xref: /openbmc/linux/arch/x86/kvm/svm/sev.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9 
10 #include <linux/kvm_types.h>
11 #include <linux/kvm_host.h>
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/psp-sev.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 
18 #include "x86.h"
19 #include "svm.h"
20 
21 static int sev_flush_asids(void);
22 static DECLARE_RWSEM(sev_deactivate_lock);
23 static DEFINE_MUTEX(sev_bitmap_lock);
24 unsigned int max_sev_asid;
25 static unsigned int min_sev_asid;
26 static unsigned long *sev_asid_bitmap;
27 static unsigned long *sev_reclaim_asid_bitmap;
28 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
29 
30 struct enc_region {
31 	struct list_head list;
32 	unsigned long npages;
33 	struct page **pages;
34 	unsigned long uaddr;
35 	unsigned long size;
36 };
37 
38 static int sev_flush_asids(void)
39 {
40 	int ret, error = 0;
41 
42 	/*
43 	 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
44 	 * so it must be guarded.
45 	 */
46 	down_write(&sev_deactivate_lock);
47 
48 	wbinvd_on_all_cpus();
49 	ret = sev_guest_df_flush(&error);
50 
51 	up_write(&sev_deactivate_lock);
52 
53 	if (ret)
54 		pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
55 
56 	return ret;
57 }
58 
59 /* Must be called with the sev_bitmap_lock held */
60 static bool __sev_recycle_asids(void)
61 {
62 	int pos;
63 
64 	/* Check if there are any ASIDs to reclaim before performing a flush */
65 	pos = find_next_bit(sev_reclaim_asid_bitmap,
66 			    max_sev_asid, min_sev_asid - 1);
67 	if (pos >= max_sev_asid)
68 		return false;
69 
70 	if (sev_flush_asids())
71 		return false;
72 
73 	bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
74 		   max_sev_asid);
75 	bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid);
76 
77 	return true;
78 }
79 
80 static int sev_asid_new(void)
81 {
82 	bool retry = true;
83 	int pos;
84 
85 	mutex_lock(&sev_bitmap_lock);
86 
87 	/*
88 	 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
89 	 */
90 again:
91 	pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
92 	if (pos >= max_sev_asid) {
93 		if (retry && __sev_recycle_asids()) {
94 			retry = false;
95 			goto again;
96 		}
97 		mutex_unlock(&sev_bitmap_lock);
98 		return -EBUSY;
99 	}
100 
101 	__set_bit(pos, sev_asid_bitmap);
102 
103 	mutex_unlock(&sev_bitmap_lock);
104 
105 	return pos + 1;
106 }
107 
108 static int sev_get_asid(struct kvm *kvm)
109 {
110 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
111 
112 	return sev->asid;
113 }
114 
115 static void sev_asid_free(int asid)
116 {
117 	struct svm_cpu_data *sd;
118 	int cpu, pos;
119 
120 	mutex_lock(&sev_bitmap_lock);
121 
122 	pos = asid - 1;
123 	__set_bit(pos, sev_reclaim_asid_bitmap);
124 
125 	for_each_possible_cpu(cpu) {
126 		sd = per_cpu(svm_data, cpu);
127 		sd->sev_vmcbs[pos] = NULL;
128 	}
129 
130 	mutex_unlock(&sev_bitmap_lock);
131 }
132 
133 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
134 {
135 	struct sev_data_decommission *decommission;
136 	struct sev_data_deactivate *data;
137 
138 	if (!handle)
139 		return;
140 
141 	data = kzalloc(sizeof(*data), GFP_KERNEL);
142 	if (!data)
143 		return;
144 
145 	/* deactivate handle */
146 	data->handle = handle;
147 
148 	/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
149 	down_read(&sev_deactivate_lock);
150 	sev_guest_deactivate(data, NULL);
151 	up_read(&sev_deactivate_lock);
152 
153 	kfree(data);
154 
155 	decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
156 	if (!decommission)
157 		return;
158 
159 	/* decommission handle */
160 	decommission->handle = handle;
161 	sev_guest_decommission(decommission, NULL);
162 
163 	kfree(decommission);
164 }
165 
166 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
167 {
168 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
169 	int asid, ret;
170 
171 	ret = -EBUSY;
172 	if (unlikely(sev->active))
173 		return ret;
174 
175 	asid = sev_asid_new();
176 	if (asid < 0)
177 		return ret;
178 
179 	ret = sev_platform_init(&argp->error);
180 	if (ret)
181 		goto e_free;
182 
183 	sev->active = true;
184 	sev->asid = asid;
185 	INIT_LIST_HEAD(&sev->regions_list);
186 
187 	return 0;
188 
189 e_free:
190 	sev_asid_free(asid);
191 	return ret;
192 }
193 
194 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
195 {
196 	struct sev_data_activate *data;
197 	int asid = sev_get_asid(kvm);
198 	int ret;
199 
200 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
201 	if (!data)
202 		return -ENOMEM;
203 
204 	/* activate ASID on the given handle */
205 	data->handle = handle;
206 	data->asid   = asid;
207 	ret = sev_guest_activate(data, error);
208 	kfree(data);
209 
210 	return ret;
211 }
212 
213 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
214 {
215 	struct fd f;
216 	int ret;
217 
218 	f = fdget(fd);
219 	if (!f.file)
220 		return -EBADF;
221 
222 	ret = sev_issue_cmd_external_user(f.file, id, data, error);
223 
224 	fdput(f);
225 	return ret;
226 }
227 
228 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
229 {
230 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
231 
232 	return __sev_issue_cmd(sev->fd, id, data, error);
233 }
234 
235 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
236 {
237 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238 	struct sev_data_launch_start *start;
239 	struct kvm_sev_launch_start params;
240 	void *dh_blob, *session_blob;
241 	int *error = &argp->error;
242 	int ret;
243 
244 	if (!sev_guest(kvm))
245 		return -ENOTTY;
246 
247 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
248 		return -EFAULT;
249 
250 	start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
251 	if (!start)
252 		return -ENOMEM;
253 
254 	dh_blob = NULL;
255 	if (params.dh_uaddr) {
256 		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
257 		if (IS_ERR(dh_blob)) {
258 			ret = PTR_ERR(dh_blob);
259 			goto e_free;
260 		}
261 
262 		start->dh_cert_address = __sme_set(__pa(dh_blob));
263 		start->dh_cert_len = params.dh_len;
264 	}
265 
266 	session_blob = NULL;
267 	if (params.session_uaddr) {
268 		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
269 		if (IS_ERR(session_blob)) {
270 			ret = PTR_ERR(session_blob);
271 			goto e_free_dh;
272 		}
273 
274 		start->session_address = __sme_set(__pa(session_blob));
275 		start->session_len = params.session_len;
276 	}
277 
278 	start->handle = params.handle;
279 	start->policy = params.policy;
280 
281 	/* create memory encryption context */
282 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
283 	if (ret)
284 		goto e_free_session;
285 
286 	/* Bind ASID to this guest */
287 	ret = sev_bind_asid(kvm, start->handle, error);
288 	if (ret)
289 		goto e_free_session;
290 
291 	/* return handle to userspace */
292 	params.handle = start->handle;
293 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
294 		sev_unbind_asid(kvm, start->handle);
295 		ret = -EFAULT;
296 		goto e_free_session;
297 	}
298 
299 	sev->handle = start->handle;
300 	sev->fd = argp->sev_fd;
301 
302 e_free_session:
303 	kfree(session_blob);
304 e_free_dh:
305 	kfree(dh_blob);
306 e_free:
307 	kfree(start);
308 	return ret;
309 }
310 
311 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
312 				    unsigned long ulen, unsigned long *n,
313 				    int write)
314 {
315 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
316 	unsigned long npages, size;
317 	int npinned;
318 	unsigned long locked, lock_limit;
319 	struct page **pages;
320 	unsigned long first, last;
321 	int ret;
322 
323 	if (ulen == 0 || uaddr + ulen < uaddr)
324 		return ERR_PTR(-EINVAL);
325 
326 	/* Calculate number of pages. */
327 	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
328 	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
329 	npages = (last - first + 1);
330 
331 	locked = sev->pages_locked + npages;
332 	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
333 	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
334 		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
335 		return ERR_PTR(-ENOMEM);
336 	}
337 
338 	if (WARN_ON_ONCE(npages > INT_MAX))
339 		return ERR_PTR(-EINVAL);
340 
341 	/* Avoid using vmalloc for smaller buffers. */
342 	size = npages * sizeof(struct page *);
343 	if (size > PAGE_SIZE)
344 		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
345 	else
346 		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
347 
348 	if (!pages)
349 		return ERR_PTR(-ENOMEM);
350 
351 	/* Pin the user virtual address. */
352 	npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
353 	if (npinned != npages) {
354 		pr_err("SEV: Failure locking %lu pages.\n", npages);
355 		ret = -ENOMEM;
356 		goto err;
357 	}
358 
359 	*n = npages;
360 	sev->pages_locked = locked;
361 
362 	return pages;
363 
364 err:
365 	if (npinned > 0)
366 		unpin_user_pages(pages, npinned);
367 
368 	kvfree(pages);
369 	return ERR_PTR(ret);
370 }
371 
372 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
373 			     unsigned long npages)
374 {
375 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
376 
377 	unpin_user_pages(pages, npages);
378 	kvfree(pages);
379 	sev->pages_locked -= npages;
380 }
381 
382 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
383 {
384 	uint8_t *page_virtual;
385 	unsigned long i;
386 
387 	if (npages == 0 || pages == NULL)
388 		return;
389 
390 	for (i = 0; i < npages; i++) {
391 		page_virtual = kmap_atomic(pages[i]);
392 		clflush_cache_range(page_virtual, PAGE_SIZE);
393 		kunmap_atomic(page_virtual);
394 	}
395 }
396 
397 static unsigned long get_num_contig_pages(unsigned long idx,
398 				struct page **inpages, unsigned long npages)
399 {
400 	unsigned long paddr, next_paddr;
401 	unsigned long i = idx + 1, pages = 1;
402 
403 	/* find the number of contiguous pages starting from idx */
404 	paddr = __sme_page_pa(inpages[idx]);
405 	while (i < npages) {
406 		next_paddr = __sme_page_pa(inpages[i++]);
407 		if ((paddr + PAGE_SIZE) == next_paddr) {
408 			pages++;
409 			paddr = next_paddr;
410 			continue;
411 		}
412 		break;
413 	}
414 
415 	return pages;
416 }
417 
418 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
419 {
420 	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
421 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
422 	struct kvm_sev_launch_update_data params;
423 	struct sev_data_launch_update_data *data;
424 	struct page **inpages;
425 	int ret;
426 
427 	if (!sev_guest(kvm))
428 		return -ENOTTY;
429 
430 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
431 		return -EFAULT;
432 
433 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
434 	if (!data)
435 		return -ENOMEM;
436 
437 	vaddr = params.uaddr;
438 	size = params.len;
439 	vaddr_end = vaddr + size;
440 
441 	/* Lock the user memory. */
442 	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
443 	if (IS_ERR(inpages)) {
444 		ret = PTR_ERR(inpages);
445 		goto e_free;
446 	}
447 
448 	/*
449 	 * The LAUNCH_UPDATE command will perform in-place encryption of the
450 	 * memory content (i.e it will write the same memory region with C=1).
451 	 * It's possible that the cache may contain the data with C=0, i.e.,
452 	 * unencrypted so invalidate it first.
453 	 */
454 	sev_clflush_pages(inpages, npages);
455 
456 	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
457 		int offset, len;
458 
459 		/*
460 		 * If the user buffer is not page-aligned, calculate the offset
461 		 * within the page.
462 		 */
463 		offset = vaddr & (PAGE_SIZE - 1);
464 
465 		/* Calculate the number of pages that can be encrypted in one go. */
466 		pages = get_num_contig_pages(i, inpages, npages);
467 
468 		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
469 
470 		data->handle = sev->handle;
471 		data->len = len;
472 		data->address = __sme_page_pa(inpages[i]) + offset;
473 		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
474 		if (ret)
475 			goto e_unpin;
476 
477 		size -= len;
478 		next_vaddr = vaddr + len;
479 	}
480 
481 e_unpin:
482 	/* content of memory is updated, mark pages dirty */
483 	for (i = 0; i < npages; i++) {
484 		set_page_dirty_lock(inpages[i]);
485 		mark_page_accessed(inpages[i]);
486 	}
487 	/* unlock the user pages */
488 	sev_unpin_memory(kvm, inpages, npages);
489 e_free:
490 	kfree(data);
491 	return ret;
492 }
493 
494 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
495 {
496 	void __user *measure = (void __user *)(uintptr_t)argp->data;
497 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
498 	struct sev_data_launch_measure *data;
499 	struct kvm_sev_launch_measure params;
500 	void __user *p = NULL;
501 	void *blob = NULL;
502 	int ret;
503 
504 	if (!sev_guest(kvm))
505 		return -ENOTTY;
506 
507 	if (copy_from_user(&params, measure, sizeof(params)))
508 		return -EFAULT;
509 
510 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
511 	if (!data)
512 		return -ENOMEM;
513 
514 	/* User wants to query the blob length */
515 	if (!params.len)
516 		goto cmd;
517 
518 	p = (void __user *)(uintptr_t)params.uaddr;
519 	if (p) {
520 		if (params.len > SEV_FW_BLOB_MAX_SIZE) {
521 			ret = -EINVAL;
522 			goto e_free;
523 		}
524 
525 		ret = -ENOMEM;
526 		blob = kmalloc(params.len, GFP_KERNEL);
527 		if (!blob)
528 			goto e_free;
529 
530 		data->address = __psp_pa(blob);
531 		data->len = params.len;
532 	}
533 
534 cmd:
535 	data->handle = sev->handle;
536 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
537 
538 	/*
539 	 * If we query the session length, FW responded with expected data.
540 	 */
541 	if (!params.len)
542 		goto done;
543 
544 	if (ret)
545 		goto e_free_blob;
546 
547 	if (blob) {
548 		if (copy_to_user(p, blob, params.len))
549 			ret = -EFAULT;
550 	}
551 
552 done:
553 	params.len = data->len;
554 	if (copy_to_user(measure, &params, sizeof(params)))
555 		ret = -EFAULT;
556 e_free_blob:
557 	kfree(blob);
558 e_free:
559 	kfree(data);
560 	return ret;
561 }
562 
563 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
564 {
565 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
566 	struct sev_data_launch_finish *data;
567 	int ret;
568 
569 	if (!sev_guest(kvm))
570 		return -ENOTTY;
571 
572 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
573 	if (!data)
574 		return -ENOMEM;
575 
576 	data->handle = sev->handle;
577 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
578 
579 	kfree(data);
580 	return ret;
581 }
582 
583 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
584 {
585 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
586 	struct kvm_sev_guest_status params;
587 	struct sev_data_guest_status *data;
588 	int ret;
589 
590 	if (!sev_guest(kvm))
591 		return -ENOTTY;
592 
593 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
594 	if (!data)
595 		return -ENOMEM;
596 
597 	data->handle = sev->handle;
598 	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
599 	if (ret)
600 		goto e_free;
601 
602 	params.policy = data->policy;
603 	params.state = data->state;
604 	params.handle = data->handle;
605 
606 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
607 		ret = -EFAULT;
608 e_free:
609 	kfree(data);
610 	return ret;
611 }
612 
613 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
614 			       unsigned long dst, int size,
615 			       int *error, bool enc)
616 {
617 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
618 	struct sev_data_dbg *data;
619 	int ret;
620 
621 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
622 	if (!data)
623 		return -ENOMEM;
624 
625 	data->handle = sev->handle;
626 	data->dst_addr = dst;
627 	data->src_addr = src;
628 	data->len = size;
629 
630 	ret = sev_issue_cmd(kvm,
631 			    enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
632 			    data, error);
633 	kfree(data);
634 	return ret;
635 }
636 
637 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
638 			     unsigned long dst_paddr, int sz, int *err)
639 {
640 	int offset;
641 
642 	/*
643 	 * Its safe to read more than we are asked, caller should ensure that
644 	 * destination has enough space.
645 	 */
646 	src_paddr = round_down(src_paddr, 16);
647 	offset = src_paddr & 15;
648 	sz = round_up(sz + offset, 16);
649 
650 	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
651 }
652 
653 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
654 				  unsigned long __user dst_uaddr,
655 				  unsigned long dst_paddr,
656 				  int size, int *err)
657 {
658 	struct page *tpage = NULL;
659 	int ret, offset;
660 
661 	/* if inputs are not 16-byte then use intermediate buffer */
662 	if (!IS_ALIGNED(dst_paddr, 16) ||
663 	    !IS_ALIGNED(paddr,     16) ||
664 	    !IS_ALIGNED(size,      16)) {
665 		tpage = (void *)alloc_page(GFP_KERNEL);
666 		if (!tpage)
667 			return -ENOMEM;
668 
669 		dst_paddr = __sme_page_pa(tpage);
670 	}
671 
672 	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
673 	if (ret)
674 		goto e_free;
675 
676 	if (tpage) {
677 		offset = paddr & 15;
678 		if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
679 				 page_address(tpage) + offset, size))
680 			ret = -EFAULT;
681 	}
682 
683 e_free:
684 	if (tpage)
685 		__free_page(tpage);
686 
687 	return ret;
688 }
689 
690 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
691 				  unsigned long __user vaddr,
692 				  unsigned long dst_paddr,
693 				  unsigned long __user dst_vaddr,
694 				  int size, int *error)
695 {
696 	struct page *src_tpage = NULL;
697 	struct page *dst_tpage = NULL;
698 	int ret, len = size;
699 
700 	/* If source buffer is not aligned then use an intermediate buffer */
701 	if (!IS_ALIGNED(vaddr, 16)) {
702 		src_tpage = alloc_page(GFP_KERNEL);
703 		if (!src_tpage)
704 			return -ENOMEM;
705 
706 		if (copy_from_user(page_address(src_tpage),
707 				(void __user *)(uintptr_t)vaddr, size)) {
708 			__free_page(src_tpage);
709 			return -EFAULT;
710 		}
711 
712 		paddr = __sme_page_pa(src_tpage);
713 	}
714 
715 	/*
716 	 *  If destination buffer or length is not aligned then do read-modify-write:
717 	 *   - decrypt destination in an intermediate buffer
718 	 *   - copy the source buffer in an intermediate buffer
719 	 *   - use the intermediate buffer as source buffer
720 	 */
721 	if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
722 		int dst_offset;
723 
724 		dst_tpage = alloc_page(GFP_KERNEL);
725 		if (!dst_tpage) {
726 			ret = -ENOMEM;
727 			goto e_free;
728 		}
729 
730 		ret = __sev_dbg_decrypt(kvm, dst_paddr,
731 					__sme_page_pa(dst_tpage), size, error);
732 		if (ret)
733 			goto e_free;
734 
735 		/*
736 		 *  If source is kernel buffer then use memcpy() otherwise
737 		 *  copy_from_user().
738 		 */
739 		dst_offset = dst_paddr & 15;
740 
741 		if (src_tpage)
742 			memcpy(page_address(dst_tpage) + dst_offset,
743 			       page_address(src_tpage), size);
744 		else {
745 			if (copy_from_user(page_address(dst_tpage) + dst_offset,
746 					   (void __user *)(uintptr_t)vaddr, size)) {
747 				ret = -EFAULT;
748 				goto e_free;
749 			}
750 		}
751 
752 		paddr = __sme_page_pa(dst_tpage);
753 		dst_paddr = round_down(dst_paddr, 16);
754 		len = round_up(size, 16);
755 	}
756 
757 	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
758 
759 e_free:
760 	if (src_tpage)
761 		__free_page(src_tpage);
762 	if (dst_tpage)
763 		__free_page(dst_tpage);
764 	return ret;
765 }
766 
767 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
768 {
769 	unsigned long vaddr, vaddr_end, next_vaddr;
770 	unsigned long dst_vaddr;
771 	struct page **src_p, **dst_p;
772 	struct kvm_sev_dbg debug;
773 	unsigned long n;
774 	unsigned int size;
775 	int ret;
776 
777 	if (!sev_guest(kvm))
778 		return -ENOTTY;
779 
780 	if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
781 		return -EFAULT;
782 
783 	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
784 		return -EINVAL;
785 	if (!debug.dst_uaddr)
786 		return -EINVAL;
787 
788 	vaddr = debug.src_uaddr;
789 	size = debug.len;
790 	vaddr_end = vaddr + size;
791 	dst_vaddr = debug.dst_uaddr;
792 
793 	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
794 		int len, s_off, d_off;
795 
796 		/* lock userspace source and destination page */
797 		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
798 		if (IS_ERR(src_p))
799 			return PTR_ERR(src_p);
800 
801 		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
802 		if (IS_ERR(dst_p)) {
803 			sev_unpin_memory(kvm, src_p, n);
804 			return PTR_ERR(dst_p);
805 		}
806 
807 		/*
808 		 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
809 		 * memory content (i.e it will write the same memory region with C=1).
810 		 * It's possible that the cache may contain the data with C=0, i.e.,
811 		 * unencrypted so invalidate it first.
812 		 */
813 		sev_clflush_pages(src_p, 1);
814 		sev_clflush_pages(dst_p, 1);
815 
816 		/*
817 		 * Since user buffer may not be page aligned, calculate the
818 		 * offset within the page.
819 		 */
820 		s_off = vaddr & ~PAGE_MASK;
821 		d_off = dst_vaddr & ~PAGE_MASK;
822 		len = min_t(size_t, (PAGE_SIZE - s_off), size);
823 
824 		if (dec)
825 			ret = __sev_dbg_decrypt_user(kvm,
826 						     __sme_page_pa(src_p[0]) + s_off,
827 						     dst_vaddr,
828 						     __sme_page_pa(dst_p[0]) + d_off,
829 						     len, &argp->error);
830 		else
831 			ret = __sev_dbg_encrypt_user(kvm,
832 						     __sme_page_pa(src_p[0]) + s_off,
833 						     vaddr,
834 						     __sme_page_pa(dst_p[0]) + d_off,
835 						     dst_vaddr,
836 						     len, &argp->error);
837 
838 		sev_unpin_memory(kvm, src_p, n);
839 		sev_unpin_memory(kvm, dst_p, n);
840 
841 		if (ret)
842 			goto err;
843 
844 		next_vaddr = vaddr + len;
845 		dst_vaddr = dst_vaddr + len;
846 		size -= len;
847 	}
848 err:
849 	return ret;
850 }
851 
852 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
853 {
854 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
855 	struct sev_data_launch_secret *data;
856 	struct kvm_sev_launch_secret params;
857 	struct page **pages;
858 	void *blob, *hdr;
859 	unsigned long n;
860 	int ret, offset;
861 
862 	if (!sev_guest(kvm))
863 		return -ENOTTY;
864 
865 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
866 		return -EFAULT;
867 
868 	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
869 	if (IS_ERR(pages))
870 		return PTR_ERR(pages);
871 
872 	/*
873 	 * The secret must be copied into contiguous memory region, lets verify
874 	 * that userspace memory pages are contiguous before we issue command.
875 	 */
876 	if (get_num_contig_pages(0, pages, n) != n) {
877 		ret = -EINVAL;
878 		goto e_unpin_memory;
879 	}
880 
881 	ret = -ENOMEM;
882 	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
883 	if (!data)
884 		goto e_unpin_memory;
885 
886 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
887 	data->guest_address = __sme_page_pa(pages[0]) + offset;
888 	data->guest_len = params.guest_len;
889 
890 	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
891 	if (IS_ERR(blob)) {
892 		ret = PTR_ERR(blob);
893 		goto e_free;
894 	}
895 
896 	data->trans_address = __psp_pa(blob);
897 	data->trans_len = params.trans_len;
898 
899 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
900 	if (IS_ERR(hdr)) {
901 		ret = PTR_ERR(hdr);
902 		goto e_free_blob;
903 	}
904 	data->hdr_address = __psp_pa(hdr);
905 	data->hdr_len = params.hdr_len;
906 
907 	data->handle = sev->handle;
908 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
909 
910 	kfree(hdr);
911 
912 e_free_blob:
913 	kfree(blob);
914 e_free:
915 	kfree(data);
916 e_unpin_memory:
917 	sev_unpin_memory(kvm, pages, n);
918 	return ret;
919 }
920 
921 int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
922 {
923 	struct kvm_sev_cmd sev_cmd;
924 	int r;
925 
926 	if (!svm_sev_enabled())
927 		return -ENOTTY;
928 
929 	if (!argp)
930 		return 0;
931 
932 	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
933 		return -EFAULT;
934 
935 	mutex_lock(&kvm->lock);
936 
937 	switch (sev_cmd.id) {
938 	case KVM_SEV_INIT:
939 		r = sev_guest_init(kvm, &sev_cmd);
940 		break;
941 	case KVM_SEV_LAUNCH_START:
942 		r = sev_launch_start(kvm, &sev_cmd);
943 		break;
944 	case KVM_SEV_LAUNCH_UPDATE_DATA:
945 		r = sev_launch_update_data(kvm, &sev_cmd);
946 		break;
947 	case KVM_SEV_LAUNCH_MEASURE:
948 		r = sev_launch_measure(kvm, &sev_cmd);
949 		break;
950 	case KVM_SEV_LAUNCH_FINISH:
951 		r = sev_launch_finish(kvm, &sev_cmd);
952 		break;
953 	case KVM_SEV_GUEST_STATUS:
954 		r = sev_guest_status(kvm, &sev_cmd);
955 		break;
956 	case KVM_SEV_DBG_DECRYPT:
957 		r = sev_dbg_crypt(kvm, &sev_cmd, true);
958 		break;
959 	case KVM_SEV_DBG_ENCRYPT:
960 		r = sev_dbg_crypt(kvm, &sev_cmd, false);
961 		break;
962 	case KVM_SEV_LAUNCH_SECRET:
963 		r = sev_launch_secret(kvm, &sev_cmd);
964 		break;
965 	default:
966 		r = -EINVAL;
967 		goto out;
968 	}
969 
970 	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
971 		r = -EFAULT;
972 
973 out:
974 	mutex_unlock(&kvm->lock);
975 	return r;
976 }
977 
978 int svm_register_enc_region(struct kvm *kvm,
979 			    struct kvm_enc_region *range)
980 {
981 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
982 	struct enc_region *region;
983 	int ret = 0;
984 
985 	if (!sev_guest(kvm))
986 		return -ENOTTY;
987 
988 	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
989 		return -EINVAL;
990 
991 	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
992 	if (!region)
993 		return -ENOMEM;
994 
995 	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
996 	if (IS_ERR(region->pages)) {
997 		ret = PTR_ERR(region->pages);
998 		goto e_free;
999 	}
1000 
1001 	/*
1002 	 * The guest may change the memory encryption attribute from C=0 -> C=1
1003 	 * or vice versa for this memory range. Lets make sure caches are
1004 	 * flushed to ensure that guest data gets written into memory with
1005 	 * correct C-bit.
1006 	 */
1007 	sev_clflush_pages(region->pages, region->npages);
1008 
1009 	region->uaddr = range->addr;
1010 	region->size = range->size;
1011 
1012 	mutex_lock(&kvm->lock);
1013 	list_add_tail(&region->list, &sev->regions_list);
1014 	mutex_unlock(&kvm->lock);
1015 
1016 	return ret;
1017 
1018 e_free:
1019 	kfree(region);
1020 	return ret;
1021 }
1022 
1023 static struct enc_region *
1024 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1025 {
1026 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1027 	struct list_head *head = &sev->regions_list;
1028 	struct enc_region *i;
1029 
1030 	list_for_each_entry(i, head, list) {
1031 		if (i->uaddr == range->addr &&
1032 		    i->size == range->size)
1033 			return i;
1034 	}
1035 
1036 	return NULL;
1037 }
1038 
1039 static void __unregister_enc_region_locked(struct kvm *kvm,
1040 					   struct enc_region *region)
1041 {
1042 	sev_unpin_memory(kvm, region->pages, region->npages);
1043 	list_del(&region->list);
1044 	kfree(region);
1045 }
1046 
1047 int svm_unregister_enc_region(struct kvm *kvm,
1048 			      struct kvm_enc_region *range)
1049 {
1050 	struct enc_region *region;
1051 	int ret;
1052 
1053 	mutex_lock(&kvm->lock);
1054 
1055 	if (!sev_guest(kvm)) {
1056 		ret = -ENOTTY;
1057 		goto failed;
1058 	}
1059 
1060 	region = find_enc_region(kvm, range);
1061 	if (!region) {
1062 		ret = -EINVAL;
1063 		goto failed;
1064 	}
1065 
1066 	/*
1067 	 * Ensure that all guest tagged cache entries are flushed before
1068 	 * releasing the pages back to the system for use. CLFLUSH will
1069 	 * not do this, so issue a WBINVD.
1070 	 */
1071 	wbinvd_on_all_cpus();
1072 
1073 	__unregister_enc_region_locked(kvm, region);
1074 
1075 	mutex_unlock(&kvm->lock);
1076 	return 0;
1077 
1078 failed:
1079 	mutex_unlock(&kvm->lock);
1080 	return ret;
1081 }
1082 
1083 void sev_vm_destroy(struct kvm *kvm)
1084 {
1085 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1086 	struct list_head *head = &sev->regions_list;
1087 	struct list_head *pos, *q;
1088 
1089 	if (!sev_guest(kvm))
1090 		return;
1091 
1092 	mutex_lock(&kvm->lock);
1093 
1094 	/*
1095 	 * Ensure that all guest tagged cache entries are flushed before
1096 	 * releasing the pages back to the system for use. CLFLUSH will
1097 	 * not do this, so issue a WBINVD.
1098 	 */
1099 	wbinvd_on_all_cpus();
1100 
1101 	/*
1102 	 * if userspace was terminated before unregistering the memory regions
1103 	 * then lets unpin all the registered memory.
1104 	 */
1105 	if (!list_empty(head)) {
1106 		list_for_each_safe(pos, q, head) {
1107 			__unregister_enc_region_locked(kvm,
1108 				list_entry(pos, struct enc_region, list));
1109 		}
1110 	}
1111 
1112 	mutex_unlock(&kvm->lock);
1113 
1114 	sev_unbind_asid(kvm, sev->handle);
1115 	sev_asid_free(sev->asid);
1116 }
1117 
1118 int __init sev_hardware_setup(void)
1119 {
1120 	struct sev_user_data_status *status;
1121 	int rc;
1122 
1123 	/* Maximum number of encrypted guests supported simultaneously */
1124 	max_sev_asid = cpuid_ecx(0x8000001F);
1125 
1126 	if (!svm_sev_enabled())
1127 		return 1;
1128 
1129 	/* Minimum ASID value that should be used for SEV guest */
1130 	min_sev_asid = cpuid_edx(0x8000001F);
1131 
1132 	/* Initialize SEV ASID bitmaps */
1133 	sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1134 	if (!sev_asid_bitmap)
1135 		return 1;
1136 
1137 	sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1138 	if (!sev_reclaim_asid_bitmap)
1139 		return 1;
1140 
1141 	status = kmalloc(sizeof(*status), GFP_KERNEL);
1142 	if (!status)
1143 		return 1;
1144 
1145 	/*
1146 	 * Check SEV platform status.
1147 	 *
1148 	 * PLATFORM_STATUS can be called in any state, if we failed to query
1149 	 * the PLATFORM status then either PSP firmware does not support SEV
1150 	 * feature or SEV firmware is dead.
1151 	 */
1152 	rc = sev_platform_status(status, NULL);
1153 	if (rc)
1154 		goto err;
1155 
1156 	pr_info("SEV supported\n");
1157 
1158 err:
1159 	kfree(status);
1160 	return rc;
1161 }
1162 
1163 void sev_hardware_teardown(void)
1164 {
1165 	if (!svm_sev_enabled())
1166 		return;
1167 
1168 	bitmap_free(sev_asid_bitmap);
1169 	bitmap_free(sev_reclaim_asid_bitmap);
1170 
1171 	sev_flush_asids();
1172 }
1173 
1174 void pre_sev_run(struct vcpu_svm *svm, int cpu)
1175 {
1176 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1177 	int asid = sev_get_asid(svm->vcpu.kvm);
1178 
1179 	/* Assign the asid allocated with this SEV guest */
1180 	svm->vmcb->control.asid = asid;
1181 
1182 	/*
1183 	 * Flush guest TLB:
1184 	 *
1185 	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
1186 	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
1187 	 */
1188 	if (sd->sev_vmcbs[asid] == svm->vmcb &&
1189 	    svm->vcpu.arch.last_vmentry_cpu == cpu)
1190 		return;
1191 
1192 	sd->sev_vmcbs[asid] = svm->vmcb;
1193 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
1194 	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1195 }
1196