1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 10 #include <linux/kvm_types.h> 11 #include <linux/kvm_host.h> 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/psp-sev.h> 15 #include <linux/pagemap.h> 16 #include <linux/swap.h> 17 #include <linux/misc_cgroup.h> 18 #include <linux/processor.h> 19 #include <linux/trace_events.h> 20 #include <asm/fpu/internal.h> 21 22 #include <asm/pkru.h> 23 #include <asm/trapnr.h> 24 25 #include "x86.h" 26 #include "svm.h" 27 #include "svm_ops.h" 28 #include "cpuid.h" 29 #include "trace.h" 30 31 #ifndef CONFIG_KVM_AMD_SEV 32 /* 33 * When this config is not defined, SEV feature is not supported and APIs in 34 * this file are not used but this file still gets compiled into the KVM AMD 35 * module. 36 * 37 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum 38 * misc_res_type {} defined in linux/misc_cgroup.h. 39 * 40 * Below macros allow compilation to succeed. 41 */ 42 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES 43 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES 44 #endif 45 46 #ifdef CONFIG_KVM_AMD_SEV 47 /* enable/disable SEV support */ 48 static bool sev_enabled = true; 49 module_param_named(sev, sev_enabled, bool, 0444); 50 51 /* enable/disable SEV-ES support */ 52 static bool sev_es_enabled = true; 53 module_param_named(sev_es, sev_es_enabled, bool, 0444); 54 #else 55 #define sev_enabled false 56 #define sev_es_enabled false 57 #endif /* CONFIG_KVM_AMD_SEV */ 58 59 static u8 sev_enc_bit; 60 static DECLARE_RWSEM(sev_deactivate_lock); 61 static DEFINE_MUTEX(sev_bitmap_lock); 62 unsigned int max_sev_asid; 63 static unsigned int min_sev_asid; 64 static unsigned long sev_me_mask; 65 static unsigned int nr_asids; 66 static unsigned long *sev_asid_bitmap; 67 static unsigned long *sev_reclaim_asid_bitmap; 68 69 struct enc_region { 70 struct list_head list; 71 unsigned long npages; 72 struct page **pages; 73 unsigned long uaddr; 74 unsigned long size; 75 }; 76 77 /* Called with the sev_bitmap_lock held, or on shutdown */ 78 static int sev_flush_asids(int min_asid, int max_asid) 79 { 80 int ret, asid, error = 0; 81 82 /* Check if there are any ASIDs to reclaim before performing a flush */ 83 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid); 84 if (asid > max_asid) 85 return -EBUSY; 86 87 /* 88 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 89 * so it must be guarded. 90 */ 91 down_write(&sev_deactivate_lock); 92 93 wbinvd_on_all_cpus(); 94 ret = sev_guest_df_flush(&error); 95 96 up_write(&sev_deactivate_lock); 97 98 if (ret) 99 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error); 100 101 return ret; 102 } 103 104 static inline bool is_mirroring_enc_context(struct kvm *kvm) 105 { 106 return !!to_kvm_svm(kvm)->sev_info.enc_context_owner; 107 } 108 109 /* Must be called with the sev_bitmap_lock held */ 110 static bool __sev_recycle_asids(int min_asid, int max_asid) 111 { 112 if (sev_flush_asids(min_asid, max_asid)) 113 return false; 114 115 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 116 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 117 nr_asids); 118 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids); 119 120 return true; 121 } 122 123 static int sev_asid_new(struct kvm_sev_info *sev) 124 { 125 int asid, min_asid, max_asid, ret; 126 bool retry = true; 127 enum misc_res_type type; 128 129 type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 130 WARN_ON(sev->misc_cg); 131 sev->misc_cg = get_current_misc_cg(); 132 ret = misc_cg_try_charge(type, sev->misc_cg, 1); 133 if (ret) { 134 put_misc_cg(sev->misc_cg); 135 sev->misc_cg = NULL; 136 return ret; 137 } 138 139 mutex_lock(&sev_bitmap_lock); 140 141 /* 142 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 143 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 144 */ 145 min_asid = sev->es_active ? 1 : min_sev_asid; 146 max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 147 again: 148 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid); 149 if (asid > max_asid) { 150 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 151 retry = false; 152 goto again; 153 } 154 mutex_unlock(&sev_bitmap_lock); 155 ret = -EBUSY; 156 goto e_uncharge; 157 } 158 159 __set_bit(asid, sev_asid_bitmap); 160 161 mutex_unlock(&sev_bitmap_lock); 162 163 return asid; 164 e_uncharge: 165 misc_cg_uncharge(type, sev->misc_cg, 1); 166 put_misc_cg(sev->misc_cg); 167 sev->misc_cg = NULL; 168 return ret; 169 } 170 171 static int sev_get_asid(struct kvm *kvm) 172 { 173 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 174 175 return sev->asid; 176 } 177 178 static void sev_asid_free(struct kvm_sev_info *sev) 179 { 180 struct svm_cpu_data *sd; 181 int cpu; 182 enum misc_res_type type; 183 184 mutex_lock(&sev_bitmap_lock); 185 186 __set_bit(sev->asid, sev_reclaim_asid_bitmap); 187 188 for_each_possible_cpu(cpu) { 189 sd = per_cpu(svm_data, cpu); 190 sd->sev_vmcbs[sev->asid] = NULL; 191 } 192 193 mutex_unlock(&sev_bitmap_lock); 194 195 type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 196 misc_cg_uncharge(type, sev->misc_cg, 1); 197 put_misc_cg(sev->misc_cg); 198 sev->misc_cg = NULL; 199 } 200 201 static void sev_decommission(unsigned int handle) 202 { 203 struct sev_data_decommission decommission; 204 205 if (!handle) 206 return; 207 208 decommission.handle = handle; 209 sev_guest_decommission(&decommission, NULL); 210 } 211 212 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 213 { 214 struct sev_data_deactivate deactivate; 215 216 if (!handle) 217 return; 218 219 deactivate.handle = handle; 220 221 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 222 down_read(&sev_deactivate_lock); 223 sev_guest_deactivate(&deactivate, NULL); 224 up_read(&sev_deactivate_lock); 225 226 sev_decommission(handle); 227 } 228 229 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 230 { 231 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 232 bool es_active = argp->id == KVM_SEV_ES_INIT; 233 int asid, ret; 234 235 if (kvm->created_vcpus) 236 return -EINVAL; 237 238 ret = -EBUSY; 239 if (unlikely(sev->active)) 240 return ret; 241 242 sev->es_active = es_active; 243 asid = sev_asid_new(sev); 244 if (asid < 0) 245 goto e_no_asid; 246 sev->asid = asid; 247 248 ret = sev_platform_init(&argp->error); 249 if (ret) 250 goto e_free; 251 252 sev->active = true; 253 sev->asid = asid; 254 INIT_LIST_HEAD(&sev->regions_list); 255 256 return 0; 257 258 e_free: 259 sev_asid_free(sev); 260 sev->asid = 0; 261 e_no_asid: 262 sev->es_active = false; 263 return ret; 264 } 265 266 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 267 { 268 struct sev_data_activate activate; 269 int asid = sev_get_asid(kvm); 270 int ret; 271 272 /* activate ASID on the given handle */ 273 activate.handle = handle; 274 activate.asid = asid; 275 ret = sev_guest_activate(&activate, error); 276 277 return ret; 278 } 279 280 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 281 { 282 struct fd f; 283 int ret; 284 285 f = fdget(fd); 286 if (!f.file) 287 return -EBADF; 288 289 ret = sev_issue_cmd_external_user(f.file, id, data, error); 290 291 fdput(f); 292 return ret; 293 } 294 295 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 296 { 297 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 298 299 return __sev_issue_cmd(sev->fd, id, data, error); 300 } 301 302 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 303 { 304 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 305 struct sev_data_launch_start start; 306 struct kvm_sev_launch_start params; 307 void *dh_blob, *session_blob; 308 int *error = &argp->error; 309 int ret; 310 311 if (!sev_guest(kvm)) 312 return -ENOTTY; 313 314 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 315 return -EFAULT; 316 317 memset(&start, 0, sizeof(start)); 318 319 dh_blob = NULL; 320 if (params.dh_uaddr) { 321 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 322 if (IS_ERR(dh_blob)) 323 return PTR_ERR(dh_blob); 324 325 start.dh_cert_address = __sme_set(__pa(dh_blob)); 326 start.dh_cert_len = params.dh_len; 327 } 328 329 session_blob = NULL; 330 if (params.session_uaddr) { 331 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 332 if (IS_ERR(session_blob)) { 333 ret = PTR_ERR(session_blob); 334 goto e_free_dh; 335 } 336 337 start.session_address = __sme_set(__pa(session_blob)); 338 start.session_len = params.session_len; 339 } 340 341 start.handle = params.handle; 342 start.policy = params.policy; 343 344 /* create memory encryption context */ 345 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); 346 if (ret) 347 goto e_free_session; 348 349 /* Bind ASID to this guest */ 350 ret = sev_bind_asid(kvm, start.handle, error); 351 if (ret) { 352 sev_decommission(start.handle); 353 goto e_free_session; 354 } 355 356 /* return handle to userspace */ 357 params.handle = start.handle; 358 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { 359 sev_unbind_asid(kvm, start.handle); 360 ret = -EFAULT; 361 goto e_free_session; 362 } 363 364 sev->handle = start.handle; 365 sev->fd = argp->sev_fd; 366 367 e_free_session: 368 kfree(session_blob); 369 e_free_dh: 370 kfree(dh_blob); 371 return ret; 372 } 373 374 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 375 unsigned long ulen, unsigned long *n, 376 int write) 377 { 378 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 379 unsigned long npages, size; 380 int npinned; 381 unsigned long locked, lock_limit; 382 struct page **pages; 383 unsigned long first, last; 384 int ret; 385 386 lockdep_assert_held(&kvm->lock); 387 388 if (ulen == 0 || uaddr + ulen < uaddr) 389 return ERR_PTR(-EINVAL); 390 391 /* Calculate number of pages. */ 392 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 393 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 394 npages = (last - first + 1); 395 396 locked = sev->pages_locked + npages; 397 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 398 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 399 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 400 return ERR_PTR(-ENOMEM); 401 } 402 403 if (WARN_ON_ONCE(npages > INT_MAX)) 404 return ERR_PTR(-EINVAL); 405 406 /* Avoid using vmalloc for smaller buffers. */ 407 size = npages * sizeof(struct page *); 408 if (size > PAGE_SIZE) 409 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 410 else 411 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 412 413 if (!pages) 414 return ERR_PTR(-ENOMEM); 415 416 /* Pin the user virtual address. */ 417 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); 418 if (npinned != npages) { 419 pr_err("SEV: Failure locking %lu pages.\n", npages); 420 ret = -ENOMEM; 421 goto err; 422 } 423 424 *n = npages; 425 sev->pages_locked = locked; 426 427 return pages; 428 429 err: 430 if (npinned > 0) 431 unpin_user_pages(pages, npinned); 432 433 kvfree(pages); 434 return ERR_PTR(ret); 435 } 436 437 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 438 unsigned long npages) 439 { 440 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 441 442 unpin_user_pages(pages, npages); 443 kvfree(pages); 444 sev->pages_locked -= npages; 445 } 446 447 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 448 { 449 uint8_t *page_virtual; 450 unsigned long i; 451 452 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 453 pages == NULL) 454 return; 455 456 for (i = 0; i < npages; i++) { 457 page_virtual = kmap_atomic(pages[i]); 458 clflush_cache_range(page_virtual, PAGE_SIZE); 459 kunmap_atomic(page_virtual); 460 } 461 } 462 463 static unsigned long get_num_contig_pages(unsigned long idx, 464 struct page **inpages, unsigned long npages) 465 { 466 unsigned long paddr, next_paddr; 467 unsigned long i = idx + 1, pages = 1; 468 469 /* find the number of contiguous pages starting from idx */ 470 paddr = __sme_page_pa(inpages[idx]); 471 while (i < npages) { 472 next_paddr = __sme_page_pa(inpages[i++]); 473 if ((paddr + PAGE_SIZE) == next_paddr) { 474 pages++; 475 paddr = next_paddr; 476 continue; 477 } 478 break; 479 } 480 481 return pages; 482 } 483 484 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 485 { 486 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 487 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 488 struct kvm_sev_launch_update_data params; 489 struct sev_data_launch_update_data data; 490 struct page **inpages; 491 int ret; 492 493 if (!sev_guest(kvm)) 494 return -ENOTTY; 495 496 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 497 return -EFAULT; 498 499 vaddr = params.uaddr; 500 size = params.len; 501 vaddr_end = vaddr + size; 502 503 /* Lock the user memory. */ 504 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); 505 if (IS_ERR(inpages)) 506 return PTR_ERR(inpages); 507 508 /* 509 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 510 * place; the cache may contain the data that was written unencrypted. 511 */ 512 sev_clflush_pages(inpages, npages); 513 514 data.reserved = 0; 515 data.handle = sev->handle; 516 517 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 518 int offset, len; 519 520 /* 521 * If the user buffer is not page-aligned, calculate the offset 522 * within the page. 523 */ 524 offset = vaddr & (PAGE_SIZE - 1); 525 526 /* Calculate the number of pages that can be encrypted in one go. */ 527 pages = get_num_contig_pages(i, inpages, npages); 528 529 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 530 531 data.len = len; 532 data.address = __sme_page_pa(inpages[i]) + offset; 533 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); 534 if (ret) 535 goto e_unpin; 536 537 size -= len; 538 next_vaddr = vaddr + len; 539 } 540 541 e_unpin: 542 /* content of memory is updated, mark pages dirty */ 543 for (i = 0; i < npages; i++) { 544 set_page_dirty_lock(inpages[i]); 545 mark_page_accessed(inpages[i]); 546 } 547 /* unlock the user pages */ 548 sev_unpin_memory(kvm, inpages, npages); 549 return ret; 550 } 551 552 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 553 { 554 struct vmcb_save_area *save = &svm->vmcb->save; 555 556 /* Check some debug related fields before encrypting the VMSA */ 557 if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1)) 558 return -EINVAL; 559 560 /* Sync registgers */ 561 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 562 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 563 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 564 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 565 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 566 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 567 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 568 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 569 #ifdef CONFIG_X86_64 570 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 571 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 572 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 573 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 574 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 575 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 576 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 577 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 578 #endif 579 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 580 581 /* Sync some non-GPR registers before encrypting */ 582 save->xcr0 = svm->vcpu.arch.xcr0; 583 save->pkru = svm->vcpu.arch.pkru; 584 save->xss = svm->vcpu.arch.ia32_xss; 585 save->dr6 = svm->vcpu.arch.dr6; 586 587 /* 588 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 589 * the traditional VMSA that is part of the VMCB. Copy the 590 * traditional VMSA as it has been built so far (in prep 591 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 592 */ 593 memcpy(svm->vmsa, save, sizeof(*save)); 594 595 return 0; 596 } 597 598 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 599 { 600 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 601 struct sev_data_launch_update_vmsa vmsa; 602 struct kvm_vcpu *vcpu; 603 int i, ret; 604 605 if (!sev_es_guest(kvm)) 606 return -ENOTTY; 607 608 vmsa.reserved = 0; 609 610 kvm_for_each_vcpu(i, vcpu, kvm) { 611 struct vcpu_svm *svm = to_svm(vcpu); 612 613 /* Perform some pre-encryption checks against the VMSA */ 614 ret = sev_es_sync_vmsa(svm); 615 if (ret) 616 return ret; 617 618 /* 619 * The LAUNCH_UPDATE_VMSA command will perform in-place 620 * encryption of the VMSA memory content (i.e it will write 621 * the same memory region with the guest's key), so invalidate 622 * it first. 623 */ 624 clflush_cache_range(svm->vmsa, PAGE_SIZE); 625 626 vmsa.handle = sev->handle; 627 vmsa.address = __sme_pa(svm->vmsa); 628 vmsa.len = PAGE_SIZE; 629 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, 630 &argp->error); 631 if (ret) 632 return ret; 633 634 svm->vcpu.arch.guest_state_protected = true; 635 } 636 637 return 0; 638 } 639 640 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 641 { 642 void __user *measure = (void __user *)(uintptr_t)argp->data; 643 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 644 struct sev_data_launch_measure data; 645 struct kvm_sev_launch_measure params; 646 void __user *p = NULL; 647 void *blob = NULL; 648 int ret; 649 650 if (!sev_guest(kvm)) 651 return -ENOTTY; 652 653 if (copy_from_user(¶ms, measure, sizeof(params))) 654 return -EFAULT; 655 656 memset(&data, 0, sizeof(data)); 657 658 /* User wants to query the blob length */ 659 if (!params.len) 660 goto cmd; 661 662 p = (void __user *)(uintptr_t)params.uaddr; 663 if (p) { 664 if (params.len > SEV_FW_BLOB_MAX_SIZE) 665 return -EINVAL; 666 667 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); 668 if (!blob) 669 return -ENOMEM; 670 671 data.address = __psp_pa(blob); 672 data.len = params.len; 673 } 674 675 cmd: 676 data.handle = sev->handle; 677 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); 678 679 /* 680 * If we query the session length, FW responded with expected data. 681 */ 682 if (!params.len) 683 goto done; 684 685 if (ret) 686 goto e_free_blob; 687 688 if (blob) { 689 if (copy_to_user(p, blob, params.len)) 690 ret = -EFAULT; 691 } 692 693 done: 694 params.len = data.len; 695 if (copy_to_user(measure, ¶ms, sizeof(params))) 696 ret = -EFAULT; 697 e_free_blob: 698 kfree(blob); 699 return ret; 700 } 701 702 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 703 { 704 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 705 struct sev_data_launch_finish data; 706 707 if (!sev_guest(kvm)) 708 return -ENOTTY; 709 710 data.handle = sev->handle; 711 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); 712 } 713 714 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 715 { 716 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 717 struct kvm_sev_guest_status params; 718 struct sev_data_guest_status data; 719 int ret; 720 721 if (!sev_guest(kvm)) 722 return -ENOTTY; 723 724 memset(&data, 0, sizeof(data)); 725 726 data.handle = sev->handle; 727 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); 728 if (ret) 729 return ret; 730 731 params.policy = data.policy; 732 params.state = data.state; 733 params.handle = data.handle; 734 735 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) 736 ret = -EFAULT; 737 738 return ret; 739 } 740 741 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 742 unsigned long dst, int size, 743 int *error, bool enc) 744 { 745 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 746 struct sev_data_dbg data; 747 748 data.reserved = 0; 749 data.handle = sev->handle; 750 data.dst_addr = dst; 751 data.src_addr = src; 752 data.len = size; 753 754 return sev_issue_cmd(kvm, 755 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 756 &data, error); 757 } 758 759 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 760 unsigned long dst_paddr, int sz, int *err) 761 { 762 int offset; 763 764 /* 765 * Its safe to read more than we are asked, caller should ensure that 766 * destination has enough space. 767 */ 768 offset = src_paddr & 15; 769 src_paddr = round_down(src_paddr, 16); 770 sz = round_up(sz + offset, 16); 771 772 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 773 } 774 775 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 776 void __user *dst_uaddr, 777 unsigned long dst_paddr, 778 int size, int *err) 779 { 780 struct page *tpage = NULL; 781 int ret, offset; 782 783 /* if inputs are not 16-byte then use intermediate buffer */ 784 if (!IS_ALIGNED(dst_paddr, 16) || 785 !IS_ALIGNED(paddr, 16) || 786 !IS_ALIGNED(size, 16)) { 787 tpage = (void *)alloc_page(GFP_KERNEL); 788 if (!tpage) 789 return -ENOMEM; 790 791 dst_paddr = __sme_page_pa(tpage); 792 } 793 794 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 795 if (ret) 796 goto e_free; 797 798 if (tpage) { 799 offset = paddr & 15; 800 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) 801 ret = -EFAULT; 802 } 803 804 e_free: 805 if (tpage) 806 __free_page(tpage); 807 808 return ret; 809 } 810 811 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 812 void __user *vaddr, 813 unsigned long dst_paddr, 814 void __user *dst_vaddr, 815 int size, int *error) 816 { 817 struct page *src_tpage = NULL; 818 struct page *dst_tpage = NULL; 819 int ret, len = size; 820 821 /* If source buffer is not aligned then use an intermediate buffer */ 822 if (!IS_ALIGNED((unsigned long)vaddr, 16)) { 823 src_tpage = alloc_page(GFP_KERNEL); 824 if (!src_tpage) 825 return -ENOMEM; 826 827 if (copy_from_user(page_address(src_tpage), vaddr, size)) { 828 __free_page(src_tpage); 829 return -EFAULT; 830 } 831 832 paddr = __sme_page_pa(src_tpage); 833 } 834 835 /* 836 * If destination buffer or length is not aligned then do read-modify-write: 837 * - decrypt destination in an intermediate buffer 838 * - copy the source buffer in an intermediate buffer 839 * - use the intermediate buffer as source buffer 840 */ 841 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 842 int dst_offset; 843 844 dst_tpage = alloc_page(GFP_KERNEL); 845 if (!dst_tpage) { 846 ret = -ENOMEM; 847 goto e_free; 848 } 849 850 ret = __sev_dbg_decrypt(kvm, dst_paddr, 851 __sme_page_pa(dst_tpage), size, error); 852 if (ret) 853 goto e_free; 854 855 /* 856 * If source is kernel buffer then use memcpy() otherwise 857 * copy_from_user(). 858 */ 859 dst_offset = dst_paddr & 15; 860 861 if (src_tpage) 862 memcpy(page_address(dst_tpage) + dst_offset, 863 page_address(src_tpage), size); 864 else { 865 if (copy_from_user(page_address(dst_tpage) + dst_offset, 866 vaddr, size)) { 867 ret = -EFAULT; 868 goto e_free; 869 } 870 } 871 872 paddr = __sme_page_pa(dst_tpage); 873 dst_paddr = round_down(dst_paddr, 16); 874 len = round_up(size, 16); 875 } 876 877 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 878 879 e_free: 880 if (src_tpage) 881 __free_page(src_tpage); 882 if (dst_tpage) 883 __free_page(dst_tpage); 884 return ret; 885 } 886 887 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 888 { 889 unsigned long vaddr, vaddr_end, next_vaddr; 890 unsigned long dst_vaddr; 891 struct page **src_p, **dst_p; 892 struct kvm_sev_dbg debug; 893 unsigned long n; 894 unsigned int size; 895 int ret; 896 897 if (!sev_guest(kvm)) 898 return -ENOTTY; 899 900 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) 901 return -EFAULT; 902 903 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 904 return -EINVAL; 905 if (!debug.dst_uaddr) 906 return -EINVAL; 907 908 vaddr = debug.src_uaddr; 909 size = debug.len; 910 vaddr_end = vaddr + size; 911 dst_vaddr = debug.dst_uaddr; 912 913 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 914 int len, s_off, d_off; 915 916 /* lock userspace source and destination page */ 917 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 918 if (IS_ERR(src_p)) 919 return PTR_ERR(src_p); 920 921 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); 922 if (IS_ERR(dst_p)) { 923 sev_unpin_memory(kvm, src_p, n); 924 return PTR_ERR(dst_p); 925 } 926 927 /* 928 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 929 * the pages; flush the destination too so that future accesses do not 930 * see stale data. 931 */ 932 sev_clflush_pages(src_p, 1); 933 sev_clflush_pages(dst_p, 1); 934 935 /* 936 * Since user buffer may not be page aligned, calculate the 937 * offset within the page. 938 */ 939 s_off = vaddr & ~PAGE_MASK; 940 d_off = dst_vaddr & ~PAGE_MASK; 941 len = min_t(size_t, (PAGE_SIZE - s_off), size); 942 943 if (dec) 944 ret = __sev_dbg_decrypt_user(kvm, 945 __sme_page_pa(src_p[0]) + s_off, 946 (void __user *)dst_vaddr, 947 __sme_page_pa(dst_p[0]) + d_off, 948 len, &argp->error); 949 else 950 ret = __sev_dbg_encrypt_user(kvm, 951 __sme_page_pa(src_p[0]) + s_off, 952 (void __user *)vaddr, 953 __sme_page_pa(dst_p[0]) + d_off, 954 (void __user *)dst_vaddr, 955 len, &argp->error); 956 957 sev_unpin_memory(kvm, src_p, n); 958 sev_unpin_memory(kvm, dst_p, n); 959 960 if (ret) 961 goto err; 962 963 next_vaddr = vaddr + len; 964 dst_vaddr = dst_vaddr + len; 965 size -= len; 966 } 967 err: 968 return ret; 969 } 970 971 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 972 { 973 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 974 struct sev_data_launch_secret data; 975 struct kvm_sev_launch_secret params; 976 struct page **pages; 977 void *blob, *hdr; 978 unsigned long n, i; 979 int ret, offset; 980 981 if (!sev_guest(kvm)) 982 return -ENOTTY; 983 984 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 985 return -EFAULT; 986 987 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); 988 if (IS_ERR(pages)) 989 return PTR_ERR(pages); 990 991 /* 992 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 993 * place; the cache may contain the data that was written unencrypted. 994 */ 995 sev_clflush_pages(pages, n); 996 997 /* 998 * The secret must be copied into contiguous memory region, lets verify 999 * that userspace memory pages are contiguous before we issue command. 1000 */ 1001 if (get_num_contig_pages(0, pages, n) != n) { 1002 ret = -EINVAL; 1003 goto e_unpin_memory; 1004 } 1005 1006 memset(&data, 0, sizeof(data)); 1007 1008 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1009 data.guest_address = __sme_page_pa(pages[0]) + offset; 1010 data.guest_len = params.guest_len; 1011 1012 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1013 if (IS_ERR(blob)) { 1014 ret = PTR_ERR(blob); 1015 goto e_unpin_memory; 1016 } 1017 1018 data.trans_address = __psp_pa(blob); 1019 data.trans_len = params.trans_len; 1020 1021 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1022 if (IS_ERR(hdr)) { 1023 ret = PTR_ERR(hdr); 1024 goto e_free_blob; 1025 } 1026 data.hdr_address = __psp_pa(hdr); 1027 data.hdr_len = params.hdr_len; 1028 1029 data.handle = sev->handle; 1030 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); 1031 1032 kfree(hdr); 1033 1034 e_free_blob: 1035 kfree(blob); 1036 e_unpin_memory: 1037 /* content of memory is updated, mark pages dirty */ 1038 for (i = 0; i < n; i++) { 1039 set_page_dirty_lock(pages[i]); 1040 mark_page_accessed(pages[i]); 1041 } 1042 sev_unpin_memory(kvm, pages, n); 1043 return ret; 1044 } 1045 1046 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1047 { 1048 void __user *report = (void __user *)(uintptr_t)argp->data; 1049 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1050 struct sev_data_attestation_report data; 1051 struct kvm_sev_attestation_report params; 1052 void __user *p; 1053 void *blob = NULL; 1054 int ret; 1055 1056 if (!sev_guest(kvm)) 1057 return -ENOTTY; 1058 1059 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1060 return -EFAULT; 1061 1062 memset(&data, 0, sizeof(data)); 1063 1064 /* User wants to query the blob length */ 1065 if (!params.len) 1066 goto cmd; 1067 1068 p = (void __user *)(uintptr_t)params.uaddr; 1069 if (p) { 1070 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1071 return -EINVAL; 1072 1073 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); 1074 if (!blob) 1075 return -ENOMEM; 1076 1077 data.address = __psp_pa(blob); 1078 data.len = params.len; 1079 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); 1080 } 1081 cmd: 1082 data.handle = sev->handle; 1083 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); 1084 /* 1085 * If we query the session length, FW responded with expected data. 1086 */ 1087 if (!params.len) 1088 goto done; 1089 1090 if (ret) 1091 goto e_free_blob; 1092 1093 if (blob) { 1094 if (copy_to_user(p, blob, params.len)) 1095 ret = -EFAULT; 1096 } 1097 1098 done: 1099 params.len = data.len; 1100 if (copy_to_user(report, ¶ms, sizeof(params))) 1101 ret = -EFAULT; 1102 e_free_blob: 1103 kfree(blob); 1104 return ret; 1105 } 1106 1107 /* Userspace wants to query session length. */ 1108 static int 1109 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, 1110 struct kvm_sev_send_start *params) 1111 { 1112 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1113 struct sev_data_send_start data; 1114 int ret; 1115 1116 memset(&data, 0, sizeof(data)); 1117 data.handle = sev->handle; 1118 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1119 1120 params->session_len = data.session_len; 1121 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1122 sizeof(struct kvm_sev_send_start))) 1123 ret = -EFAULT; 1124 1125 return ret; 1126 } 1127 1128 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1129 { 1130 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1131 struct sev_data_send_start data; 1132 struct kvm_sev_send_start params; 1133 void *amd_certs, *session_data; 1134 void *pdh_cert, *plat_certs; 1135 int ret; 1136 1137 if (!sev_guest(kvm)) 1138 return -ENOTTY; 1139 1140 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1141 sizeof(struct kvm_sev_send_start))) 1142 return -EFAULT; 1143 1144 /* if session_len is zero, userspace wants to query the session length */ 1145 if (!params.session_len) 1146 return __sev_send_start_query_session_length(kvm, argp, 1147 ¶ms); 1148 1149 /* some sanity checks */ 1150 if (!params.pdh_cert_uaddr || !params.pdh_cert_len || 1151 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) 1152 return -EINVAL; 1153 1154 /* allocate the memory to hold the session data blob */ 1155 session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT); 1156 if (!session_data) 1157 return -ENOMEM; 1158 1159 /* copy the certificate blobs from userspace */ 1160 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, 1161 params.pdh_cert_len); 1162 if (IS_ERR(pdh_cert)) { 1163 ret = PTR_ERR(pdh_cert); 1164 goto e_free_session; 1165 } 1166 1167 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, 1168 params.plat_certs_len); 1169 if (IS_ERR(plat_certs)) { 1170 ret = PTR_ERR(plat_certs); 1171 goto e_free_pdh; 1172 } 1173 1174 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, 1175 params.amd_certs_len); 1176 if (IS_ERR(amd_certs)) { 1177 ret = PTR_ERR(amd_certs); 1178 goto e_free_plat_cert; 1179 } 1180 1181 /* populate the FW SEND_START field with system physical address */ 1182 memset(&data, 0, sizeof(data)); 1183 data.pdh_cert_address = __psp_pa(pdh_cert); 1184 data.pdh_cert_len = params.pdh_cert_len; 1185 data.plat_certs_address = __psp_pa(plat_certs); 1186 data.plat_certs_len = params.plat_certs_len; 1187 data.amd_certs_address = __psp_pa(amd_certs); 1188 data.amd_certs_len = params.amd_certs_len; 1189 data.session_address = __psp_pa(session_data); 1190 data.session_len = params.session_len; 1191 data.handle = sev->handle; 1192 1193 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1194 1195 if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr, 1196 session_data, params.session_len)) { 1197 ret = -EFAULT; 1198 goto e_free_amd_cert; 1199 } 1200 1201 params.policy = data.policy; 1202 params.session_len = data.session_len; 1203 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, 1204 sizeof(struct kvm_sev_send_start))) 1205 ret = -EFAULT; 1206 1207 e_free_amd_cert: 1208 kfree(amd_certs); 1209 e_free_plat_cert: 1210 kfree(plat_certs); 1211 e_free_pdh: 1212 kfree(pdh_cert); 1213 e_free_session: 1214 kfree(session_data); 1215 return ret; 1216 } 1217 1218 /* Userspace wants to query either header or trans length. */ 1219 static int 1220 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, 1221 struct kvm_sev_send_update_data *params) 1222 { 1223 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1224 struct sev_data_send_update_data data; 1225 int ret; 1226 1227 memset(&data, 0, sizeof(data)); 1228 data.handle = sev->handle; 1229 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1230 1231 params->hdr_len = data.hdr_len; 1232 params->trans_len = data.trans_len; 1233 1234 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1235 sizeof(struct kvm_sev_send_update_data))) 1236 ret = -EFAULT; 1237 1238 return ret; 1239 } 1240 1241 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1242 { 1243 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1244 struct sev_data_send_update_data data; 1245 struct kvm_sev_send_update_data params; 1246 void *hdr, *trans_data; 1247 struct page **guest_page; 1248 unsigned long n; 1249 int ret, offset; 1250 1251 if (!sev_guest(kvm)) 1252 return -ENOTTY; 1253 1254 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1255 sizeof(struct kvm_sev_send_update_data))) 1256 return -EFAULT; 1257 1258 /* userspace wants to query either header or trans length */ 1259 if (!params.trans_len || !params.hdr_len) 1260 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); 1261 1262 if (!params.trans_uaddr || !params.guest_uaddr || 1263 !params.guest_len || !params.hdr_uaddr) 1264 return -EINVAL; 1265 1266 /* Check if we are crossing the page boundary */ 1267 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1268 if ((params.guest_len + offset > PAGE_SIZE)) 1269 return -EINVAL; 1270 1271 /* Pin guest memory */ 1272 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1273 PAGE_SIZE, &n, 0); 1274 if (IS_ERR(guest_page)) 1275 return PTR_ERR(guest_page); 1276 1277 /* allocate memory for header and transport buffer */ 1278 ret = -ENOMEM; 1279 hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT); 1280 if (!hdr) 1281 goto e_unpin; 1282 1283 trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT); 1284 if (!trans_data) 1285 goto e_free_hdr; 1286 1287 memset(&data, 0, sizeof(data)); 1288 data.hdr_address = __psp_pa(hdr); 1289 data.hdr_len = params.hdr_len; 1290 data.trans_address = __psp_pa(trans_data); 1291 data.trans_len = params.trans_len; 1292 1293 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ 1294 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1295 data.guest_address |= sev_me_mask; 1296 data.guest_len = params.guest_len; 1297 data.handle = sev->handle; 1298 1299 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1300 1301 if (ret) 1302 goto e_free_trans_data; 1303 1304 /* copy transport buffer to user space */ 1305 if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr, 1306 trans_data, params.trans_len)) { 1307 ret = -EFAULT; 1308 goto e_free_trans_data; 1309 } 1310 1311 /* Copy packet header to userspace. */ 1312 if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr, 1313 params.hdr_len)) 1314 ret = -EFAULT; 1315 1316 e_free_trans_data: 1317 kfree(trans_data); 1318 e_free_hdr: 1319 kfree(hdr); 1320 e_unpin: 1321 sev_unpin_memory(kvm, guest_page, n); 1322 1323 return ret; 1324 } 1325 1326 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1327 { 1328 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1329 struct sev_data_send_finish data; 1330 1331 if (!sev_guest(kvm)) 1332 return -ENOTTY; 1333 1334 data.handle = sev->handle; 1335 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); 1336 } 1337 1338 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) 1339 { 1340 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1341 struct sev_data_send_cancel data; 1342 1343 if (!sev_guest(kvm)) 1344 return -ENOTTY; 1345 1346 data.handle = sev->handle; 1347 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); 1348 } 1349 1350 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1351 { 1352 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1353 struct sev_data_receive_start start; 1354 struct kvm_sev_receive_start params; 1355 int *error = &argp->error; 1356 void *session_data; 1357 void *pdh_data; 1358 int ret; 1359 1360 if (!sev_guest(kvm)) 1361 return -ENOTTY; 1362 1363 /* Get parameter from the userspace */ 1364 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1365 sizeof(struct kvm_sev_receive_start))) 1366 return -EFAULT; 1367 1368 /* some sanity checks */ 1369 if (!params.pdh_uaddr || !params.pdh_len || 1370 !params.session_uaddr || !params.session_len) 1371 return -EINVAL; 1372 1373 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); 1374 if (IS_ERR(pdh_data)) 1375 return PTR_ERR(pdh_data); 1376 1377 session_data = psp_copy_user_blob(params.session_uaddr, 1378 params.session_len); 1379 if (IS_ERR(session_data)) { 1380 ret = PTR_ERR(session_data); 1381 goto e_free_pdh; 1382 } 1383 1384 memset(&start, 0, sizeof(start)); 1385 start.handle = params.handle; 1386 start.policy = params.policy; 1387 start.pdh_cert_address = __psp_pa(pdh_data); 1388 start.pdh_cert_len = params.pdh_len; 1389 start.session_address = __psp_pa(session_data); 1390 start.session_len = params.session_len; 1391 1392 /* create memory encryption context */ 1393 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, 1394 error); 1395 if (ret) 1396 goto e_free_session; 1397 1398 /* Bind ASID to this guest */ 1399 ret = sev_bind_asid(kvm, start.handle, error); 1400 if (ret) 1401 goto e_free_session; 1402 1403 params.handle = start.handle; 1404 if (copy_to_user((void __user *)(uintptr_t)argp->data, 1405 ¶ms, sizeof(struct kvm_sev_receive_start))) { 1406 ret = -EFAULT; 1407 sev_unbind_asid(kvm, start.handle); 1408 goto e_free_session; 1409 } 1410 1411 sev->handle = start.handle; 1412 sev->fd = argp->sev_fd; 1413 1414 e_free_session: 1415 kfree(session_data); 1416 e_free_pdh: 1417 kfree(pdh_data); 1418 1419 return ret; 1420 } 1421 1422 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1423 { 1424 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1425 struct kvm_sev_receive_update_data params; 1426 struct sev_data_receive_update_data data; 1427 void *hdr = NULL, *trans = NULL; 1428 struct page **guest_page; 1429 unsigned long n; 1430 int ret, offset; 1431 1432 if (!sev_guest(kvm)) 1433 return -EINVAL; 1434 1435 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1436 sizeof(struct kvm_sev_receive_update_data))) 1437 return -EFAULT; 1438 1439 if (!params.hdr_uaddr || !params.hdr_len || 1440 !params.guest_uaddr || !params.guest_len || 1441 !params.trans_uaddr || !params.trans_len) 1442 return -EINVAL; 1443 1444 /* Check if we are crossing the page boundary */ 1445 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1446 if ((params.guest_len + offset > PAGE_SIZE)) 1447 return -EINVAL; 1448 1449 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1450 if (IS_ERR(hdr)) 1451 return PTR_ERR(hdr); 1452 1453 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1454 if (IS_ERR(trans)) { 1455 ret = PTR_ERR(trans); 1456 goto e_free_hdr; 1457 } 1458 1459 memset(&data, 0, sizeof(data)); 1460 data.hdr_address = __psp_pa(hdr); 1461 data.hdr_len = params.hdr_len; 1462 data.trans_address = __psp_pa(trans); 1463 data.trans_len = params.trans_len; 1464 1465 /* Pin guest memory */ 1466 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1467 PAGE_SIZE, &n, 0); 1468 if (IS_ERR(guest_page)) { 1469 ret = PTR_ERR(guest_page); 1470 goto e_free_trans; 1471 } 1472 1473 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ 1474 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1475 data.guest_address |= sev_me_mask; 1476 data.guest_len = params.guest_len; 1477 data.handle = sev->handle; 1478 1479 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, 1480 &argp->error); 1481 1482 sev_unpin_memory(kvm, guest_page, n); 1483 1484 e_free_trans: 1485 kfree(trans); 1486 e_free_hdr: 1487 kfree(hdr); 1488 1489 return ret; 1490 } 1491 1492 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1493 { 1494 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1495 struct sev_data_receive_finish data; 1496 1497 if (!sev_guest(kvm)) 1498 return -ENOTTY; 1499 1500 data.handle = sev->handle; 1501 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); 1502 } 1503 1504 int svm_mem_enc_op(struct kvm *kvm, void __user *argp) 1505 { 1506 struct kvm_sev_cmd sev_cmd; 1507 int r; 1508 1509 if (!sev_enabled) 1510 return -ENOTTY; 1511 1512 if (!argp) 1513 return 0; 1514 1515 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 1516 return -EFAULT; 1517 1518 mutex_lock(&kvm->lock); 1519 1520 /* enc_context_owner handles all memory enc operations */ 1521 if (is_mirroring_enc_context(kvm)) { 1522 r = -EINVAL; 1523 goto out; 1524 } 1525 1526 switch (sev_cmd.id) { 1527 case KVM_SEV_ES_INIT: 1528 if (!sev_es_enabled) { 1529 r = -ENOTTY; 1530 goto out; 1531 } 1532 fallthrough; 1533 case KVM_SEV_INIT: 1534 r = sev_guest_init(kvm, &sev_cmd); 1535 break; 1536 case KVM_SEV_LAUNCH_START: 1537 r = sev_launch_start(kvm, &sev_cmd); 1538 break; 1539 case KVM_SEV_LAUNCH_UPDATE_DATA: 1540 r = sev_launch_update_data(kvm, &sev_cmd); 1541 break; 1542 case KVM_SEV_LAUNCH_UPDATE_VMSA: 1543 r = sev_launch_update_vmsa(kvm, &sev_cmd); 1544 break; 1545 case KVM_SEV_LAUNCH_MEASURE: 1546 r = sev_launch_measure(kvm, &sev_cmd); 1547 break; 1548 case KVM_SEV_LAUNCH_FINISH: 1549 r = sev_launch_finish(kvm, &sev_cmd); 1550 break; 1551 case KVM_SEV_GUEST_STATUS: 1552 r = sev_guest_status(kvm, &sev_cmd); 1553 break; 1554 case KVM_SEV_DBG_DECRYPT: 1555 r = sev_dbg_crypt(kvm, &sev_cmd, true); 1556 break; 1557 case KVM_SEV_DBG_ENCRYPT: 1558 r = sev_dbg_crypt(kvm, &sev_cmd, false); 1559 break; 1560 case KVM_SEV_LAUNCH_SECRET: 1561 r = sev_launch_secret(kvm, &sev_cmd); 1562 break; 1563 case KVM_SEV_GET_ATTESTATION_REPORT: 1564 r = sev_get_attestation_report(kvm, &sev_cmd); 1565 break; 1566 case KVM_SEV_SEND_START: 1567 r = sev_send_start(kvm, &sev_cmd); 1568 break; 1569 case KVM_SEV_SEND_UPDATE_DATA: 1570 r = sev_send_update_data(kvm, &sev_cmd); 1571 break; 1572 case KVM_SEV_SEND_FINISH: 1573 r = sev_send_finish(kvm, &sev_cmd); 1574 break; 1575 case KVM_SEV_SEND_CANCEL: 1576 r = sev_send_cancel(kvm, &sev_cmd); 1577 break; 1578 case KVM_SEV_RECEIVE_START: 1579 r = sev_receive_start(kvm, &sev_cmd); 1580 break; 1581 case KVM_SEV_RECEIVE_UPDATE_DATA: 1582 r = sev_receive_update_data(kvm, &sev_cmd); 1583 break; 1584 case KVM_SEV_RECEIVE_FINISH: 1585 r = sev_receive_finish(kvm, &sev_cmd); 1586 break; 1587 default: 1588 r = -EINVAL; 1589 goto out; 1590 } 1591 1592 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 1593 r = -EFAULT; 1594 1595 out: 1596 mutex_unlock(&kvm->lock); 1597 return r; 1598 } 1599 1600 int svm_register_enc_region(struct kvm *kvm, 1601 struct kvm_enc_region *range) 1602 { 1603 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1604 struct enc_region *region; 1605 int ret = 0; 1606 1607 if (!sev_guest(kvm)) 1608 return -ENOTTY; 1609 1610 /* If kvm is mirroring encryption context it isn't responsible for it */ 1611 if (is_mirroring_enc_context(kvm)) 1612 return -EINVAL; 1613 1614 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 1615 return -EINVAL; 1616 1617 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 1618 if (!region) 1619 return -ENOMEM; 1620 1621 mutex_lock(&kvm->lock); 1622 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); 1623 if (IS_ERR(region->pages)) { 1624 ret = PTR_ERR(region->pages); 1625 mutex_unlock(&kvm->lock); 1626 goto e_free; 1627 } 1628 1629 region->uaddr = range->addr; 1630 region->size = range->size; 1631 1632 list_add_tail(®ion->list, &sev->regions_list); 1633 mutex_unlock(&kvm->lock); 1634 1635 /* 1636 * The guest may change the memory encryption attribute from C=0 -> C=1 1637 * or vice versa for this memory range. Lets make sure caches are 1638 * flushed to ensure that guest data gets written into memory with 1639 * correct C-bit. 1640 */ 1641 sev_clflush_pages(region->pages, region->npages); 1642 1643 return ret; 1644 1645 e_free: 1646 kfree(region); 1647 return ret; 1648 } 1649 1650 static struct enc_region * 1651 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 1652 { 1653 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1654 struct list_head *head = &sev->regions_list; 1655 struct enc_region *i; 1656 1657 list_for_each_entry(i, head, list) { 1658 if (i->uaddr == range->addr && 1659 i->size == range->size) 1660 return i; 1661 } 1662 1663 return NULL; 1664 } 1665 1666 static void __unregister_enc_region_locked(struct kvm *kvm, 1667 struct enc_region *region) 1668 { 1669 sev_unpin_memory(kvm, region->pages, region->npages); 1670 list_del(®ion->list); 1671 kfree(region); 1672 } 1673 1674 int svm_unregister_enc_region(struct kvm *kvm, 1675 struct kvm_enc_region *range) 1676 { 1677 struct enc_region *region; 1678 int ret; 1679 1680 /* If kvm is mirroring encryption context it isn't responsible for it */ 1681 if (is_mirroring_enc_context(kvm)) 1682 return -EINVAL; 1683 1684 mutex_lock(&kvm->lock); 1685 1686 if (!sev_guest(kvm)) { 1687 ret = -ENOTTY; 1688 goto failed; 1689 } 1690 1691 region = find_enc_region(kvm, range); 1692 if (!region) { 1693 ret = -EINVAL; 1694 goto failed; 1695 } 1696 1697 /* 1698 * Ensure that all guest tagged cache entries are flushed before 1699 * releasing the pages back to the system for use. CLFLUSH will 1700 * not do this, so issue a WBINVD. 1701 */ 1702 wbinvd_on_all_cpus(); 1703 1704 __unregister_enc_region_locked(kvm, region); 1705 1706 mutex_unlock(&kvm->lock); 1707 return 0; 1708 1709 failed: 1710 mutex_unlock(&kvm->lock); 1711 return ret; 1712 } 1713 1714 int svm_vm_copy_asid_from(struct kvm *kvm, unsigned int source_fd) 1715 { 1716 struct file *source_kvm_file; 1717 struct kvm *source_kvm; 1718 struct kvm_sev_info *mirror_sev; 1719 unsigned int asid; 1720 int ret; 1721 1722 source_kvm_file = fget(source_fd); 1723 if (!file_is_kvm(source_kvm_file)) { 1724 ret = -EBADF; 1725 goto e_source_put; 1726 } 1727 1728 source_kvm = source_kvm_file->private_data; 1729 mutex_lock(&source_kvm->lock); 1730 1731 if (!sev_guest(source_kvm)) { 1732 ret = -EINVAL; 1733 goto e_source_unlock; 1734 } 1735 1736 /* Mirrors of mirrors should work, but let's not get silly */ 1737 if (is_mirroring_enc_context(source_kvm) || source_kvm == kvm) { 1738 ret = -EINVAL; 1739 goto e_source_unlock; 1740 } 1741 1742 asid = to_kvm_svm(source_kvm)->sev_info.asid; 1743 1744 /* 1745 * The mirror kvm holds an enc_context_owner ref so its asid can't 1746 * disappear until we're done with it 1747 */ 1748 kvm_get_kvm(source_kvm); 1749 1750 fput(source_kvm_file); 1751 mutex_unlock(&source_kvm->lock); 1752 mutex_lock(&kvm->lock); 1753 1754 if (sev_guest(kvm)) { 1755 ret = -EINVAL; 1756 goto e_mirror_unlock; 1757 } 1758 1759 /* Set enc_context_owner and copy its encryption context over */ 1760 mirror_sev = &to_kvm_svm(kvm)->sev_info; 1761 mirror_sev->enc_context_owner = source_kvm; 1762 mirror_sev->asid = asid; 1763 mirror_sev->active = true; 1764 1765 mutex_unlock(&kvm->lock); 1766 return 0; 1767 1768 e_mirror_unlock: 1769 mutex_unlock(&kvm->lock); 1770 kvm_put_kvm(source_kvm); 1771 return ret; 1772 e_source_unlock: 1773 mutex_unlock(&source_kvm->lock); 1774 e_source_put: 1775 if (source_kvm_file) 1776 fput(source_kvm_file); 1777 return ret; 1778 } 1779 1780 void sev_vm_destroy(struct kvm *kvm) 1781 { 1782 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1783 struct list_head *head = &sev->regions_list; 1784 struct list_head *pos, *q; 1785 1786 if (!sev_guest(kvm)) 1787 return; 1788 1789 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ 1790 if (is_mirroring_enc_context(kvm)) { 1791 kvm_put_kvm(sev->enc_context_owner); 1792 return; 1793 } 1794 1795 mutex_lock(&kvm->lock); 1796 1797 /* 1798 * Ensure that all guest tagged cache entries are flushed before 1799 * releasing the pages back to the system for use. CLFLUSH will 1800 * not do this, so issue a WBINVD. 1801 */ 1802 wbinvd_on_all_cpus(); 1803 1804 /* 1805 * if userspace was terminated before unregistering the memory regions 1806 * then lets unpin all the registered memory. 1807 */ 1808 if (!list_empty(head)) { 1809 list_for_each_safe(pos, q, head) { 1810 __unregister_enc_region_locked(kvm, 1811 list_entry(pos, struct enc_region, list)); 1812 cond_resched(); 1813 } 1814 } 1815 1816 mutex_unlock(&kvm->lock); 1817 1818 sev_unbind_asid(kvm, sev->handle); 1819 sev_asid_free(sev); 1820 } 1821 1822 void __init sev_set_cpu_caps(void) 1823 { 1824 if (!sev_enabled) 1825 kvm_cpu_cap_clear(X86_FEATURE_SEV); 1826 if (!sev_es_enabled) 1827 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES); 1828 } 1829 1830 void __init sev_hardware_setup(void) 1831 { 1832 #ifdef CONFIG_KVM_AMD_SEV 1833 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 1834 bool sev_es_supported = false; 1835 bool sev_supported = false; 1836 1837 if (!sev_enabled || !npt_enabled) 1838 goto out; 1839 1840 /* Does the CPU support SEV? */ 1841 if (!boot_cpu_has(X86_FEATURE_SEV)) 1842 goto out; 1843 1844 /* Retrieve SEV CPUID information */ 1845 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 1846 1847 /* Set encryption bit location for SEV-ES guests */ 1848 sev_enc_bit = ebx & 0x3f; 1849 1850 /* Maximum number of encrypted guests supported simultaneously */ 1851 max_sev_asid = ecx; 1852 if (!max_sev_asid) 1853 goto out; 1854 1855 /* Minimum ASID value that should be used for SEV guest */ 1856 min_sev_asid = edx; 1857 sev_me_mask = 1UL << (ebx & 0x3f); 1858 1859 /* 1860 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap, 1861 * even though it's never used, so that the bitmap is indexed by the 1862 * actual ASID. 1863 */ 1864 nr_asids = max_sev_asid + 1; 1865 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 1866 if (!sev_asid_bitmap) 1867 goto out; 1868 1869 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 1870 if (!sev_reclaim_asid_bitmap) { 1871 bitmap_free(sev_asid_bitmap); 1872 sev_asid_bitmap = NULL; 1873 goto out; 1874 } 1875 1876 sev_asid_count = max_sev_asid - min_sev_asid + 1; 1877 if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)) 1878 goto out; 1879 1880 pr_info("SEV supported: %u ASIDs\n", sev_asid_count); 1881 sev_supported = true; 1882 1883 /* SEV-ES support requested? */ 1884 if (!sev_es_enabled) 1885 goto out; 1886 1887 /* Does the CPU support SEV-ES? */ 1888 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 1889 goto out; 1890 1891 /* Has the system been allocated ASIDs for SEV-ES? */ 1892 if (min_sev_asid == 1) 1893 goto out; 1894 1895 sev_es_asid_count = min_sev_asid - 1; 1896 if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)) 1897 goto out; 1898 1899 pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count); 1900 sev_es_supported = true; 1901 1902 out: 1903 sev_enabled = sev_supported; 1904 sev_es_enabled = sev_es_supported; 1905 #endif 1906 } 1907 1908 void sev_hardware_teardown(void) 1909 { 1910 if (!sev_enabled) 1911 return; 1912 1913 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ 1914 sev_flush_asids(1, max_sev_asid); 1915 1916 bitmap_free(sev_asid_bitmap); 1917 bitmap_free(sev_reclaim_asid_bitmap); 1918 1919 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 1920 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 1921 } 1922 1923 int sev_cpu_init(struct svm_cpu_data *sd) 1924 { 1925 if (!sev_enabled) 1926 return 0; 1927 1928 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL); 1929 if (!sd->sev_vmcbs) 1930 return -ENOMEM; 1931 1932 return 0; 1933 } 1934 1935 /* 1936 * Pages used by hardware to hold guest encrypted state must be flushed before 1937 * returning them to the system. 1938 */ 1939 static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va, 1940 unsigned long len) 1941 { 1942 /* 1943 * If hardware enforced cache coherency for encrypted mappings of the 1944 * same physical page is supported, nothing to do. 1945 */ 1946 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) 1947 return; 1948 1949 /* 1950 * If the VM Page Flush MSR is supported, use it to flush the page 1951 * (using the page virtual address and the guest ASID). 1952 */ 1953 if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) { 1954 struct kvm_sev_info *sev; 1955 unsigned long va_start; 1956 u64 start, stop; 1957 1958 /* Align start and stop to page boundaries. */ 1959 va_start = (unsigned long)va; 1960 start = (u64)va_start & PAGE_MASK; 1961 stop = PAGE_ALIGN((u64)va_start + len); 1962 1963 if (start < stop) { 1964 sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info; 1965 1966 while (start < stop) { 1967 wrmsrl(MSR_AMD64_VM_PAGE_FLUSH, 1968 start | sev->asid); 1969 1970 start += PAGE_SIZE; 1971 } 1972 1973 return; 1974 } 1975 1976 WARN(1, "Address overflow, using WBINVD\n"); 1977 } 1978 1979 /* 1980 * Hardware should always have one of the above features, 1981 * but if not, use WBINVD and issue a warning. 1982 */ 1983 WARN_ONCE(1, "Using WBINVD to flush guest memory\n"); 1984 wbinvd_on_all_cpus(); 1985 } 1986 1987 void sev_free_vcpu(struct kvm_vcpu *vcpu) 1988 { 1989 struct vcpu_svm *svm; 1990 1991 if (!sev_es_guest(vcpu->kvm)) 1992 return; 1993 1994 svm = to_svm(vcpu); 1995 1996 if (vcpu->arch.guest_state_protected) 1997 sev_flush_guest_memory(svm, svm->vmsa, PAGE_SIZE); 1998 __free_page(virt_to_page(svm->vmsa)); 1999 2000 if (svm->ghcb_sa_free) 2001 kfree(svm->ghcb_sa); 2002 } 2003 2004 static void dump_ghcb(struct vcpu_svm *svm) 2005 { 2006 struct ghcb *ghcb = svm->ghcb; 2007 unsigned int nbits; 2008 2009 /* Re-use the dump_invalid_vmcb module parameter */ 2010 if (!dump_invalid_vmcb) { 2011 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 2012 return; 2013 } 2014 2015 nbits = sizeof(ghcb->save.valid_bitmap) * 8; 2016 2017 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); 2018 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 2019 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); 2020 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 2021 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); 2022 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 2023 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); 2024 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 2025 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); 2026 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); 2027 } 2028 2029 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 2030 { 2031 struct kvm_vcpu *vcpu = &svm->vcpu; 2032 struct ghcb *ghcb = svm->ghcb; 2033 2034 /* 2035 * The GHCB protocol so far allows for the following data 2036 * to be returned: 2037 * GPRs RAX, RBX, RCX, RDX 2038 * 2039 * Copy their values, even if they may not have been written during the 2040 * VM-Exit. It's the guest's responsibility to not consume random data. 2041 */ 2042 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 2043 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 2044 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 2045 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 2046 } 2047 2048 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 2049 { 2050 struct vmcb_control_area *control = &svm->vmcb->control; 2051 struct kvm_vcpu *vcpu = &svm->vcpu; 2052 struct ghcb *ghcb = svm->ghcb; 2053 u64 exit_code; 2054 2055 /* 2056 * The GHCB protocol so far allows for the following data 2057 * to be supplied: 2058 * GPRs RAX, RBX, RCX, RDX 2059 * XCR0 2060 * CPL 2061 * 2062 * VMMCALL allows the guest to provide extra registers. KVM also 2063 * expects RSI for hypercalls, so include that, too. 2064 * 2065 * Copy their values to the appropriate location if supplied. 2066 */ 2067 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 2068 2069 vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb); 2070 vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb); 2071 vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb); 2072 vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb); 2073 vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb); 2074 2075 svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb); 2076 2077 if (ghcb_xcr0_is_valid(ghcb)) { 2078 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 2079 kvm_update_cpuid_runtime(vcpu); 2080 } 2081 2082 /* Copy the GHCB exit information into the VMCB fields */ 2083 exit_code = ghcb_get_sw_exit_code(ghcb); 2084 control->exit_code = lower_32_bits(exit_code); 2085 control->exit_code_hi = upper_32_bits(exit_code); 2086 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 2087 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 2088 2089 /* Clear the valid entries fields */ 2090 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 2091 } 2092 2093 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 2094 { 2095 struct kvm_vcpu *vcpu; 2096 struct ghcb *ghcb; 2097 u64 exit_code = 0; 2098 2099 ghcb = svm->ghcb; 2100 2101 /* Only GHCB Usage code 0 is supported */ 2102 if (ghcb->ghcb_usage) 2103 goto vmgexit_err; 2104 2105 /* 2106 * Retrieve the exit code now even though is may not be marked valid 2107 * as it could help with debugging. 2108 */ 2109 exit_code = ghcb_get_sw_exit_code(ghcb); 2110 2111 if (!ghcb_sw_exit_code_is_valid(ghcb) || 2112 !ghcb_sw_exit_info_1_is_valid(ghcb) || 2113 !ghcb_sw_exit_info_2_is_valid(ghcb)) 2114 goto vmgexit_err; 2115 2116 switch (ghcb_get_sw_exit_code(ghcb)) { 2117 case SVM_EXIT_READ_DR7: 2118 break; 2119 case SVM_EXIT_WRITE_DR7: 2120 if (!ghcb_rax_is_valid(ghcb)) 2121 goto vmgexit_err; 2122 break; 2123 case SVM_EXIT_RDTSC: 2124 break; 2125 case SVM_EXIT_RDPMC: 2126 if (!ghcb_rcx_is_valid(ghcb)) 2127 goto vmgexit_err; 2128 break; 2129 case SVM_EXIT_CPUID: 2130 if (!ghcb_rax_is_valid(ghcb) || 2131 !ghcb_rcx_is_valid(ghcb)) 2132 goto vmgexit_err; 2133 if (ghcb_get_rax(ghcb) == 0xd) 2134 if (!ghcb_xcr0_is_valid(ghcb)) 2135 goto vmgexit_err; 2136 break; 2137 case SVM_EXIT_INVD: 2138 break; 2139 case SVM_EXIT_IOIO: 2140 if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) { 2141 if (!ghcb_sw_scratch_is_valid(ghcb)) 2142 goto vmgexit_err; 2143 } else { 2144 if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK)) 2145 if (!ghcb_rax_is_valid(ghcb)) 2146 goto vmgexit_err; 2147 } 2148 break; 2149 case SVM_EXIT_MSR: 2150 if (!ghcb_rcx_is_valid(ghcb)) 2151 goto vmgexit_err; 2152 if (ghcb_get_sw_exit_info_1(ghcb)) { 2153 if (!ghcb_rax_is_valid(ghcb) || 2154 !ghcb_rdx_is_valid(ghcb)) 2155 goto vmgexit_err; 2156 } 2157 break; 2158 case SVM_EXIT_VMMCALL: 2159 if (!ghcb_rax_is_valid(ghcb) || 2160 !ghcb_cpl_is_valid(ghcb)) 2161 goto vmgexit_err; 2162 break; 2163 case SVM_EXIT_RDTSCP: 2164 break; 2165 case SVM_EXIT_WBINVD: 2166 break; 2167 case SVM_EXIT_MONITOR: 2168 if (!ghcb_rax_is_valid(ghcb) || 2169 !ghcb_rcx_is_valid(ghcb) || 2170 !ghcb_rdx_is_valid(ghcb)) 2171 goto vmgexit_err; 2172 break; 2173 case SVM_EXIT_MWAIT: 2174 if (!ghcb_rax_is_valid(ghcb) || 2175 !ghcb_rcx_is_valid(ghcb)) 2176 goto vmgexit_err; 2177 break; 2178 case SVM_VMGEXIT_MMIO_READ: 2179 case SVM_VMGEXIT_MMIO_WRITE: 2180 if (!ghcb_sw_scratch_is_valid(ghcb)) 2181 goto vmgexit_err; 2182 break; 2183 case SVM_VMGEXIT_NMI_COMPLETE: 2184 case SVM_VMGEXIT_AP_HLT_LOOP: 2185 case SVM_VMGEXIT_AP_JUMP_TABLE: 2186 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2187 break; 2188 default: 2189 goto vmgexit_err; 2190 } 2191 2192 return 0; 2193 2194 vmgexit_err: 2195 vcpu = &svm->vcpu; 2196 2197 if (ghcb->ghcb_usage) { 2198 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 2199 ghcb->ghcb_usage); 2200 } else { 2201 vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n", 2202 exit_code); 2203 dump_ghcb(svm); 2204 } 2205 2206 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 2207 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 2208 vcpu->run->internal.ndata = 2; 2209 vcpu->run->internal.data[0] = exit_code; 2210 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 2211 2212 return -EINVAL; 2213 } 2214 2215 void sev_es_unmap_ghcb(struct vcpu_svm *svm) 2216 { 2217 if (!svm->ghcb) 2218 return; 2219 2220 if (svm->ghcb_sa_free) { 2221 /* 2222 * The scratch area lives outside the GHCB, so there is a 2223 * buffer that, depending on the operation performed, may 2224 * need to be synced, then freed. 2225 */ 2226 if (svm->ghcb_sa_sync) { 2227 kvm_write_guest(svm->vcpu.kvm, 2228 ghcb_get_sw_scratch(svm->ghcb), 2229 svm->ghcb_sa, svm->ghcb_sa_len); 2230 svm->ghcb_sa_sync = false; 2231 } 2232 2233 kfree(svm->ghcb_sa); 2234 svm->ghcb_sa = NULL; 2235 svm->ghcb_sa_free = false; 2236 } 2237 2238 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->ghcb); 2239 2240 sev_es_sync_to_ghcb(svm); 2241 2242 kvm_vcpu_unmap(&svm->vcpu, &svm->ghcb_map, true); 2243 svm->ghcb = NULL; 2244 } 2245 2246 void pre_sev_run(struct vcpu_svm *svm, int cpu) 2247 { 2248 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 2249 int asid = sev_get_asid(svm->vcpu.kvm); 2250 2251 /* Assign the asid allocated with this SEV guest */ 2252 svm->asid = asid; 2253 2254 /* 2255 * Flush guest TLB: 2256 * 2257 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 2258 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 2259 */ 2260 if (sd->sev_vmcbs[asid] == svm->vmcb && 2261 svm->vcpu.arch.last_vmentry_cpu == cpu) 2262 return; 2263 2264 sd->sev_vmcbs[asid] = svm->vmcb; 2265 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 2266 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 2267 } 2268 2269 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 2270 static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 2271 { 2272 struct vmcb_control_area *control = &svm->vmcb->control; 2273 struct ghcb *ghcb = svm->ghcb; 2274 u64 ghcb_scratch_beg, ghcb_scratch_end; 2275 u64 scratch_gpa_beg, scratch_gpa_end; 2276 void *scratch_va; 2277 2278 scratch_gpa_beg = ghcb_get_sw_scratch(ghcb); 2279 if (!scratch_gpa_beg) { 2280 pr_err("vmgexit: scratch gpa not provided\n"); 2281 return false; 2282 } 2283 2284 scratch_gpa_end = scratch_gpa_beg + len; 2285 if (scratch_gpa_end < scratch_gpa_beg) { 2286 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 2287 len, scratch_gpa_beg); 2288 return false; 2289 } 2290 2291 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 2292 /* Scratch area begins within GHCB */ 2293 ghcb_scratch_beg = control->ghcb_gpa + 2294 offsetof(struct ghcb, shared_buffer); 2295 ghcb_scratch_end = control->ghcb_gpa + 2296 offsetof(struct ghcb, reserved_1); 2297 2298 /* 2299 * If the scratch area begins within the GHCB, it must be 2300 * completely contained in the GHCB shared buffer area. 2301 */ 2302 if (scratch_gpa_beg < ghcb_scratch_beg || 2303 scratch_gpa_end > ghcb_scratch_end) { 2304 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 2305 scratch_gpa_beg, scratch_gpa_end); 2306 return false; 2307 } 2308 2309 scratch_va = (void *)svm->ghcb; 2310 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 2311 } else { 2312 /* 2313 * The guest memory must be read into a kernel buffer, so 2314 * limit the size 2315 */ 2316 if (len > GHCB_SCRATCH_AREA_LIMIT) { 2317 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 2318 len, GHCB_SCRATCH_AREA_LIMIT); 2319 return false; 2320 } 2321 scratch_va = kzalloc(len, GFP_KERNEL_ACCOUNT); 2322 if (!scratch_va) 2323 return false; 2324 2325 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 2326 /* Unable to copy scratch area from guest */ 2327 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 2328 2329 kfree(scratch_va); 2330 return false; 2331 } 2332 2333 /* 2334 * The scratch area is outside the GHCB. The operation will 2335 * dictate whether the buffer needs to be synced before running 2336 * the vCPU next time (i.e. a read was requested so the data 2337 * must be written back to the guest memory). 2338 */ 2339 svm->ghcb_sa_sync = sync; 2340 svm->ghcb_sa_free = true; 2341 } 2342 2343 svm->ghcb_sa = scratch_va; 2344 svm->ghcb_sa_len = len; 2345 2346 return true; 2347 } 2348 2349 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 2350 unsigned int pos) 2351 { 2352 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 2353 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 2354 } 2355 2356 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 2357 { 2358 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 2359 } 2360 2361 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 2362 { 2363 svm->vmcb->control.ghcb_gpa = value; 2364 } 2365 2366 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 2367 { 2368 struct vmcb_control_area *control = &svm->vmcb->control; 2369 struct kvm_vcpu *vcpu = &svm->vcpu; 2370 u64 ghcb_info; 2371 int ret = 1; 2372 2373 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 2374 2375 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 2376 control->ghcb_gpa); 2377 2378 switch (ghcb_info) { 2379 case GHCB_MSR_SEV_INFO_REQ: 2380 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2381 GHCB_VERSION_MIN, 2382 sev_enc_bit)); 2383 break; 2384 case GHCB_MSR_CPUID_REQ: { 2385 u64 cpuid_fn, cpuid_reg, cpuid_value; 2386 2387 cpuid_fn = get_ghcb_msr_bits(svm, 2388 GHCB_MSR_CPUID_FUNC_MASK, 2389 GHCB_MSR_CPUID_FUNC_POS); 2390 2391 /* Initialize the registers needed by the CPUID intercept */ 2392 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 2393 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 2394 2395 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); 2396 if (!ret) { 2397 ret = -EINVAL; 2398 break; 2399 } 2400 2401 cpuid_reg = get_ghcb_msr_bits(svm, 2402 GHCB_MSR_CPUID_REG_MASK, 2403 GHCB_MSR_CPUID_REG_POS); 2404 if (cpuid_reg == 0) 2405 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 2406 else if (cpuid_reg == 1) 2407 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 2408 else if (cpuid_reg == 2) 2409 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 2410 else 2411 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 2412 2413 set_ghcb_msr_bits(svm, cpuid_value, 2414 GHCB_MSR_CPUID_VALUE_MASK, 2415 GHCB_MSR_CPUID_VALUE_POS); 2416 2417 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 2418 GHCB_MSR_INFO_MASK, 2419 GHCB_MSR_INFO_POS); 2420 break; 2421 } 2422 case GHCB_MSR_TERM_REQ: { 2423 u64 reason_set, reason_code; 2424 2425 reason_set = get_ghcb_msr_bits(svm, 2426 GHCB_MSR_TERM_REASON_SET_MASK, 2427 GHCB_MSR_TERM_REASON_SET_POS); 2428 reason_code = get_ghcb_msr_bits(svm, 2429 GHCB_MSR_TERM_REASON_MASK, 2430 GHCB_MSR_TERM_REASON_POS); 2431 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 2432 reason_set, reason_code); 2433 fallthrough; 2434 } 2435 default: 2436 ret = -EINVAL; 2437 } 2438 2439 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 2440 control->ghcb_gpa, ret); 2441 2442 return ret; 2443 } 2444 2445 int sev_handle_vmgexit(struct kvm_vcpu *vcpu) 2446 { 2447 struct vcpu_svm *svm = to_svm(vcpu); 2448 struct vmcb_control_area *control = &svm->vmcb->control; 2449 u64 ghcb_gpa, exit_code; 2450 struct ghcb *ghcb; 2451 int ret; 2452 2453 /* Validate the GHCB */ 2454 ghcb_gpa = control->ghcb_gpa; 2455 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 2456 return sev_handle_vmgexit_msr_protocol(svm); 2457 2458 if (!ghcb_gpa) { 2459 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); 2460 return -EINVAL; 2461 } 2462 2463 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->ghcb_map)) { 2464 /* Unable to map GHCB from guest */ 2465 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 2466 ghcb_gpa); 2467 return -EINVAL; 2468 } 2469 2470 svm->ghcb = svm->ghcb_map.hva; 2471 ghcb = svm->ghcb_map.hva; 2472 2473 trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb); 2474 2475 exit_code = ghcb_get_sw_exit_code(ghcb); 2476 2477 ret = sev_es_validate_vmgexit(svm); 2478 if (ret) 2479 return ret; 2480 2481 sev_es_sync_from_ghcb(svm); 2482 ghcb_set_sw_exit_info_1(ghcb, 0); 2483 ghcb_set_sw_exit_info_2(ghcb, 0); 2484 2485 ret = -EINVAL; 2486 switch (exit_code) { 2487 case SVM_VMGEXIT_MMIO_READ: 2488 if (!setup_vmgexit_scratch(svm, true, control->exit_info_2)) 2489 break; 2490 2491 ret = kvm_sev_es_mmio_read(vcpu, 2492 control->exit_info_1, 2493 control->exit_info_2, 2494 svm->ghcb_sa); 2495 break; 2496 case SVM_VMGEXIT_MMIO_WRITE: 2497 if (!setup_vmgexit_scratch(svm, false, control->exit_info_2)) 2498 break; 2499 2500 ret = kvm_sev_es_mmio_write(vcpu, 2501 control->exit_info_1, 2502 control->exit_info_2, 2503 svm->ghcb_sa); 2504 break; 2505 case SVM_VMGEXIT_NMI_COMPLETE: 2506 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET); 2507 break; 2508 case SVM_VMGEXIT_AP_HLT_LOOP: 2509 ret = kvm_emulate_ap_reset_hold(vcpu); 2510 break; 2511 case SVM_VMGEXIT_AP_JUMP_TABLE: { 2512 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 2513 2514 switch (control->exit_info_1) { 2515 case 0: 2516 /* Set AP jump table address */ 2517 sev->ap_jump_table = control->exit_info_2; 2518 break; 2519 case 1: 2520 /* Get AP jump table address */ 2521 ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table); 2522 break; 2523 default: 2524 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 2525 control->exit_info_1); 2526 ghcb_set_sw_exit_info_1(ghcb, 1); 2527 ghcb_set_sw_exit_info_2(ghcb, 2528 X86_TRAP_UD | 2529 SVM_EVTINJ_TYPE_EXEPT | 2530 SVM_EVTINJ_VALID); 2531 } 2532 2533 ret = 1; 2534 break; 2535 } 2536 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2537 vcpu_unimpl(vcpu, 2538 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 2539 control->exit_info_1, control->exit_info_2); 2540 break; 2541 default: 2542 ret = svm_invoke_exit_handler(vcpu, exit_code); 2543 } 2544 2545 return ret; 2546 } 2547 2548 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 2549 { 2550 if (!setup_vmgexit_scratch(svm, in, svm->vmcb->control.exit_info_2)) 2551 return -EINVAL; 2552 2553 return kvm_sev_es_string_io(&svm->vcpu, size, port, 2554 svm->ghcb_sa, svm->ghcb_sa_len, in); 2555 } 2556 2557 void sev_es_init_vmcb(struct vcpu_svm *svm) 2558 { 2559 struct kvm_vcpu *vcpu = &svm->vcpu; 2560 2561 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 2562 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 2563 2564 /* 2565 * An SEV-ES guest requires a VMSA area that is a separate from the 2566 * VMCB page. Do not include the encryption mask on the VMSA physical 2567 * address since hardware will access it using the guest key. 2568 */ 2569 svm->vmcb->control.vmsa_pa = __pa(svm->vmsa); 2570 2571 /* Can't intercept CR register access, HV can't modify CR registers */ 2572 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 2573 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 2574 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 2575 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 2576 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 2577 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 2578 2579 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 2580 2581 /* Track EFER/CR register changes */ 2582 svm_set_intercept(svm, TRAP_EFER_WRITE); 2583 svm_set_intercept(svm, TRAP_CR0_WRITE); 2584 svm_set_intercept(svm, TRAP_CR4_WRITE); 2585 svm_set_intercept(svm, TRAP_CR8_WRITE); 2586 2587 /* No support for enable_vmware_backdoor */ 2588 clr_exception_intercept(svm, GP_VECTOR); 2589 2590 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 2591 svm_clr_intercept(svm, INTERCEPT_XSETBV); 2592 2593 /* Clear intercepts on selected MSRs */ 2594 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); 2595 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); 2596 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 2597 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 2598 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 2599 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 2600 } 2601 2602 void sev_es_create_vcpu(struct vcpu_svm *svm) 2603 { 2604 /* 2605 * Set the GHCB MSR value as per the GHCB specification when creating 2606 * a vCPU for an SEV-ES guest. 2607 */ 2608 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2609 GHCB_VERSION_MIN, 2610 sev_enc_bit)); 2611 } 2612 2613 void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu) 2614 { 2615 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 2616 struct vmcb_save_area *hostsa; 2617 2618 /* 2619 * As an SEV-ES guest, hardware will restore the host state on VMEXIT, 2620 * of which one step is to perform a VMLOAD. Since hardware does not 2621 * perform a VMSAVE on VMRUN, the host savearea must be updated. 2622 */ 2623 vmsave(__sme_page_pa(sd->save_area)); 2624 2625 /* XCR0 is restored on VMEXIT, save the current host value */ 2626 hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400); 2627 hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 2628 2629 /* PKRU is restored on VMEXIT, save the current host value */ 2630 hostsa->pkru = read_pkru(); 2631 2632 /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */ 2633 hostsa->xss = host_xss; 2634 } 2635 2636 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 2637 { 2638 struct vcpu_svm *svm = to_svm(vcpu); 2639 2640 /* First SIPI: Use the values as initially set by the VMM */ 2641 if (!svm->received_first_sipi) { 2642 svm->received_first_sipi = true; 2643 return; 2644 } 2645 2646 /* 2647 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where 2648 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a 2649 * non-zero value. 2650 */ 2651 if (!svm->ghcb) 2652 return; 2653 2654 ghcb_set_sw_exit_info_2(svm->ghcb, 1); 2655 } 2656