076 * of which one step is to perform a VMLOAD. Since hardware does not 2077 * perform a VMSAVE on VMRUN, the host savearea must be updated. 2078 */ 2079 vmsave(__sme_page_pa(sd->save_area)); 2080 2081 /* XCR0 is restored on VMEXIT, save the current host value */ 2082 hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400); 2083 hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 2084 2085 /* PKRU is restored on VMEXIT, save the curent host value */ 2086 hostsa->pkru = read_pkru(); 2087 2088 /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */ 2089 hostsa->xss = host_xss; 2090 } 2091 2092 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 2093 { 2094 struct vcpu_svm *svm = to_svm(vcpu); 2095 2096 /* First SIPI: Use the values as initially set by the VMM */ 2097 if (!svm->received_first_sipi) { 2098 svm->received_first_sipi = true; 2099 return; 2100 } 2101 2102 /* 2103 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where 2104 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a 2105 * non-zero value. 2106 */ 2107 ghcb_set_sw_exit_info_2(svm->ghcb, 1); 2108 } 2109