1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 10 #include <linux/kvm_types.h> 11 #include <linux/kvm_host.h> 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/psp-sev.h> 15 #include <linux/pagemap.h> 16 #include <linux/swap.h> 17 #include <linux/misc_cgroup.h> 18 #include <linux/processor.h> 19 #include <linux/trace_events.h> 20 21 #include <asm/pkru.h> 22 #include <asm/trapnr.h> 23 #include <asm/fpu/xcr.h> 24 25 #include "x86.h" 26 #include "svm.h" 27 #include "svm_ops.h" 28 #include "cpuid.h" 29 #include "trace.h" 30 31 #ifndef CONFIG_KVM_AMD_SEV 32 /* 33 * When this config is not defined, SEV feature is not supported and APIs in 34 * this file are not used but this file still gets compiled into the KVM AMD 35 * module. 36 * 37 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum 38 * misc_res_type {} defined in linux/misc_cgroup.h. 39 * 40 * Below macros allow compilation to succeed. 41 */ 42 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES 43 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES 44 #endif 45 46 #ifdef CONFIG_KVM_AMD_SEV 47 /* enable/disable SEV support */ 48 static bool sev_enabled = true; 49 module_param_named(sev, sev_enabled, bool, 0444); 50 51 /* enable/disable SEV-ES support */ 52 static bool sev_es_enabled = true; 53 module_param_named(sev_es, sev_es_enabled, bool, 0444); 54 #else 55 #define sev_enabled false 56 #define sev_es_enabled false 57 #endif /* CONFIG_KVM_AMD_SEV */ 58 59 static u8 sev_enc_bit; 60 static DECLARE_RWSEM(sev_deactivate_lock); 61 static DEFINE_MUTEX(sev_bitmap_lock); 62 unsigned int max_sev_asid; 63 static unsigned int min_sev_asid; 64 static unsigned long sev_me_mask; 65 static unsigned int nr_asids; 66 static unsigned long *sev_asid_bitmap; 67 static unsigned long *sev_reclaim_asid_bitmap; 68 69 struct enc_region { 70 struct list_head list; 71 unsigned long npages; 72 struct page **pages; 73 unsigned long uaddr; 74 unsigned long size; 75 }; 76 77 /* Called with the sev_bitmap_lock held, or on shutdown */ 78 static int sev_flush_asids(int min_asid, int max_asid) 79 { 80 int ret, asid, error = 0; 81 82 /* Check if there are any ASIDs to reclaim before performing a flush */ 83 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid); 84 if (asid > max_asid) 85 return -EBUSY; 86 87 /* 88 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 89 * so it must be guarded. 90 */ 91 down_write(&sev_deactivate_lock); 92 93 wbinvd_on_all_cpus(); 94 ret = sev_guest_df_flush(&error); 95 96 up_write(&sev_deactivate_lock); 97 98 if (ret) 99 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error); 100 101 return ret; 102 } 103 104 static inline bool is_mirroring_enc_context(struct kvm *kvm) 105 { 106 return !!to_kvm_svm(kvm)->sev_info.enc_context_owner; 107 } 108 109 /* Must be called with the sev_bitmap_lock held */ 110 static bool __sev_recycle_asids(int min_asid, int max_asid) 111 { 112 if (sev_flush_asids(min_asid, max_asid)) 113 return false; 114 115 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 116 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 117 nr_asids); 118 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids); 119 120 return true; 121 } 122 123 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev) 124 { 125 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 126 return misc_cg_try_charge(type, sev->misc_cg, 1); 127 } 128 129 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev) 130 { 131 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 132 misc_cg_uncharge(type, sev->misc_cg, 1); 133 } 134 135 static int sev_asid_new(struct kvm_sev_info *sev) 136 { 137 int asid, min_asid, max_asid, ret; 138 bool retry = true; 139 140 WARN_ON(sev->misc_cg); 141 sev->misc_cg = get_current_misc_cg(); 142 ret = sev_misc_cg_try_charge(sev); 143 if (ret) { 144 put_misc_cg(sev->misc_cg); 145 sev->misc_cg = NULL; 146 return ret; 147 } 148 149 mutex_lock(&sev_bitmap_lock); 150 151 /* 152 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 153 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 154 */ 155 min_asid = sev->es_active ? 1 : min_sev_asid; 156 max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 157 again: 158 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid); 159 if (asid > max_asid) { 160 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 161 retry = false; 162 goto again; 163 } 164 mutex_unlock(&sev_bitmap_lock); 165 ret = -EBUSY; 166 goto e_uncharge; 167 } 168 169 __set_bit(asid, sev_asid_bitmap); 170 171 mutex_unlock(&sev_bitmap_lock); 172 173 return asid; 174 e_uncharge: 175 sev_misc_cg_uncharge(sev); 176 put_misc_cg(sev->misc_cg); 177 sev->misc_cg = NULL; 178 return ret; 179 } 180 181 static int sev_get_asid(struct kvm *kvm) 182 { 183 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 184 185 return sev->asid; 186 } 187 188 static void sev_asid_free(struct kvm_sev_info *sev) 189 { 190 struct svm_cpu_data *sd; 191 int cpu; 192 193 mutex_lock(&sev_bitmap_lock); 194 195 __set_bit(sev->asid, sev_reclaim_asid_bitmap); 196 197 for_each_possible_cpu(cpu) { 198 sd = per_cpu(svm_data, cpu); 199 sd->sev_vmcbs[sev->asid] = NULL; 200 } 201 202 mutex_unlock(&sev_bitmap_lock); 203 204 sev_misc_cg_uncharge(sev); 205 put_misc_cg(sev->misc_cg); 206 sev->misc_cg = NULL; 207 } 208 209 static void sev_decommission(unsigned int handle) 210 { 211 struct sev_data_decommission decommission; 212 213 if (!handle) 214 return; 215 216 decommission.handle = handle; 217 sev_guest_decommission(&decommission, NULL); 218 } 219 220 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 221 { 222 struct sev_data_deactivate deactivate; 223 224 if (!handle) 225 return; 226 227 deactivate.handle = handle; 228 229 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 230 down_read(&sev_deactivate_lock); 231 sev_guest_deactivate(&deactivate, NULL); 232 up_read(&sev_deactivate_lock); 233 234 sev_decommission(handle); 235 } 236 237 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 238 { 239 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 240 int asid, ret; 241 242 if (kvm->created_vcpus) 243 return -EINVAL; 244 245 ret = -EBUSY; 246 if (unlikely(sev->active)) 247 return ret; 248 249 sev->active = true; 250 sev->es_active = argp->id == KVM_SEV_ES_INIT; 251 asid = sev_asid_new(sev); 252 if (asid < 0) 253 goto e_no_asid; 254 sev->asid = asid; 255 256 ret = sev_platform_init(&argp->error); 257 if (ret) 258 goto e_free; 259 260 INIT_LIST_HEAD(&sev->regions_list); 261 262 return 0; 263 264 e_free: 265 sev_asid_free(sev); 266 sev->asid = 0; 267 e_no_asid: 268 sev->es_active = false; 269 sev->active = false; 270 return ret; 271 } 272 273 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 274 { 275 struct sev_data_activate activate; 276 int asid = sev_get_asid(kvm); 277 int ret; 278 279 /* activate ASID on the given handle */ 280 activate.handle = handle; 281 activate.asid = asid; 282 ret = sev_guest_activate(&activate, error); 283 284 return ret; 285 } 286 287 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 288 { 289 struct fd f; 290 int ret; 291 292 f = fdget(fd); 293 if (!f.file) 294 return -EBADF; 295 296 ret = sev_issue_cmd_external_user(f.file, id, data, error); 297 298 fdput(f); 299 return ret; 300 } 301 302 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 303 { 304 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 305 306 return __sev_issue_cmd(sev->fd, id, data, error); 307 } 308 309 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 310 { 311 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 312 struct sev_data_launch_start start; 313 struct kvm_sev_launch_start params; 314 void *dh_blob, *session_blob; 315 int *error = &argp->error; 316 int ret; 317 318 if (!sev_guest(kvm)) 319 return -ENOTTY; 320 321 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 322 return -EFAULT; 323 324 memset(&start, 0, sizeof(start)); 325 326 dh_blob = NULL; 327 if (params.dh_uaddr) { 328 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 329 if (IS_ERR(dh_blob)) 330 return PTR_ERR(dh_blob); 331 332 start.dh_cert_address = __sme_set(__pa(dh_blob)); 333 start.dh_cert_len = params.dh_len; 334 } 335 336 session_blob = NULL; 337 if (params.session_uaddr) { 338 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 339 if (IS_ERR(session_blob)) { 340 ret = PTR_ERR(session_blob); 341 goto e_free_dh; 342 } 343 344 start.session_address = __sme_set(__pa(session_blob)); 345 start.session_len = params.session_len; 346 } 347 348 start.handle = params.handle; 349 start.policy = params.policy; 350 351 /* create memory encryption context */ 352 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); 353 if (ret) 354 goto e_free_session; 355 356 /* Bind ASID to this guest */ 357 ret = sev_bind_asid(kvm, start.handle, error); 358 if (ret) { 359 sev_decommission(start.handle); 360 goto e_free_session; 361 } 362 363 /* return handle to userspace */ 364 params.handle = start.handle; 365 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { 366 sev_unbind_asid(kvm, start.handle); 367 ret = -EFAULT; 368 goto e_free_session; 369 } 370 371 sev->handle = start.handle; 372 sev->fd = argp->sev_fd; 373 374 e_free_session: 375 kfree(session_blob); 376 e_free_dh: 377 kfree(dh_blob); 378 return ret; 379 } 380 381 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 382 unsigned long ulen, unsigned long *n, 383 int write) 384 { 385 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 386 unsigned long npages, size; 387 int npinned; 388 unsigned long locked, lock_limit; 389 struct page **pages; 390 unsigned long first, last; 391 int ret; 392 393 lockdep_assert_held(&kvm->lock); 394 395 if (ulen == 0 || uaddr + ulen < uaddr) 396 return ERR_PTR(-EINVAL); 397 398 /* Calculate number of pages. */ 399 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 400 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 401 npages = (last - first + 1); 402 403 locked = sev->pages_locked + npages; 404 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 405 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 406 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 407 return ERR_PTR(-ENOMEM); 408 } 409 410 if (WARN_ON_ONCE(npages > INT_MAX)) 411 return ERR_PTR(-EINVAL); 412 413 /* Avoid using vmalloc for smaller buffers. */ 414 size = npages * sizeof(struct page *); 415 if (size > PAGE_SIZE) 416 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 417 else 418 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 419 420 if (!pages) 421 return ERR_PTR(-ENOMEM); 422 423 /* Pin the user virtual address. */ 424 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); 425 if (npinned != npages) { 426 pr_err("SEV: Failure locking %lu pages.\n", npages); 427 ret = -ENOMEM; 428 goto err; 429 } 430 431 *n = npages; 432 sev->pages_locked = locked; 433 434 return pages; 435 436 err: 437 if (npinned > 0) 438 unpin_user_pages(pages, npinned); 439 440 kvfree(pages); 441 return ERR_PTR(ret); 442 } 443 444 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 445 unsigned long npages) 446 { 447 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 448 449 unpin_user_pages(pages, npages); 450 kvfree(pages); 451 sev->pages_locked -= npages; 452 } 453 454 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 455 { 456 uint8_t *page_virtual; 457 unsigned long i; 458 459 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 460 pages == NULL) 461 return; 462 463 for (i = 0; i < npages; i++) { 464 page_virtual = kmap_atomic(pages[i]); 465 clflush_cache_range(page_virtual, PAGE_SIZE); 466 kunmap_atomic(page_virtual); 467 } 468 } 469 470 static unsigned long get_num_contig_pages(unsigned long idx, 471 struct page **inpages, unsigned long npages) 472 { 473 unsigned long paddr, next_paddr; 474 unsigned long i = idx + 1, pages = 1; 475 476 /* find the number of contiguous pages starting from idx */ 477 paddr = __sme_page_pa(inpages[idx]); 478 while (i < npages) { 479 next_paddr = __sme_page_pa(inpages[i++]); 480 if ((paddr + PAGE_SIZE) == next_paddr) { 481 pages++; 482 paddr = next_paddr; 483 continue; 484 } 485 break; 486 } 487 488 return pages; 489 } 490 491 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 492 { 493 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 494 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 495 struct kvm_sev_launch_update_data params; 496 struct sev_data_launch_update_data data; 497 struct page **inpages; 498 int ret; 499 500 if (!sev_guest(kvm)) 501 return -ENOTTY; 502 503 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 504 return -EFAULT; 505 506 vaddr = params.uaddr; 507 size = params.len; 508 vaddr_end = vaddr + size; 509 510 /* Lock the user memory. */ 511 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); 512 if (IS_ERR(inpages)) 513 return PTR_ERR(inpages); 514 515 /* 516 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 517 * place; the cache may contain the data that was written unencrypted. 518 */ 519 sev_clflush_pages(inpages, npages); 520 521 data.reserved = 0; 522 data.handle = sev->handle; 523 524 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 525 int offset, len; 526 527 /* 528 * If the user buffer is not page-aligned, calculate the offset 529 * within the page. 530 */ 531 offset = vaddr & (PAGE_SIZE - 1); 532 533 /* Calculate the number of pages that can be encrypted in one go. */ 534 pages = get_num_contig_pages(i, inpages, npages); 535 536 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 537 538 data.len = len; 539 data.address = __sme_page_pa(inpages[i]) + offset; 540 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); 541 if (ret) 542 goto e_unpin; 543 544 size -= len; 545 next_vaddr = vaddr + len; 546 } 547 548 e_unpin: 549 /* content of memory is updated, mark pages dirty */ 550 for (i = 0; i < npages; i++) { 551 set_page_dirty_lock(inpages[i]); 552 mark_page_accessed(inpages[i]); 553 } 554 /* unlock the user pages */ 555 sev_unpin_memory(kvm, inpages, npages); 556 return ret; 557 } 558 559 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 560 { 561 struct vmcb_save_area *save = &svm->vmcb->save; 562 563 /* Check some debug related fields before encrypting the VMSA */ 564 if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1)) 565 return -EINVAL; 566 567 /* Sync registgers */ 568 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 569 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 570 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 571 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 572 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 573 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 574 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 575 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 576 #ifdef CONFIG_X86_64 577 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 578 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 579 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 580 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 581 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 582 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 583 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 584 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 585 #endif 586 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 587 588 /* Sync some non-GPR registers before encrypting */ 589 save->xcr0 = svm->vcpu.arch.xcr0; 590 save->pkru = svm->vcpu.arch.pkru; 591 save->xss = svm->vcpu.arch.ia32_xss; 592 save->dr6 = svm->vcpu.arch.dr6; 593 594 /* 595 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 596 * the traditional VMSA that is part of the VMCB. Copy the 597 * traditional VMSA as it has been built so far (in prep 598 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 599 */ 600 memcpy(svm->sev_es.vmsa, save, sizeof(*save)); 601 602 return 0; 603 } 604 605 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu, 606 int *error) 607 { 608 struct sev_data_launch_update_vmsa vmsa; 609 struct vcpu_svm *svm = to_svm(vcpu); 610 int ret; 611 612 /* Perform some pre-encryption checks against the VMSA */ 613 ret = sev_es_sync_vmsa(svm); 614 if (ret) 615 return ret; 616 617 /* 618 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of 619 * the VMSA memory content (i.e it will write the same memory region 620 * with the guest's key), so invalidate it first. 621 */ 622 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE); 623 624 vmsa.reserved = 0; 625 vmsa.handle = to_kvm_svm(kvm)->sev_info.handle; 626 vmsa.address = __sme_pa(svm->sev_es.vmsa); 627 vmsa.len = PAGE_SIZE; 628 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error); 629 if (ret) 630 return ret; 631 632 vcpu->arch.guest_state_protected = true; 633 return 0; 634 } 635 636 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 637 { 638 struct kvm_vcpu *vcpu; 639 int i, ret; 640 641 if (!sev_es_guest(kvm)) 642 return -ENOTTY; 643 644 kvm_for_each_vcpu(i, vcpu, kvm) { 645 ret = mutex_lock_killable(&vcpu->mutex); 646 if (ret) 647 return ret; 648 649 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error); 650 651 mutex_unlock(&vcpu->mutex); 652 if (ret) 653 return ret; 654 } 655 656 return 0; 657 } 658 659 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 660 { 661 void __user *measure = (void __user *)(uintptr_t)argp->data; 662 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 663 struct sev_data_launch_measure data; 664 struct kvm_sev_launch_measure params; 665 void __user *p = NULL; 666 void *blob = NULL; 667 int ret; 668 669 if (!sev_guest(kvm)) 670 return -ENOTTY; 671 672 if (copy_from_user(¶ms, measure, sizeof(params))) 673 return -EFAULT; 674 675 memset(&data, 0, sizeof(data)); 676 677 /* User wants to query the blob length */ 678 if (!params.len) 679 goto cmd; 680 681 p = (void __user *)(uintptr_t)params.uaddr; 682 if (p) { 683 if (params.len > SEV_FW_BLOB_MAX_SIZE) 684 return -EINVAL; 685 686 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); 687 if (!blob) 688 return -ENOMEM; 689 690 data.address = __psp_pa(blob); 691 data.len = params.len; 692 } 693 694 cmd: 695 data.handle = sev->handle; 696 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); 697 698 /* 699 * If we query the session length, FW responded with expected data. 700 */ 701 if (!params.len) 702 goto done; 703 704 if (ret) 705 goto e_free_blob; 706 707 if (blob) { 708 if (copy_to_user(p, blob, params.len)) 709 ret = -EFAULT; 710 } 711 712 done: 713 params.len = data.len; 714 if (copy_to_user(measure, ¶ms, sizeof(params))) 715 ret = -EFAULT; 716 e_free_blob: 717 kfree(blob); 718 return ret; 719 } 720 721 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 722 { 723 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 724 struct sev_data_launch_finish data; 725 726 if (!sev_guest(kvm)) 727 return -ENOTTY; 728 729 data.handle = sev->handle; 730 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); 731 } 732 733 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 734 { 735 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 736 struct kvm_sev_guest_status params; 737 struct sev_data_guest_status data; 738 int ret; 739 740 if (!sev_guest(kvm)) 741 return -ENOTTY; 742 743 memset(&data, 0, sizeof(data)); 744 745 data.handle = sev->handle; 746 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); 747 if (ret) 748 return ret; 749 750 params.policy = data.policy; 751 params.state = data.state; 752 params.handle = data.handle; 753 754 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) 755 ret = -EFAULT; 756 757 return ret; 758 } 759 760 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 761 unsigned long dst, int size, 762 int *error, bool enc) 763 { 764 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 765 struct sev_data_dbg data; 766 767 data.reserved = 0; 768 data.handle = sev->handle; 769 data.dst_addr = dst; 770 data.src_addr = src; 771 data.len = size; 772 773 return sev_issue_cmd(kvm, 774 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 775 &data, error); 776 } 777 778 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 779 unsigned long dst_paddr, int sz, int *err) 780 { 781 int offset; 782 783 /* 784 * Its safe to read more than we are asked, caller should ensure that 785 * destination has enough space. 786 */ 787 offset = src_paddr & 15; 788 src_paddr = round_down(src_paddr, 16); 789 sz = round_up(sz + offset, 16); 790 791 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 792 } 793 794 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 795 void __user *dst_uaddr, 796 unsigned long dst_paddr, 797 int size, int *err) 798 { 799 struct page *tpage = NULL; 800 int ret, offset; 801 802 /* if inputs are not 16-byte then use intermediate buffer */ 803 if (!IS_ALIGNED(dst_paddr, 16) || 804 !IS_ALIGNED(paddr, 16) || 805 !IS_ALIGNED(size, 16)) { 806 tpage = (void *)alloc_page(GFP_KERNEL); 807 if (!tpage) 808 return -ENOMEM; 809 810 dst_paddr = __sme_page_pa(tpage); 811 } 812 813 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 814 if (ret) 815 goto e_free; 816 817 if (tpage) { 818 offset = paddr & 15; 819 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) 820 ret = -EFAULT; 821 } 822 823 e_free: 824 if (tpage) 825 __free_page(tpage); 826 827 return ret; 828 } 829 830 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 831 void __user *vaddr, 832 unsigned long dst_paddr, 833 void __user *dst_vaddr, 834 int size, int *error) 835 { 836 struct page *src_tpage = NULL; 837 struct page *dst_tpage = NULL; 838 int ret, len = size; 839 840 /* If source buffer is not aligned then use an intermediate buffer */ 841 if (!IS_ALIGNED((unsigned long)vaddr, 16)) { 842 src_tpage = alloc_page(GFP_KERNEL); 843 if (!src_tpage) 844 return -ENOMEM; 845 846 if (copy_from_user(page_address(src_tpage), vaddr, size)) { 847 __free_page(src_tpage); 848 return -EFAULT; 849 } 850 851 paddr = __sme_page_pa(src_tpage); 852 } 853 854 /* 855 * If destination buffer or length is not aligned then do read-modify-write: 856 * - decrypt destination in an intermediate buffer 857 * - copy the source buffer in an intermediate buffer 858 * - use the intermediate buffer as source buffer 859 */ 860 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 861 int dst_offset; 862 863 dst_tpage = alloc_page(GFP_KERNEL); 864 if (!dst_tpage) { 865 ret = -ENOMEM; 866 goto e_free; 867 } 868 869 ret = __sev_dbg_decrypt(kvm, dst_paddr, 870 __sme_page_pa(dst_tpage), size, error); 871 if (ret) 872 goto e_free; 873 874 /* 875 * If source is kernel buffer then use memcpy() otherwise 876 * copy_from_user(). 877 */ 878 dst_offset = dst_paddr & 15; 879 880 if (src_tpage) 881 memcpy(page_address(dst_tpage) + dst_offset, 882 page_address(src_tpage), size); 883 else { 884 if (copy_from_user(page_address(dst_tpage) + dst_offset, 885 vaddr, size)) { 886 ret = -EFAULT; 887 goto e_free; 888 } 889 } 890 891 paddr = __sme_page_pa(dst_tpage); 892 dst_paddr = round_down(dst_paddr, 16); 893 len = round_up(size, 16); 894 } 895 896 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 897 898 e_free: 899 if (src_tpage) 900 __free_page(src_tpage); 901 if (dst_tpage) 902 __free_page(dst_tpage); 903 return ret; 904 } 905 906 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 907 { 908 unsigned long vaddr, vaddr_end, next_vaddr; 909 unsigned long dst_vaddr; 910 struct page **src_p, **dst_p; 911 struct kvm_sev_dbg debug; 912 unsigned long n; 913 unsigned int size; 914 int ret; 915 916 if (!sev_guest(kvm)) 917 return -ENOTTY; 918 919 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) 920 return -EFAULT; 921 922 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 923 return -EINVAL; 924 if (!debug.dst_uaddr) 925 return -EINVAL; 926 927 vaddr = debug.src_uaddr; 928 size = debug.len; 929 vaddr_end = vaddr + size; 930 dst_vaddr = debug.dst_uaddr; 931 932 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 933 int len, s_off, d_off; 934 935 /* lock userspace source and destination page */ 936 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 937 if (IS_ERR(src_p)) 938 return PTR_ERR(src_p); 939 940 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); 941 if (IS_ERR(dst_p)) { 942 sev_unpin_memory(kvm, src_p, n); 943 return PTR_ERR(dst_p); 944 } 945 946 /* 947 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 948 * the pages; flush the destination too so that future accesses do not 949 * see stale data. 950 */ 951 sev_clflush_pages(src_p, 1); 952 sev_clflush_pages(dst_p, 1); 953 954 /* 955 * Since user buffer may not be page aligned, calculate the 956 * offset within the page. 957 */ 958 s_off = vaddr & ~PAGE_MASK; 959 d_off = dst_vaddr & ~PAGE_MASK; 960 len = min_t(size_t, (PAGE_SIZE - s_off), size); 961 962 if (dec) 963 ret = __sev_dbg_decrypt_user(kvm, 964 __sme_page_pa(src_p[0]) + s_off, 965 (void __user *)dst_vaddr, 966 __sme_page_pa(dst_p[0]) + d_off, 967 len, &argp->error); 968 else 969 ret = __sev_dbg_encrypt_user(kvm, 970 __sme_page_pa(src_p[0]) + s_off, 971 (void __user *)vaddr, 972 __sme_page_pa(dst_p[0]) + d_off, 973 (void __user *)dst_vaddr, 974 len, &argp->error); 975 976 sev_unpin_memory(kvm, src_p, n); 977 sev_unpin_memory(kvm, dst_p, n); 978 979 if (ret) 980 goto err; 981 982 next_vaddr = vaddr + len; 983 dst_vaddr = dst_vaddr + len; 984 size -= len; 985 } 986 err: 987 return ret; 988 } 989 990 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 991 { 992 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 993 struct sev_data_launch_secret data; 994 struct kvm_sev_launch_secret params; 995 struct page **pages; 996 void *blob, *hdr; 997 unsigned long n, i; 998 int ret, offset; 999 1000 if (!sev_guest(kvm)) 1001 return -ENOTTY; 1002 1003 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1004 return -EFAULT; 1005 1006 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); 1007 if (IS_ERR(pages)) 1008 return PTR_ERR(pages); 1009 1010 /* 1011 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 1012 * place; the cache may contain the data that was written unencrypted. 1013 */ 1014 sev_clflush_pages(pages, n); 1015 1016 /* 1017 * The secret must be copied into contiguous memory region, lets verify 1018 * that userspace memory pages are contiguous before we issue command. 1019 */ 1020 if (get_num_contig_pages(0, pages, n) != n) { 1021 ret = -EINVAL; 1022 goto e_unpin_memory; 1023 } 1024 1025 memset(&data, 0, sizeof(data)); 1026 1027 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1028 data.guest_address = __sme_page_pa(pages[0]) + offset; 1029 data.guest_len = params.guest_len; 1030 1031 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1032 if (IS_ERR(blob)) { 1033 ret = PTR_ERR(blob); 1034 goto e_unpin_memory; 1035 } 1036 1037 data.trans_address = __psp_pa(blob); 1038 data.trans_len = params.trans_len; 1039 1040 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1041 if (IS_ERR(hdr)) { 1042 ret = PTR_ERR(hdr); 1043 goto e_free_blob; 1044 } 1045 data.hdr_address = __psp_pa(hdr); 1046 data.hdr_len = params.hdr_len; 1047 1048 data.handle = sev->handle; 1049 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); 1050 1051 kfree(hdr); 1052 1053 e_free_blob: 1054 kfree(blob); 1055 e_unpin_memory: 1056 /* content of memory is updated, mark pages dirty */ 1057 for (i = 0; i < n; i++) { 1058 set_page_dirty_lock(pages[i]); 1059 mark_page_accessed(pages[i]); 1060 } 1061 sev_unpin_memory(kvm, pages, n); 1062 return ret; 1063 } 1064 1065 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1066 { 1067 void __user *report = (void __user *)(uintptr_t)argp->data; 1068 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1069 struct sev_data_attestation_report data; 1070 struct kvm_sev_attestation_report params; 1071 void __user *p; 1072 void *blob = NULL; 1073 int ret; 1074 1075 if (!sev_guest(kvm)) 1076 return -ENOTTY; 1077 1078 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1079 return -EFAULT; 1080 1081 memset(&data, 0, sizeof(data)); 1082 1083 /* User wants to query the blob length */ 1084 if (!params.len) 1085 goto cmd; 1086 1087 p = (void __user *)(uintptr_t)params.uaddr; 1088 if (p) { 1089 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1090 return -EINVAL; 1091 1092 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); 1093 if (!blob) 1094 return -ENOMEM; 1095 1096 data.address = __psp_pa(blob); 1097 data.len = params.len; 1098 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); 1099 } 1100 cmd: 1101 data.handle = sev->handle; 1102 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); 1103 /* 1104 * If we query the session length, FW responded with expected data. 1105 */ 1106 if (!params.len) 1107 goto done; 1108 1109 if (ret) 1110 goto e_free_blob; 1111 1112 if (blob) { 1113 if (copy_to_user(p, blob, params.len)) 1114 ret = -EFAULT; 1115 } 1116 1117 done: 1118 params.len = data.len; 1119 if (copy_to_user(report, ¶ms, sizeof(params))) 1120 ret = -EFAULT; 1121 e_free_blob: 1122 kfree(blob); 1123 return ret; 1124 } 1125 1126 /* Userspace wants to query session length. */ 1127 static int 1128 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, 1129 struct kvm_sev_send_start *params) 1130 { 1131 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1132 struct sev_data_send_start data; 1133 int ret; 1134 1135 memset(&data, 0, sizeof(data)); 1136 data.handle = sev->handle; 1137 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1138 1139 params->session_len = data.session_len; 1140 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1141 sizeof(struct kvm_sev_send_start))) 1142 ret = -EFAULT; 1143 1144 return ret; 1145 } 1146 1147 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1148 { 1149 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1150 struct sev_data_send_start data; 1151 struct kvm_sev_send_start params; 1152 void *amd_certs, *session_data; 1153 void *pdh_cert, *plat_certs; 1154 int ret; 1155 1156 if (!sev_guest(kvm)) 1157 return -ENOTTY; 1158 1159 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1160 sizeof(struct kvm_sev_send_start))) 1161 return -EFAULT; 1162 1163 /* if session_len is zero, userspace wants to query the session length */ 1164 if (!params.session_len) 1165 return __sev_send_start_query_session_length(kvm, argp, 1166 ¶ms); 1167 1168 /* some sanity checks */ 1169 if (!params.pdh_cert_uaddr || !params.pdh_cert_len || 1170 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) 1171 return -EINVAL; 1172 1173 /* allocate the memory to hold the session data blob */ 1174 session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT); 1175 if (!session_data) 1176 return -ENOMEM; 1177 1178 /* copy the certificate blobs from userspace */ 1179 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, 1180 params.pdh_cert_len); 1181 if (IS_ERR(pdh_cert)) { 1182 ret = PTR_ERR(pdh_cert); 1183 goto e_free_session; 1184 } 1185 1186 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, 1187 params.plat_certs_len); 1188 if (IS_ERR(plat_certs)) { 1189 ret = PTR_ERR(plat_certs); 1190 goto e_free_pdh; 1191 } 1192 1193 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, 1194 params.amd_certs_len); 1195 if (IS_ERR(amd_certs)) { 1196 ret = PTR_ERR(amd_certs); 1197 goto e_free_plat_cert; 1198 } 1199 1200 /* populate the FW SEND_START field with system physical address */ 1201 memset(&data, 0, sizeof(data)); 1202 data.pdh_cert_address = __psp_pa(pdh_cert); 1203 data.pdh_cert_len = params.pdh_cert_len; 1204 data.plat_certs_address = __psp_pa(plat_certs); 1205 data.plat_certs_len = params.plat_certs_len; 1206 data.amd_certs_address = __psp_pa(amd_certs); 1207 data.amd_certs_len = params.amd_certs_len; 1208 data.session_address = __psp_pa(session_data); 1209 data.session_len = params.session_len; 1210 data.handle = sev->handle; 1211 1212 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1213 1214 if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr, 1215 session_data, params.session_len)) { 1216 ret = -EFAULT; 1217 goto e_free_amd_cert; 1218 } 1219 1220 params.policy = data.policy; 1221 params.session_len = data.session_len; 1222 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, 1223 sizeof(struct kvm_sev_send_start))) 1224 ret = -EFAULT; 1225 1226 e_free_amd_cert: 1227 kfree(amd_certs); 1228 e_free_plat_cert: 1229 kfree(plat_certs); 1230 e_free_pdh: 1231 kfree(pdh_cert); 1232 e_free_session: 1233 kfree(session_data); 1234 return ret; 1235 } 1236 1237 /* Userspace wants to query either header or trans length. */ 1238 static int 1239 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, 1240 struct kvm_sev_send_update_data *params) 1241 { 1242 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1243 struct sev_data_send_update_data data; 1244 int ret; 1245 1246 memset(&data, 0, sizeof(data)); 1247 data.handle = sev->handle; 1248 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1249 1250 params->hdr_len = data.hdr_len; 1251 params->trans_len = data.trans_len; 1252 1253 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1254 sizeof(struct kvm_sev_send_update_data))) 1255 ret = -EFAULT; 1256 1257 return ret; 1258 } 1259 1260 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1261 { 1262 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1263 struct sev_data_send_update_data data; 1264 struct kvm_sev_send_update_data params; 1265 void *hdr, *trans_data; 1266 struct page **guest_page; 1267 unsigned long n; 1268 int ret, offset; 1269 1270 if (!sev_guest(kvm)) 1271 return -ENOTTY; 1272 1273 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1274 sizeof(struct kvm_sev_send_update_data))) 1275 return -EFAULT; 1276 1277 /* userspace wants to query either header or trans length */ 1278 if (!params.trans_len || !params.hdr_len) 1279 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); 1280 1281 if (!params.trans_uaddr || !params.guest_uaddr || 1282 !params.guest_len || !params.hdr_uaddr) 1283 return -EINVAL; 1284 1285 /* Check if we are crossing the page boundary */ 1286 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1287 if ((params.guest_len + offset > PAGE_SIZE)) 1288 return -EINVAL; 1289 1290 /* Pin guest memory */ 1291 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1292 PAGE_SIZE, &n, 0); 1293 if (IS_ERR(guest_page)) 1294 return PTR_ERR(guest_page); 1295 1296 /* allocate memory for header and transport buffer */ 1297 ret = -ENOMEM; 1298 hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT); 1299 if (!hdr) 1300 goto e_unpin; 1301 1302 trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT); 1303 if (!trans_data) 1304 goto e_free_hdr; 1305 1306 memset(&data, 0, sizeof(data)); 1307 data.hdr_address = __psp_pa(hdr); 1308 data.hdr_len = params.hdr_len; 1309 data.trans_address = __psp_pa(trans_data); 1310 data.trans_len = params.trans_len; 1311 1312 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ 1313 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1314 data.guest_address |= sev_me_mask; 1315 data.guest_len = params.guest_len; 1316 data.handle = sev->handle; 1317 1318 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1319 1320 if (ret) 1321 goto e_free_trans_data; 1322 1323 /* copy transport buffer to user space */ 1324 if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr, 1325 trans_data, params.trans_len)) { 1326 ret = -EFAULT; 1327 goto e_free_trans_data; 1328 } 1329 1330 /* Copy packet header to userspace. */ 1331 if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr, 1332 params.hdr_len)) 1333 ret = -EFAULT; 1334 1335 e_free_trans_data: 1336 kfree(trans_data); 1337 e_free_hdr: 1338 kfree(hdr); 1339 e_unpin: 1340 sev_unpin_memory(kvm, guest_page, n); 1341 1342 return ret; 1343 } 1344 1345 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1346 { 1347 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1348 struct sev_data_send_finish data; 1349 1350 if (!sev_guest(kvm)) 1351 return -ENOTTY; 1352 1353 data.handle = sev->handle; 1354 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); 1355 } 1356 1357 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) 1358 { 1359 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1360 struct sev_data_send_cancel data; 1361 1362 if (!sev_guest(kvm)) 1363 return -ENOTTY; 1364 1365 data.handle = sev->handle; 1366 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); 1367 } 1368 1369 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1370 { 1371 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1372 struct sev_data_receive_start start; 1373 struct kvm_sev_receive_start params; 1374 int *error = &argp->error; 1375 void *session_data; 1376 void *pdh_data; 1377 int ret; 1378 1379 if (!sev_guest(kvm)) 1380 return -ENOTTY; 1381 1382 /* Get parameter from the userspace */ 1383 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1384 sizeof(struct kvm_sev_receive_start))) 1385 return -EFAULT; 1386 1387 /* some sanity checks */ 1388 if (!params.pdh_uaddr || !params.pdh_len || 1389 !params.session_uaddr || !params.session_len) 1390 return -EINVAL; 1391 1392 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); 1393 if (IS_ERR(pdh_data)) 1394 return PTR_ERR(pdh_data); 1395 1396 session_data = psp_copy_user_blob(params.session_uaddr, 1397 params.session_len); 1398 if (IS_ERR(session_data)) { 1399 ret = PTR_ERR(session_data); 1400 goto e_free_pdh; 1401 } 1402 1403 memset(&start, 0, sizeof(start)); 1404 start.handle = params.handle; 1405 start.policy = params.policy; 1406 start.pdh_cert_address = __psp_pa(pdh_data); 1407 start.pdh_cert_len = params.pdh_len; 1408 start.session_address = __psp_pa(session_data); 1409 start.session_len = params.session_len; 1410 1411 /* create memory encryption context */ 1412 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, 1413 error); 1414 if (ret) 1415 goto e_free_session; 1416 1417 /* Bind ASID to this guest */ 1418 ret = sev_bind_asid(kvm, start.handle, error); 1419 if (ret) { 1420 sev_decommission(start.handle); 1421 goto e_free_session; 1422 } 1423 1424 params.handle = start.handle; 1425 if (copy_to_user((void __user *)(uintptr_t)argp->data, 1426 ¶ms, sizeof(struct kvm_sev_receive_start))) { 1427 ret = -EFAULT; 1428 sev_unbind_asid(kvm, start.handle); 1429 goto e_free_session; 1430 } 1431 1432 sev->handle = start.handle; 1433 sev->fd = argp->sev_fd; 1434 1435 e_free_session: 1436 kfree(session_data); 1437 e_free_pdh: 1438 kfree(pdh_data); 1439 1440 return ret; 1441 } 1442 1443 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1444 { 1445 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1446 struct kvm_sev_receive_update_data params; 1447 struct sev_data_receive_update_data data; 1448 void *hdr = NULL, *trans = NULL; 1449 struct page **guest_page; 1450 unsigned long n; 1451 int ret, offset; 1452 1453 if (!sev_guest(kvm)) 1454 return -EINVAL; 1455 1456 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1457 sizeof(struct kvm_sev_receive_update_data))) 1458 return -EFAULT; 1459 1460 if (!params.hdr_uaddr || !params.hdr_len || 1461 !params.guest_uaddr || !params.guest_len || 1462 !params.trans_uaddr || !params.trans_len) 1463 return -EINVAL; 1464 1465 /* Check if we are crossing the page boundary */ 1466 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1467 if ((params.guest_len + offset > PAGE_SIZE)) 1468 return -EINVAL; 1469 1470 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1471 if (IS_ERR(hdr)) 1472 return PTR_ERR(hdr); 1473 1474 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1475 if (IS_ERR(trans)) { 1476 ret = PTR_ERR(trans); 1477 goto e_free_hdr; 1478 } 1479 1480 memset(&data, 0, sizeof(data)); 1481 data.hdr_address = __psp_pa(hdr); 1482 data.hdr_len = params.hdr_len; 1483 data.trans_address = __psp_pa(trans); 1484 data.trans_len = params.trans_len; 1485 1486 /* Pin guest memory */ 1487 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1488 PAGE_SIZE, &n, 1); 1489 if (IS_ERR(guest_page)) { 1490 ret = PTR_ERR(guest_page); 1491 goto e_free_trans; 1492 } 1493 1494 /* 1495 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP 1496 * encrypts the written data with the guest's key, and the cache may 1497 * contain dirty, unencrypted data. 1498 */ 1499 sev_clflush_pages(guest_page, n); 1500 1501 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ 1502 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1503 data.guest_address |= sev_me_mask; 1504 data.guest_len = params.guest_len; 1505 data.handle = sev->handle; 1506 1507 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, 1508 &argp->error); 1509 1510 sev_unpin_memory(kvm, guest_page, n); 1511 1512 e_free_trans: 1513 kfree(trans); 1514 e_free_hdr: 1515 kfree(hdr); 1516 1517 return ret; 1518 } 1519 1520 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1521 { 1522 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1523 struct sev_data_receive_finish data; 1524 1525 if (!sev_guest(kvm)) 1526 return -ENOTTY; 1527 1528 data.handle = sev->handle; 1529 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); 1530 } 1531 1532 static bool is_cmd_allowed_from_mirror(u32 cmd_id) 1533 { 1534 /* 1535 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES 1536 * active mirror VMs. Also allow the debugging and status commands. 1537 */ 1538 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA || 1539 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT || 1540 cmd_id == KVM_SEV_DBG_ENCRYPT) 1541 return true; 1542 1543 return false; 1544 } 1545 1546 static int sev_lock_for_migration(struct kvm *kvm) 1547 { 1548 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1549 1550 /* 1551 * Bail if this VM is already involved in a migration to avoid deadlock 1552 * between two VMs trying to migrate to/from each other. 1553 */ 1554 if (atomic_cmpxchg_acquire(&sev->migration_in_progress, 0, 1)) 1555 return -EBUSY; 1556 1557 mutex_lock(&kvm->lock); 1558 1559 return 0; 1560 } 1561 1562 static void sev_unlock_after_migration(struct kvm *kvm) 1563 { 1564 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1565 1566 mutex_unlock(&kvm->lock); 1567 atomic_set_release(&sev->migration_in_progress, 0); 1568 } 1569 1570 1571 static int sev_lock_vcpus_for_migration(struct kvm *kvm) 1572 { 1573 struct kvm_vcpu *vcpu; 1574 int i, j; 1575 1576 kvm_for_each_vcpu(i, vcpu, kvm) { 1577 if (mutex_lock_killable(&vcpu->mutex)) 1578 goto out_unlock; 1579 } 1580 1581 return 0; 1582 1583 out_unlock: 1584 kvm_for_each_vcpu(j, vcpu, kvm) { 1585 if (i == j) 1586 break; 1587 1588 mutex_unlock(&vcpu->mutex); 1589 } 1590 return -EINTR; 1591 } 1592 1593 static void sev_unlock_vcpus_for_migration(struct kvm *kvm) 1594 { 1595 struct kvm_vcpu *vcpu; 1596 int i; 1597 1598 kvm_for_each_vcpu(i, vcpu, kvm) { 1599 mutex_unlock(&vcpu->mutex); 1600 } 1601 } 1602 1603 static void sev_migrate_from(struct kvm_sev_info *dst, 1604 struct kvm_sev_info *src) 1605 { 1606 dst->active = true; 1607 dst->asid = src->asid; 1608 dst->handle = src->handle; 1609 dst->pages_locked = src->pages_locked; 1610 1611 src->asid = 0; 1612 src->active = false; 1613 src->handle = 0; 1614 src->pages_locked = 0; 1615 1616 INIT_LIST_HEAD(&dst->regions_list); 1617 list_replace_init(&src->regions_list, &dst->regions_list); 1618 } 1619 1620 static int sev_es_migrate_from(struct kvm *dst, struct kvm *src) 1621 { 1622 int i; 1623 struct kvm_vcpu *dst_vcpu, *src_vcpu; 1624 struct vcpu_svm *dst_svm, *src_svm; 1625 1626 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus)) 1627 return -EINVAL; 1628 1629 kvm_for_each_vcpu(i, src_vcpu, src) { 1630 if (!src_vcpu->arch.guest_state_protected) 1631 return -EINVAL; 1632 } 1633 1634 kvm_for_each_vcpu(i, src_vcpu, src) { 1635 src_svm = to_svm(src_vcpu); 1636 dst_vcpu = kvm_get_vcpu(dst, i); 1637 dst_svm = to_svm(dst_vcpu); 1638 1639 /* 1640 * Transfer VMSA and GHCB state to the destination. Nullify and 1641 * clear source fields as appropriate, the state now belongs to 1642 * the destination. 1643 */ 1644 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es)); 1645 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa; 1646 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa; 1647 dst_vcpu->arch.guest_state_protected = true; 1648 1649 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es)); 1650 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE; 1651 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE; 1652 src_vcpu->arch.guest_state_protected = false; 1653 } 1654 to_kvm_svm(src)->sev_info.es_active = false; 1655 to_kvm_svm(dst)->sev_info.es_active = true; 1656 1657 return 0; 1658 } 1659 1660 int svm_vm_migrate_from(struct kvm *kvm, unsigned int source_fd) 1661 { 1662 struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info; 1663 struct kvm_sev_info *src_sev, *cg_cleanup_sev; 1664 struct file *source_kvm_file; 1665 struct kvm *source_kvm; 1666 bool charged = false; 1667 int ret; 1668 1669 ret = sev_lock_for_migration(kvm); 1670 if (ret) 1671 return ret; 1672 1673 if (sev_guest(kvm)) { 1674 ret = -EINVAL; 1675 goto out_unlock; 1676 } 1677 1678 source_kvm_file = fget(source_fd); 1679 if (!file_is_kvm(source_kvm_file)) { 1680 ret = -EBADF; 1681 goto out_fput; 1682 } 1683 1684 source_kvm = source_kvm_file->private_data; 1685 ret = sev_lock_for_migration(source_kvm); 1686 if (ret) 1687 goto out_fput; 1688 1689 if (!sev_guest(source_kvm)) { 1690 ret = -EINVAL; 1691 goto out_source; 1692 } 1693 1694 src_sev = &to_kvm_svm(source_kvm)->sev_info; 1695 dst_sev->misc_cg = get_current_misc_cg(); 1696 cg_cleanup_sev = dst_sev; 1697 if (dst_sev->misc_cg != src_sev->misc_cg) { 1698 ret = sev_misc_cg_try_charge(dst_sev); 1699 if (ret) 1700 goto out_dst_cgroup; 1701 charged = true; 1702 } 1703 1704 ret = sev_lock_vcpus_for_migration(kvm); 1705 if (ret) 1706 goto out_dst_cgroup; 1707 ret = sev_lock_vcpus_for_migration(source_kvm); 1708 if (ret) 1709 goto out_dst_vcpu; 1710 1711 if (sev_es_guest(source_kvm)) { 1712 ret = sev_es_migrate_from(kvm, source_kvm); 1713 if (ret) 1714 goto out_source_vcpu; 1715 } 1716 sev_migrate_from(dst_sev, src_sev); 1717 kvm_vm_dead(source_kvm); 1718 cg_cleanup_sev = src_sev; 1719 ret = 0; 1720 1721 out_source_vcpu: 1722 sev_unlock_vcpus_for_migration(source_kvm); 1723 out_dst_vcpu: 1724 sev_unlock_vcpus_for_migration(kvm); 1725 out_dst_cgroup: 1726 /* Operates on the source on success, on the destination on failure. */ 1727 if (charged) 1728 sev_misc_cg_uncharge(cg_cleanup_sev); 1729 put_misc_cg(cg_cleanup_sev->misc_cg); 1730 cg_cleanup_sev->misc_cg = NULL; 1731 out_source: 1732 sev_unlock_after_migration(source_kvm); 1733 out_fput: 1734 if (source_kvm_file) 1735 fput(source_kvm_file); 1736 out_unlock: 1737 sev_unlock_after_migration(kvm); 1738 return ret; 1739 } 1740 1741 int svm_mem_enc_op(struct kvm *kvm, void __user *argp) 1742 { 1743 struct kvm_sev_cmd sev_cmd; 1744 int r; 1745 1746 if (!sev_enabled) 1747 return -ENOTTY; 1748 1749 if (!argp) 1750 return 0; 1751 1752 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 1753 return -EFAULT; 1754 1755 mutex_lock(&kvm->lock); 1756 1757 /* Only the enc_context_owner handles some memory enc operations. */ 1758 if (is_mirroring_enc_context(kvm) && 1759 !is_cmd_allowed_from_mirror(sev_cmd.id)) { 1760 r = -EINVAL; 1761 goto out; 1762 } 1763 1764 switch (sev_cmd.id) { 1765 case KVM_SEV_ES_INIT: 1766 if (!sev_es_enabled) { 1767 r = -ENOTTY; 1768 goto out; 1769 } 1770 fallthrough; 1771 case KVM_SEV_INIT: 1772 r = sev_guest_init(kvm, &sev_cmd); 1773 break; 1774 case KVM_SEV_LAUNCH_START: 1775 r = sev_launch_start(kvm, &sev_cmd); 1776 break; 1777 case KVM_SEV_LAUNCH_UPDATE_DATA: 1778 r = sev_launch_update_data(kvm, &sev_cmd); 1779 break; 1780 case KVM_SEV_LAUNCH_UPDATE_VMSA: 1781 r = sev_launch_update_vmsa(kvm, &sev_cmd); 1782 break; 1783 case KVM_SEV_LAUNCH_MEASURE: 1784 r = sev_launch_measure(kvm, &sev_cmd); 1785 break; 1786 case KVM_SEV_LAUNCH_FINISH: 1787 r = sev_launch_finish(kvm, &sev_cmd); 1788 break; 1789 case KVM_SEV_GUEST_STATUS: 1790 r = sev_guest_status(kvm, &sev_cmd); 1791 break; 1792 case KVM_SEV_DBG_DECRYPT: 1793 r = sev_dbg_crypt(kvm, &sev_cmd, true); 1794 break; 1795 case KVM_SEV_DBG_ENCRYPT: 1796 r = sev_dbg_crypt(kvm, &sev_cmd, false); 1797 break; 1798 case KVM_SEV_LAUNCH_SECRET: 1799 r = sev_launch_secret(kvm, &sev_cmd); 1800 break; 1801 case KVM_SEV_GET_ATTESTATION_REPORT: 1802 r = sev_get_attestation_report(kvm, &sev_cmd); 1803 break; 1804 case KVM_SEV_SEND_START: 1805 r = sev_send_start(kvm, &sev_cmd); 1806 break; 1807 case KVM_SEV_SEND_UPDATE_DATA: 1808 r = sev_send_update_data(kvm, &sev_cmd); 1809 break; 1810 case KVM_SEV_SEND_FINISH: 1811 r = sev_send_finish(kvm, &sev_cmd); 1812 break; 1813 case KVM_SEV_SEND_CANCEL: 1814 r = sev_send_cancel(kvm, &sev_cmd); 1815 break; 1816 case KVM_SEV_RECEIVE_START: 1817 r = sev_receive_start(kvm, &sev_cmd); 1818 break; 1819 case KVM_SEV_RECEIVE_UPDATE_DATA: 1820 r = sev_receive_update_data(kvm, &sev_cmd); 1821 break; 1822 case KVM_SEV_RECEIVE_FINISH: 1823 r = sev_receive_finish(kvm, &sev_cmd); 1824 break; 1825 default: 1826 r = -EINVAL; 1827 goto out; 1828 } 1829 1830 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 1831 r = -EFAULT; 1832 1833 out: 1834 mutex_unlock(&kvm->lock); 1835 return r; 1836 } 1837 1838 int svm_register_enc_region(struct kvm *kvm, 1839 struct kvm_enc_region *range) 1840 { 1841 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1842 struct enc_region *region; 1843 int ret = 0; 1844 1845 if (!sev_guest(kvm)) 1846 return -ENOTTY; 1847 1848 /* If kvm is mirroring encryption context it isn't responsible for it */ 1849 if (is_mirroring_enc_context(kvm)) 1850 return -EINVAL; 1851 1852 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 1853 return -EINVAL; 1854 1855 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 1856 if (!region) 1857 return -ENOMEM; 1858 1859 mutex_lock(&kvm->lock); 1860 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); 1861 if (IS_ERR(region->pages)) { 1862 ret = PTR_ERR(region->pages); 1863 mutex_unlock(&kvm->lock); 1864 goto e_free; 1865 } 1866 1867 region->uaddr = range->addr; 1868 region->size = range->size; 1869 1870 list_add_tail(®ion->list, &sev->regions_list); 1871 mutex_unlock(&kvm->lock); 1872 1873 /* 1874 * The guest may change the memory encryption attribute from C=0 -> C=1 1875 * or vice versa for this memory range. Lets make sure caches are 1876 * flushed to ensure that guest data gets written into memory with 1877 * correct C-bit. 1878 */ 1879 sev_clflush_pages(region->pages, region->npages); 1880 1881 return ret; 1882 1883 e_free: 1884 kfree(region); 1885 return ret; 1886 } 1887 1888 static struct enc_region * 1889 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 1890 { 1891 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1892 struct list_head *head = &sev->regions_list; 1893 struct enc_region *i; 1894 1895 list_for_each_entry(i, head, list) { 1896 if (i->uaddr == range->addr && 1897 i->size == range->size) 1898 return i; 1899 } 1900 1901 return NULL; 1902 } 1903 1904 static void __unregister_enc_region_locked(struct kvm *kvm, 1905 struct enc_region *region) 1906 { 1907 sev_unpin_memory(kvm, region->pages, region->npages); 1908 list_del(®ion->list); 1909 kfree(region); 1910 } 1911 1912 int svm_unregister_enc_region(struct kvm *kvm, 1913 struct kvm_enc_region *range) 1914 { 1915 struct enc_region *region; 1916 int ret; 1917 1918 /* If kvm is mirroring encryption context it isn't responsible for it */ 1919 if (is_mirroring_enc_context(kvm)) 1920 return -EINVAL; 1921 1922 mutex_lock(&kvm->lock); 1923 1924 if (!sev_guest(kvm)) { 1925 ret = -ENOTTY; 1926 goto failed; 1927 } 1928 1929 region = find_enc_region(kvm, range); 1930 if (!region) { 1931 ret = -EINVAL; 1932 goto failed; 1933 } 1934 1935 /* 1936 * Ensure that all guest tagged cache entries are flushed before 1937 * releasing the pages back to the system for use. CLFLUSH will 1938 * not do this, so issue a WBINVD. 1939 */ 1940 wbinvd_on_all_cpus(); 1941 1942 __unregister_enc_region_locked(kvm, region); 1943 1944 mutex_unlock(&kvm->lock); 1945 return 0; 1946 1947 failed: 1948 mutex_unlock(&kvm->lock); 1949 return ret; 1950 } 1951 1952 int svm_vm_copy_asid_from(struct kvm *kvm, unsigned int source_fd) 1953 { 1954 struct file *source_kvm_file; 1955 struct kvm *source_kvm; 1956 struct kvm_sev_info source_sev, *mirror_sev; 1957 int ret; 1958 1959 source_kvm_file = fget(source_fd); 1960 if (!file_is_kvm(source_kvm_file)) { 1961 ret = -EBADF; 1962 goto e_source_put; 1963 } 1964 1965 source_kvm = source_kvm_file->private_data; 1966 mutex_lock(&source_kvm->lock); 1967 1968 if (!sev_guest(source_kvm)) { 1969 ret = -EINVAL; 1970 goto e_source_unlock; 1971 } 1972 1973 /* Mirrors of mirrors should work, but let's not get silly */ 1974 if (is_mirroring_enc_context(source_kvm) || source_kvm == kvm) { 1975 ret = -EINVAL; 1976 goto e_source_unlock; 1977 } 1978 1979 memcpy(&source_sev, &to_kvm_svm(source_kvm)->sev_info, 1980 sizeof(source_sev)); 1981 1982 /* 1983 * The mirror kvm holds an enc_context_owner ref so its asid can't 1984 * disappear until we're done with it 1985 */ 1986 kvm_get_kvm(source_kvm); 1987 1988 fput(source_kvm_file); 1989 mutex_unlock(&source_kvm->lock); 1990 mutex_lock(&kvm->lock); 1991 1992 /* 1993 * Disallow out-of-band SEV/SEV-ES init if the target is already an 1994 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being 1995 * created after SEV/SEV-ES initialization, e.g. to init intercepts. 1996 */ 1997 if (sev_guest(kvm) || kvm->created_vcpus) { 1998 ret = -EINVAL; 1999 goto e_mirror_unlock; 2000 } 2001 2002 /* Set enc_context_owner and copy its encryption context over */ 2003 mirror_sev = &to_kvm_svm(kvm)->sev_info; 2004 mirror_sev->enc_context_owner = source_kvm; 2005 mirror_sev->active = true; 2006 mirror_sev->asid = source_sev.asid; 2007 mirror_sev->fd = source_sev.fd; 2008 mirror_sev->es_active = source_sev.es_active; 2009 mirror_sev->handle = source_sev.handle; 2010 /* 2011 * Do not copy ap_jump_table. Since the mirror does not share the same 2012 * KVM contexts as the original, and they may have different 2013 * memory-views. 2014 */ 2015 2016 mutex_unlock(&kvm->lock); 2017 return 0; 2018 2019 e_mirror_unlock: 2020 mutex_unlock(&kvm->lock); 2021 kvm_put_kvm(source_kvm); 2022 return ret; 2023 e_source_unlock: 2024 mutex_unlock(&source_kvm->lock); 2025 e_source_put: 2026 if (source_kvm_file) 2027 fput(source_kvm_file); 2028 return ret; 2029 } 2030 2031 void sev_vm_destroy(struct kvm *kvm) 2032 { 2033 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 2034 struct list_head *head = &sev->regions_list; 2035 struct list_head *pos, *q; 2036 2037 if (!sev_guest(kvm)) 2038 return; 2039 2040 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ 2041 if (is_mirroring_enc_context(kvm)) { 2042 kvm_put_kvm(sev->enc_context_owner); 2043 return; 2044 } 2045 2046 mutex_lock(&kvm->lock); 2047 2048 /* 2049 * Ensure that all guest tagged cache entries are flushed before 2050 * releasing the pages back to the system for use. CLFLUSH will 2051 * not do this, so issue a WBINVD. 2052 */ 2053 wbinvd_on_all_cpus(); 2054 2055 /* 2056 * if userspace was terminated before unregistering the memory regions 2057 * then lets unpin all the registered memory. 2058 */ 2059 if (!list_empty(head)) { 2060 list_for_each_safe(pos, q, head) { 2061 __unregister_enc_region_locked(kvm, 2062 list_entry(pos, struct enc_region, list)); 2063 cond_resched(); 2064 } 2065 } 2066 2067 mutex_unlock(&kvm->lock); 2068 2069 sev_unbind_asid(kvm, sev->handle); 2070 sev_asid_free(sev); 2071 } 2072 2073 void __init sev_set_cpu_caps(void) 2074 { 2075 if (!sev_enabled) 2076 kvm_cpu_cap_clear(X86_FEATURE_SEV); 2077 if (!sev_es_enabled) 2078 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES); 2079 } 2080 2081 void __init sev_hardware_setup(void) 2082 { 2083 #ifdef CONFIG_KVM_AMD_SEV 2084 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 2085 bool sev_es_supported = false; 2086 bool sev_supported = false; 2087 2088 if (!sev_enabled || !npt_enabled) 2089 goto out; 2090 2091 /* Does the CPU support SEV? */ 2092 if (!boot_cpu_has(X86_FEATURE_SEV)) 2093 goto out; 2094 2095 /* Retrieve SEV CPUID information */ 2096 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 2097 2098 /* Set encryption bit location for SEV-ES guests */ 2099 sev_enc_bit = ebx & 0x3f; 2100 2101 /* Maximum number of encrypted guests supported simultaneously */ 2102 max_sev_asid = ecx; 2103 if (!max_sev_asid) 2104 goto out; 2105 2106 /* Minimum ASID value that should be used for SEV guest */ 2107 min_sev_asid = edx; 2108 sev_me_mask = 1UL << (ebx & 0x3f); 2109 2110 /* 2111 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap, 2112 * even though it's never used, so that the bitmap is indexed by the 2113 * actual ASID. 2114 */ 2115 nr_asids = max_sev_asid + 1; 2116 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 2117 if (!sev_asid_bitmap) 2118 goto out; 2119 2120 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL); 2121 if (!sev_reclaim_asid_bitmap) { 2122 bitmap_free(sev_asid_bitmap); 2123 sev_asid_bitmap = NULL; 2124 goto out; 2125 } 2126 2127 sev_asid_count = max_sev_asid - min_sev_asid + 1; 2128 if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)) 2129 goto out; 2130 2131 pr_info("SEV supported: %u ASIDs\n", sev_asid_count); 2132 sev_supported = true; 2133 2134 /* SEV-ES support requested? */ 2135 if (!sev_es_enabled) 2136 goto out; 2137 2138 /* Does the CPU support SEV-ES? */ 2139 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 2140 goto out; 2141 2142 /* Has the system been allocated ASIDs for SEV-ES? */ 2143 if (min_sev_asid == 1) 2144 goto out; 2145 2146 sev_es_asid_count = min_sev_asid - 1; 2147 if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)) 2148 goto out; 2149 2150 pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count); 2151 sev_es_supported = true; 2152 2153 out: 2154 sev_enabled = sev_supported; 2155 sev_es_enabled = sev_es_supported; 2156 #endif 2157 } 2158 2159 void sev_hardware_teardown(void) 2160 { 2161 if (!sev_enabled) 2162 return; 2163 2164 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ 2165 sev_flush_asids(1, max_sev_asid); 2166 2167 bitmap_free(sev_asid_bitmap); 2168 bitmap_free(sev_reclaim_asid_bitmap); 2169 2170 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 2171 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 2172 } 2173 2174 int sev_cpu_init(struct svm_cpu_data *sd) 2175 { 2176 if (!sev_enabled) 2177 return 0; 2178 2179 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL); 2180 if (!sd->sev_vmcbs) 2181 return -ENOMEM; 2182 2183 return 0; 2184 } 2185 2186 /* 2187 * Pages used by hardware to hold guest encrypted state must be flushed before 2188 * returning them to the system. 2189 */ 2190 static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va, 2191 unsigned long len) 2192 { 2193 /* 2194 * If hardware enforced cache coherency for encrypted mappings of the 2195 * same physical page is supported, nothing to do. 2196 */ 2197 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) 2198 return; 2199 2200 /* 2201 * If the VM Page Flush MSR is supported, use it to flush the page 2202 * (using the page virtual address and the guest ASID). 2203 */ 2204 if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) { 2205 struct kvm_sev_info *sev; 2206 unsigned long va_start; 2207 u64 start, stop; 2208 2209 /* Align start and stop to page boundaries. */ 2210 va_start = (unsigned long)va; 2211 start = (u64)va_start & PAGE_MASK; 2212 stop = PAGE_ALIGN((u64)va_start + len); 2213 2214 if (start < stop) { 2215 sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info; 2216 2217 while (start < stop) { 2218 wrmsrl(MSR_AMD64_VM_PAGE_FLUSH, 2219 start | sev->asid); 2220 2221 start += PAGE_SIZE; 2222 } 2223 2224 return; 2225 } 2226 2227 WARN(1, "Address overflow, using WBINVD\n"); 2228 } 2229 2230 /* 2231 * Hardware should always have one of the above features, 2232 * but if not, use WBINVD and issue a warning. 2233 */ 2234 WARN_ONCE(1, "Using WBINVD to flush guest memory\n"); 2235 wbinvd_on_all_cpus(); 2236 } 2237 2238 void sev_free_vcpu(struct kvm_vcpu *vcpu) 2239 { 2240 struct vcpu_svm *svm; 2241 2242 if (!sev_es_guest(vcpu->kvm)) 2243 return; 2244 2245 svm = to_svm(vcpu); 2246 2247 if (vcpu->arch.guest_state_protected) 2248 sev_flush_guest_memory(svm, svm->sev_es.vmsa, PAGE_SIZE); 2249 __free_page(virt_to_page(svm->sev_es.vmsa)); 2250 2251 if (svm->sev_es.ghcb_sa_free) 2252 kfree(svm->sev_es.ghcb_sa); 2253 } 2254 2255 static void dump_ghcb(struct vcpu_svm *svm) 2256 { 2257 struct ghcb *ghcb = svm->sev_es.ghcb; 2258 unsigned int nbits; 2259 2260 /* Re-use the dump_invalid_vmcb module parameter */ 2261 if (!dump_invalid_vmcb) { 2262 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 2263 return; 2264 } 2265 2266 nbits = sizeof(ghcb->save.valid_bitmap) * 8; 2267 2268 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); 2269 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 2270 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); 2271 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 2272 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); 2273 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 2274 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); 2275 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 2276 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); 2277 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); 2278 } 2279 2280 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 2281 { 2282 struct kvm_vcpu *vcpu = &svm->vcpu; 2283 struct ghcb *ghcb = svm->sev_es.ghcb; 2284 2285 /* 2286 * The GHCB protocol so far allows for the following data 2287 * to be returned: 2288 * GPRs RAX, RBX, RCX, RDX 2289 * 2290 * Copy their values, even if they may not have been written during the 2291 * VM-Exit. It's the guest's responsibility to not consume random data. 2292 */ 2293 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 2294 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 2295 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 2296 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 2297 } 2298 2299 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 2300 { 2301 struct vmcb_control_area *control = &svm->vmcb->control; 2302 struct kvm_vcpu *vcpu = &svm->vcpu; 2303 struct ghcb *ghcb = svm->sev_es.ghcb; 2304 u64 exit_code; 2305 2306 /* 2307 * The GHCB protocol so far allows for the following data 2308 * to be supplied: 2309 * GPRs RAX, RBX, RCX, RDX 2310 * XCR0 2311 * CPL 2312 * 2313 * VMMCALL allows the guest to provide extra registers. KVM also 2314 * expects RSI for hypercalls, so include that, too. 2315 * 2316 * Copy their values to the appropriate location if supplied. 2317 */ 2318 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 2319 2320 vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb); 2321 vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb); 2322 vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb); 2323 vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb); 2324 vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb); 2325 2326 svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb); 2327 2328 if (ghcb_xcr0_is_valid(ghcb)) { 2329 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 2330 kvm_update_cpuid_runtime(vcpu); 2331 } 2332 2333 /* Copy the GHCB exit information into the VMCB fields */ 2334 exit_code = ghcb_get_sw_exit_code(ghcb); 2335 control->exit_code = lower_32_bits(exit_code); 2336 control->exit_code_hi = upper_32_bits(exit_code); 2337 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 2338 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 2339 2340 /* Clear the valid entries fields */ 2341 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 2342 } 2343 2344 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 2345 { 2346 struct kvm_vcpu *vcpu; 2347 struct ghcb *ghcb; 2348 u64 exit_code = 0; 2349 2350 ghcb = svm->sev_es.ghcb; 2351 2352 /* Only GHCB Usage code 0 is supported */ 2353 if (ghcb->ghcb_usage) 2354 goto vmgexit_err; 2355 2356 /* 2357 * Retrieve the exit code now even though is may not be marked valid 2358 * as it could help with debugging. 2359 */ 2360 exit_code = ghcb_get_sw_exit_code(ghcb); 2361 2362 if (!ghcb_sw_exit_code_is_valid(ghcb) || 2363 !ghcb_sw_exit_info_1_is_valid(ghcb) || 2364 !ghcb_sw_exit_info_2_is_valid(ghcb)) 2365 goto vmgexit_err; 2366 2367 switch (ghcb_get_sw_exit_code(ghcb)) { 2368 case SVM_EXIT_READ_DR7: 2369 break; 2370 case SVM_EXIT_WRITE_DR7: 2371 if (!ghcb_rax_is_valid(ghcb)) 2372 goto vmgexit_err; 2373 break; 2374 case SVM_EXIT_RDTSC: 2375 break; 2376 case SVM_EXIT_RDPMC: 2377 if (!ghcb_rcx_is_valid(ghcb)) 2378 goto vmgexit_err; 2379 break; 2380 case SVM_EXIT_CPUID: 2381 if (!ghcb_rax_is_valid(ghcb) || 2382 !ghcb_rcx_is_valid(ghcb)) 2383 goto vmgexit_err; 2384 if (ghcb_get_rax(ghcb) == 0xd) 2385 if (!ghcb_xcr0_is_valid(ghcb)) 2386 goto vmgexit_err; 2387 break; 2388 case SVM_EXIT_INVD: 2389 break; 2390 case SVM_EXIT_IOIO: 2391 if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) { 2392 if (!ghcb_sw_scratch_is_valid(ghcb)) 2393 goto vmgexit_err; 2394 } else { 2395 if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK)) 2396 if (!ghcb_rax_is_valid(ghcb)) 2397 goto vmgexit_err; 2398 } 2399 break; 2400 case SVM_EXIT_MSR: 2401 if (!ghcb_rcx_is_valid(ghcb)) 2402 goto vmgexit_err; 2403 if (ghcb_get_sw_exit_info_1(ghcb)) { 2404 if (!ghcb_rax_is_valid(ghcb) || 2405 !ghcb_rdx_is_valid(ghcb)) 2406 goto vmgexit_err; 2407 } 2408 break; 2409 case SVM_EXIT_VMMCALL: 2410 if (!ghcb_rax_is_valid(ghcb) || 2411 !ghcb_cpl_is_valid(ghcb)) 2412 goto vmgexit_err; 2413 break; 2414 case SVM_EXIT_RDTSCP: 2415 break; 2416 case SVM_EXIT_WBINVD: 2417 break; 2418 case SVM_EXIT_MONITOR: 2419 if (!ghcb_rax_is_valid(ghcb) || 2420 !ghcb_rcx_is_valid(ghcb) || 2421 !ghcb_rdx_is_valid(ghcb)) 2422 goto vmgexit_err; 2423 break; 2424 case SVM_EXIT_MWAIT: 2425 if (!ghcb_rax_is_valid(ghcb) || 2426 !ghcb_rcx_is_valid(ghcb)) 2427 goto vmgexit_err; 2428 break; 2429 case SVM_VMGEXIT_MMIO_READ: 2430 case SVM_VMGEXIT_MMIO_WRITE: 2431 if (!ghcb_sw_scratch_is_valid(ghcb)) 2432 goto vmgexit_err; 2433 break; 2434 case SVM_VMGEXIT_NMI_COMPLETE: 2435 case SVM_VMGEXIT_AP_HLT_LOOP: 2436 case SVM_VMGEXIT_AP_JUMP_TABLE: 2437 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2438 break; 2439 default: 2440 goto vmgexit_err; 2441 } 2442 2443 return 0; 2444 2445 vmgexit_err: 2446 vcpu = &svm->vcpu; 2447 2448 if (ghcb->ghcb_usage) { 2449 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 2450 ghcb->ghcb_usage); 2451 } else { 2452 vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n", 2453 exit_code); 2454 dump_ghcb(svm); 2455 } 2456 2457 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 2458 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 2459 vcpu->run->internal.ndata = 2; 2460 vcpu->run->internal.data[0] = exit_code; 2461 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 2462 2463 return -EINVAL; 2464 } 2465 2466 void sev_es_unmap_ghcb(struct vcpu_svm *svm) 2467 { 2468 if (!svm->sev_es.ghcb) 2469 return; 2470 2471 if (svm->sev_es.ghcb_sa_free) { 2472 /* 2473 * The scratch area lives outside the GHCB, so there is a 2474 * buffer that, depending on the operation performed, may 2475 * need to be synced, then freed. 2476 */ 2477 if (svm->sev_es.ghcb_sa_sync) { 2478 kvm_write_guest(svm->vcpu.kvm, 2479 ghcb_get_sw_scratch(svm->sev_es.ghcb), 2480 svm->sev_es.ghcb_sa, 2481 svm->sev_es.ghcb_sa_len); 2482 svm->sev_es.ghcb_sa_sync = false; 2483 } 2484 2485 kfree(svm->sev_es.ghcb_sa); 2486 svm->sev_es.ghcb_sa = NULL; 2487 svm->sev_es.ghcb_sa_free = false; 2488 } 2489 2490 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb); 2491 2492 sev_es_sync_to_ghcb(svm); 2493 2494 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true); 2495 svm->sev_es.ghcb = NULL; 2496 } 2497 2498 void pre_sev_run(struct vcpu_svm *svm, int cpu) 2499 { 2500 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 2501 int asid = sev_get_asid(svm->vcpu.kvm); 2502 2503 /* Assign the asid allocated with this SEV guest */ 2504 svm->asid = asid; 2505 2506 /* 2507 * Flush guest TLB: 2508 * 2509 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 2510 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 2511 */ 2512 if (sd->sev_vmcbs[asid] == svm->vmcb && 2513 svm->vcpu.arch.last_vmentry_cpu == cpu) 2514 return; 2515 2516 sd->sev_vmcbs[asid] = svm->vmcb; 2517 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 2518 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 2519 } 2520 2521 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 2522 static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 2523 { 2524 struct vmcb_control_area *control = &svm->vmcb->control; 2525 struct ghcb *ghcb = svm->sev_es.ghcb; 2526 u64 ghcb_scratch_beg, ghcb_scratch_end; 2527 u64 scratch_gpa_beg, scratch_gpa_end; 2528 void *scratch_va; 2529 2530 scratch_gpa_beg = ghcb_get_sw_scratch(ghcb); 2531 if (!scratch_gpa_beg) { 2532 pr_err("vmgexit: scratch gpa not provided\n"); 2533 return false; 2534 } 2535 2536 scratch_gpa_end = scratch_gpa_beg + len; 2537 if (scratch_gpa_end < scratch_gpa_beg) { 2538 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 2539 len, scratch_gpa_beg); 2540 return false; 2541 } 2542 2543 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 2544 /* Scratch area begins within GHCB */ 2545 ghcb_scratch_beg = control->ghcb_gpa + 2546 offsetof(struct ghcb, shared_buffer); 2547 ghcb_scratch_end = control->ghcb_gpa + 2548 offsetof(struct ghcb, reserved_1); 2549 2550 /* 2551 * If the scratch area begins within the GHCB, it must be 2552 * completely contained in the GHCB shared buffer area. 2553 */ 2554 if (scratch_gpa_beg < ghcb_scratch_beg || 2555 scratch_gpa_end > ghcb_scratch_end) { 2556 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 2557 scratch_gpa_beg, scratch_gpa_end); 2558 return false; 2559 } 2560 2561 scratch_va = (void *)svm->sev_es.ghcb; 2562 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 2563 } else { 2564 /* 2565 * The guest memory must be read into a kernel buffer, so 2566 * limit the size 2567 */ 2568 if (len > GHCB_SCRATCH_AREA_LIMIT) { 2569 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 2570 len, GHCB_SCRATCH_AREA_LIMIT); 2571 return false; 2572 } 2573 scratch_va = kzalloc(len, GFP_KERNEL_ACCOUNT); 2574 if (!scratch_va) 2575 return false; 2576 2577 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 2578 /* Unable to copy scratch area from guest */ 2579 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 2580 2581 kfree(scratch_va); 2582 return false; 2583 } 2584 2585 /* 2586 * The scratch area is outside the GHCB. The operation will 2587 * dictate whether the buffer needs to be synced before running 2588 * the vCPU next time (i.e. a read was requested so the data 2589 * must be written back to the guest memory). 2590 */ 2591 svm->sev_es.ghcb_sa_sync = sync; 2592 svm->sev_es.ghcb_sa_free = true; 2593 } 2594 2595 svm->sev_es.ghcb_sa = scratch_va; 2596 svm->sev_es.ghcb_sa_len = len; 2597 2598 return true; 2599 } 2600 2601 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 2602 unsigned int pos) 2603 { 2604 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 2605 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 2606 } 2607 2608 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 2609 { 2610 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 2611 } 2612 2613 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 2614 { 2615 svm->vmcb->control.ghcb_gpa = value; 2616 } 2617 2618 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 2619 { 2620 struct vmcb_control_area *control = &svm->vmcb->control; 2621 struct kvm_vcpu *vcpu = &svm->vcpu; 2622 u64 ghcb_info; 2623 int ret = 1; 2624 2625 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 2626 2627 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 2628 control->ghcb_gpa); 2629 2630 switch (ghcb_info) { 2631 case GHCB_MSR_SEV_INFO_REQ: 2632 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2633 GHCB_VERSION_MIN, 2634 sev_enc_bit)); 2635 break; 2636 case GHCB_MSR_CPUID_REQ: { 2637 u64 cpuid_fn, cpuid_reg, cpuid_value; 2638 2639 cpuid_fn = get_ghcb_msr_bits(svm, 2640 GHCB_MSR_CPUID_FUNC_MASK, 2641 GHCB_MSR_CPUID_FUNC_POS); 2642 2643 /* Initialize the registers needed by the CPUID intercept */ 2644 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 2645 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 2646 2647 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); 2648 if (!ret) { 2649 ret = -EINVAL; 2650 break; 2651 } 2652 2653 cpuid_reg = get_ghcb_msr_bits(svm, 2654 GHCB_MSR_CPUID_REG_MASK, 2655 GHCB_MSR_CPUID_REG_POS); 2656 if (cpuid_reg == 0) 2657 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 2658 else if (cpuid_reg == 1) 2659 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 2660 else if (cpuid_reg == 2) 2661 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 2662 else 2663 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 2664 2665 set_ghcb_msr_bits(svm, cpuid_value, 2666 GHCB_MSR_CPUID_VALUE_MASK, 2667 GHCB_MSR_CPUID_VALUE_POS); 2668 2669 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 2670 GHCB_MSR_INFO_MASK, 2671 GHCB_MSR_INFO_POS); 2672 break; 2673 } 2674 case GHCB_MSR_TERM_REQ: { 2675 u64 reason_set, reason_code; 2676 2677 reason_set = get_ghcb_msr_bits(svm, 2678 GHCB_MSR_TERM_REASON_SET_MASK, 2679 GHCB_MSR_TERM_REASON_SET_POS); 2680 reason_code = get_ghcb_msr_bits(svm, 2681 GHCB_MSR_TERM_REASON_MASK, 2682 GHCB_MSR_TERM_REASON_POS); 2683 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 2684 reason_set, reason_code); 2685 fallthrough; 2686 } 2687 default: 2688 ret = -EINVAL; 2689 } 2690 2691 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 2692 control->ghcb_gpa, ret); 2693 2694 return ret; 2695 } 2696 2697 int sev_handle_vmgexit(struct kvm_vcpu *vcpu) 2698 { 2699 struct vcpu_svm *svm = to_svm(vcpu); 2700 struct vmcb_control_area *control = &svm->vmcb->control; 2701 u64 ghcb_gpa, exit_code; 2702 struct ghcb *ghcb; 2703 int ret; 2704 2705 /* Validate the GHCB */ 2706 ghcb_gpa = control->ghcb_gpa; 2707 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 2708 return sev_handle_vmgexit_msr_protocol(svm); 2709 2710 if (!ghcb_gpa) { 2711 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); 2712 return -EINVAL; 2713 } 2714 2715 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) { 2716 /* Unable to map GHCB from guest */ 2717 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 2718 ghcb_gpa); 2719 return -EINVAL; 2720 } 2721 2722 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva; 2723 ghcb = svm->sev_es.ghcb_map.hva; 2724 2725 trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb); 2726 2727 exit_code = ghcb_get_sw_exit_code(ghcb); 2728 2729 ret = sev_es_validate_vmgexit(svm); 2730 if (ret) 2731 return ret; 2732 2733 sev_es_sync_from_ghcb(svm); 2734 ghcb_set_sw_exit_info_1(ghcb, 0); 2735 ghcb_set_sw_exit_info_2(ghcb, 0); 2736 2737 ret = -EINVAL; 2738 switch (exit_code) { 2739 case SVM_VMGEXIT_MMIO_READ: 2740 if (!setup_vmgexit_scratch(svm, true, control->exit_info_2)) 2741 break; 2742 2743 ret = kvm_sev_es_mmio_read(vcpu, 2744 control->exit_info_1, 2745 control->exit_info_2, 2746 svm->sev_es.ghcb_sa); 2747 break; 2748 case SVM_VMGEXIT_MMIO_WRITE: 2749 if (!setup_vmgexit_scratch(svm, false, control->exit_info_2)) 2750 break; 2751 2752 ret = kvm_sev_es_mmio_write(vcpu, 2753 control->exit_info_1, 2754 control->exit_info_2, 2755 svm->sev_es.ghcb_sa); 2756 break; 2757 case SVM_VMGEXIT_NMI_COMPLETE: 2758 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET); 2759 break; 2760 case SVM_VMGEXIT_AP_HLT_LOOP: 2761 ret = kvm_emulate_ap_reset_hold(vcpu); 2762 break; 2763 case SVM_VMGEXIT_AP_JUMP_TABLE: { 2764 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 2765 2766 switch (control->exit_info_1) { 2767 case 0: 2768 /* Set AP jump table address */ 2769 sev->ap_jump_table = control->exit_info_2; 2770 break; 2771 case 1: 2772 /* Get AP jump table address */ 2773 ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table); 2774 break; 2775 default: 2776 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 2777 control->exit_info_1); 2778 ghcb_set_sw_exit_info_1(ghcb, 1); 2779 ghcb_set_sw_exit_info_2(ghcb, 2780 X86_TRAP_UD | 2781 SVM_EVTINJ_TYPE_EXEPT | 2782 SVM_EVTINJ_VALID); 2783 } 2784 2785 ret = 1; 2786 break; 2787 } 2788 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2789 vcpu_unimpl(vcpu, 2790 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 2791 control->exit_info_1, control->exit_info_2); 2792 break; 2793 default: 2794 ret = svm_invoke_exit_handler(vcpu, exit_code); 2795 } 2796 2797 return ret; 2798 } 2799 2800 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 2801 { 2802 int count; 2803 int bytes; 2804 2805 if (svm->vmcb->control.exit_info_2 > INT_MAX) 2806 return -EINVAL; 2807 2808 count = svm->vmcb->control.exit_info_2; 2809 if (unlikely(check_mul_overflow(count, size, &bytes))) 2810 return -EINVAL; 2811 2812 if (!setup_vmgexit_scratch(svm, in, bytes)) 2813 return -EINVAL; 2814 2815 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa, 2816 count, in); 2817 } 2818 2819 void sev_es_init_vmcb(struct vcpu_svm *svm) 2820 { 2821 struct kvm_vcpu *vcpu = &svm->vcpu; 2822 2823 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 2824 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 2825 2826 /* 2827 * An SEV-ES guest requires a VMSA area that is a separate from the 2828 * VMCB page. Do not include the encryption mask on the VMSA physical 2829 * address since hardware will access it using the guest key. 2830 */ 2831 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa); 2832 2833 /* Can't intercept CR register access, HV can't modify CR registers */ 2834 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 2835 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 2836 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 2837 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 2838 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 2839 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 2840 2841 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 2842 2843 /* Track EFER/CR register changes */ 2844 svm_set_intercept(svm, TRAP_EFER_WRITE); 2845 svm_set_intercept(svm, TRAP_CR0_WRITE); 2846 svm_set_intercept(svm, TRAP_CR4_WRITE); 2847 svm_set_intercept(svm, TRAP_CR8_WRITE); 2848 2849 /* No support for enable_vmware_backdoor */ 2850 clr_exception_intercept(svm, GP_VECTOR); 2851 2852 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 2853 svm_clr_intercept(svm, INTERCEPT_XSETBV); 2854 2855 /* Clear intercepts on selected MSRs */ 2856 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); 2857 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); 2858 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 2859 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 2860 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 2861 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 2862 } 2863 2864 void sev_es_vcpu_reset(struct vcpu_svm *svm) 2865 { 2866 /* 2867 * Set the GHCB MSR value as per the GHCB specification when emulating 2868 * vCPU RESET for an SEV-ES guest. 2869 */ 2870 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2871 GHCB_VERSION_MIN, 2872 sev_enc_bit)); 2873 } 2874 2875 void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu) 2876 { 2877 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 2878 struct vmcb_save_area *hostsa; 2879 2880 /* 2881 * As an SEV-ES guest, hardware will restore the host state on VMEXIT, 2882 * of which one step is to perform a VMLOAD. Since hardware does not 2883 * perform a VMSAVE on VMRUN, the host savearea must be updated. 2884 */ 2885 vmsave(__sme_page_pa(sd->save_area)); 2886 2887 /* XCR0 is restored on VMEXIT, save the current host value */ 2888 hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400); 2889 hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 2890 2891 /* PKRU is restored on VMEXIT, save the current host value */ 2892 hostsa->pkru = read_pkru(); 2893 2894 /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */ 2895 hostsa->xss = host_xss; 2896 } 2897 2898 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 2899 { 2900 struct vcpu_svm *svm = to_svm(vcpu); 2901 2902 /* First SIPI: Use the values as initially set by the VMM */ 2903 if (!svm->sev_es.received_first_sipi) { 2904 svm->sev_es.received_first_sipi = true; 2905 return; 2906 } 2907 2908 /* 2909 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where 2910 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a 2911 * non-zero value. 2912 */ 2913 if (!svm->sev_es.ghcb) 2914 return; 2915 2916 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1); 2917 } 2918