1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 10 #include <linux/kvm_types.h> 11 #include <linux/kvm_host.h> 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/psp-sev.h> 15 #include <linux/pagemap.h> 16 #include <linux/swap.h> 17 18 #include "x86.h" 19 #include "svm.h" 20 21 static int sev_flush_asids(void); 22 static DECLARE_RWSEM(sev_deactivate_lock); 23 static DEFINE_MUTEX(sev_bitmap_lock); 24 unsigned int max_sev_asid; 25 static unsigned int min_sev_asid; 26 static unsigned long *sev_asid_bitmap; 27 static unsigned long *sev_reclaim_asid_bitmap; 28 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT) 29 30 struct enc_region { 31 struct list_head list; 32 unsigned long npages; 33 struct page **pages; 34 unsigned long uaddr; 35 unsigned long size; 36 }; 37 38 static int sev_flush_asids(void) 39 { 40 int ret, error = 0; 41 42 /* 43 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 44 * so it must be guarded. 45 */ 46 down_write(&sev_deactivate_lock); 47 48 wbinvd_on_all_cpus(); 49 ret = sev_guest_df_flush(&error); 50 51 up_write(&sev_deactivate_lock); 52 53 if (ret) 54 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error); 55 56 return ret; 57 } 58 59 /* Must be called with the sev_bitmap_lock held */ 60 static bool __sev_recycle_asids(void) 61 { 62 int pos; 63 64 /* Check if there are any ASIDs to reclaim before performing a flush */ 65 pos = find_next_bit(sev_reclaim_asid_bitmap, 66 max_sev_asid, min_sev_asid - 1); 67 if (pos >= max_sev_asid) 68 return false; 69 70 if (sev_flush_asids()) 71 return false; 72 73 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 74 max_sev_asid); 75 bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid); 76 77 return true; 78 } 79 80 static int sev_asid_new(void) 81 { 82 bool retry = true; 83 int pos; 84 85 mutex_lock(&sev_bitmap_lock); 86 87 /* 88 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid. 89 */ 90 again: 91 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1); 92 if (pos >= max_sev_asid) { 93 if (retry && __sev_recycle_asids()) { 94 retry = false; 95 goto again; 96 } 97 mutex_unlock(&sev_bitmap_lock); 98 return -EBUSY; 99 } 100 101 __set_bit(pos, sev_asid_bitmap); 102 103 mutex_unlock(&sev_bitmap_lock); 104 105 return pos + 1; 106 } 107 108 static int sev_get_asid(struct kvm *kvm) 109 { 110 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 111 112 return sev->asid; 113 } 114 115 static void sev_asid_free(int asid) 116 { 117 struct svm_cpu_data *sd; 118 int cpu, pos; 119 120 mutex_lock(&sev_bitmap_lock); 121 122 pos = asid - 1; 123 __set_bit(pos, sev_reclaim_asid_bitmap); 124 125 for_each_possible_cpu(cpu) { 126 sd = per_cpu(svm_data, cpu); 127 sd->sev_vmcbs[pos] = NULL; 128 } 129 130 mutex_unlock(&sev_bitmap_lock); 131 } 132 133 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 134 { 135 struct sev_data_decommission *decommission; 136 struct sev_data_deactivate *data; 137 138 if (!handle) 139 return; 140 141 data = kzalloc(sizeof(*data), GFP_KERNEL); 142 if (!data) 143 return; 144 145 /* deactivate handle */ 146 data->handle = handle; 147 148 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 149 down_read(&sev_deactivate_lock); 150 sev_guest_deactivate(data, NULL); 151 up_read(&sev_deactivate_lock); 152 153 kfree(data); 154 155 decommission = kzalloc(sizeof(*decommission), GFP_KERNEL); 156 if (!decommission) 157 return; 158 159 /* decommission handle */ 160 decommission->handle = handle; 161 sev_guest_decommission(decommission, NULL); 162 163 kfree(decommission); 164 } 165 166 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 167 { 168 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 169 int asid, ret; 170 171 ret = -EBUSY; 172 if (unlikely(sev->active)) 173 return ret; 174 175 asid = sev_asid_new(); 176 if (asid < 0) 177 return ret; 178 179 ret = sev_platform_init(&argp->error); 180 if (ret) 181 goto e_free; 182 183 sev->active = true; 184 sev->asid = asid; 185 INIT_LIST_HEAD(&sev->regions_list); 186 187 return 0; 188 189 e_free: 190 sev_asid_free(asid); 191 return ret; 192 } 193 194 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 195 { 196 struct sev_data_activate *data; 197 int asid = sev_get_asid(kvm); 198 int ret; 199 200 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 201 if (!data) 202 return -ENOMEM; 203 204 /* activate ASID on the given handle */ 205 data->handle = handle; 206 data->asid = asid; 207 ret = sev_guest_activate(data, error); 208 kfree(data); 209 210 return ret; 211 } 212 213 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 214 { 215 struct fd f; 216 int ret; 217 218 f = fdget(fd); 219 if (!f.file) 220 return -EBADF; 221 222 ret = sev_issue_cmd_external_user(f.file, id, data, error); 223 224 fdput(f); 225 return ret; 226 } 227 228 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 229 { 230 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 231 232 return __sev_issue_cmd(sev->fd, id, data, error); 233 } 234 235 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 236 { 237 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 238 struct sev_data_launch_start *start; 239 struct kvm_sev_launch_start params; 240 void *dh_blob, *session_blob; 241 int *error = &argp->error; 242 int ret; 243 244 if (!sev_guest(kvm)) 245 return -ENOTTY; 246 247 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 248 return -EFAULT; 249 250 start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT); 251 if (!start) 252 return -ENOMEM; 253 254 dh_blob = NULL; 255 if (params.dh_uaddr) { 256 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 257 if (IS_ERR(dh_blob)) { 258 ret = PTR_ERR(dh_blob); 259 goto e_free; 260 } 261 262 start->dh_cert_address = __sme_set(__pa(dh_blob)); 263 start->dh_cert_len = params.dh_len; 264 } 265 266 session_blob = NULL; 267 if (params.session_uaddr) { 268 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 269 if (IS_ERR(session_blob)) { 270 ret = PTR_ERR(session_blob); 271 goto e_free_dh; 272 } 273 274 start->session_address = __sme_set(__pa(session_blob)); 275 start->session_len = params.session_len; 276 } 277 278 start->handle = params.handle; 279 start->policy = params.policy; 280 281 /* create memory encryption context */ 282 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error); 283 if (ret) 284 goto e_free_session; 285 286 /* Bind ASID to this guest */ 287 ret = sev_bind_asid(kvm, start->handle, error); 288 if (ret) 289 goto e_free_session; 290 291 /* return handle to userspace */ 292 params.handle = start->handle; 293 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { 294 sev_unbind_asid(kvm, start->handle); 295 ret = -EFAULT; 296 goto e_free_session; 297 } 298 299 sev->handle = start->handle; 300 sev->fd = argp->sev_fd; 301 302 e_free_session: 303 kfree(session_blob); 304 e_free_dh: 305 kfree(dh_blob); 306 e_free: 307 kfree(start); 308 return ret; 309 } 310 311 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 312 unsigned long ulen, unsigned long *n, 313 int write) 314 { 315 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 316 unsigned long npages, size; 317 int npinned; 318 unsigned long locked, lock_limit; 319 struct page **pages; 320 unsigned long first, last; 321 int ret; 322 323 if (ulen == 0 || uaddr + ulen < uaddr) 324 return ERR_PTR(-EINVAL); 325 326 /* Calculate number of pages. */ 327 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 328 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 329 npages = (last - first + 1); 330 331 locked = sev->pages_locked + npages; 332 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 333 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 334 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 335 return ERR_PTR(-ENOMEM); 336 } 337 338 if (WARN_ON_ONCE(npages > INT_MAX)) 339 return ERR_PTR(-EINVAL); 340 341 /* Avoid using vmalloc for smaller buffers. */ 342 size = npages * sizeof(struct page *); 343 if (size > PAGE_SIZE) 344 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 345 else 346 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 347 348 if (!pages) 349 return ERR_PTR(-ENOMEM); 350 351 /* Pin the user virtual address. */ 352 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); 353 if (npinned != npages) { 354 pr_err("SEV: Failure locking %lu pages.\n", npages); 355 ret = -ENOMEM; 356 goto err; 357 } 358 359 *n = npages; 360 sev->pages_locked = locked; 361 362 return pages; 363 364 err: 365 if (npinned > 0) 366 unpin_user_pages(pages, npinned); 367 368 kvfree(pages); 369 return ERR_PTR(ret); 370 } 371 372 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 373 unsigned long npages) 374 { 375 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 376 377 unpin_user_pages(pages, npages); 378 kvfree(pages); 379 sev->pages_locked -= npages; 380 } 381 382 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 383 { 384 uint8_t *page_virtual; 385 unsigned long i; 386 387 if (npages == 0 || pages == NULL) 388 return; 389 390 for (i = 0; i < npages; i++) { 391 page_virtual = kmap_atomic(pages[i]); 392 clflush_cache_range(page_virtual, PAGE_SIZE); 393 kunmap_atomic(page_virtual); 394 } 395 } 396 397 static unsigned long get_num_contig_pages(unsigned long idx, 398 struct page **inpages, unsigned long npages) 399 { 400 unsigned long paddr, next_paddr; 401 unsigned long i = idx + 1, pages = 1; 402 403 /* find the number of contiguous pages starting from idx */ 404 paddr = __sme_page_pa(inpages[idx]); 405 while (i < npages) { 406 next_paddr = __sme_page_pa(inpages[i++]); 407 if ((paddr + PAGE_SIZE) == next_paddr) { 408 pages++; 409 paddr = next_paddr; 410 continue; 411 } 412 break; 413 } 414 415 return pages; 416 } 417 418 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 419 { 420 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 421 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 422 struct kvm_sev_launch_update_data params; 423 struct sev_data_launch_update_data *data; 424 struct page **inpages; 425 int ret; 426 427 if (!sev_guest(kvm)) 428 return -ENOTTY; 429 430 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 431 return -EFAULT; 432 433 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 434 if (!data) 435 return -ENOMEM; 436 437 vaddr = params.uaddr; 438 size = params.len; 439 vaddr_end = vaddr + size; 440 441 /* Lock the user memory. */ 442 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); 443 if (IS_ERR(inpages)) { 444 ret = PTR_ERR(inpages); 445 goto e_free; 446 } 447 448 /* 449 * The LAUNCH_UPDATE command will perform in-place encryption of the 450 * memory content (i.e it will write the same memory region with C=1). 451 * It's possible that the cache may contain the data with C=0, i.e., 452 * unencrypted so invalidate it first. 453 */ 454 sev_clflush_pages(inpages, npages); 455 456 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 457 int offset, len; 458 459 /* 460 * If the user buffer is not page-aligned, calculate the offset 461 * within the page. 462 */ 463 offset = vaddr & (PAGE_SIZE - 1); 464 465 /* Calculate the number of pages that can be encrypted in one go. */ 466 pages = get_num_contig_pages(i, inpages, npages); 467 468 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 469 470 data->handle = sev->handle; 471 data->len = len; 472 data->address = __sme_page_pa(inpages[i]) + offset; 473 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error); 474 if (ret) 475 goto e_unpin; 476 477 size -= len; 478 next_vaddr = vaddr + len; 479 } 480 481 e_unpin: 482 /* content of memory is updated, mark pages dirty */ 483 for (i = 0; i < npages; i++) { 484 set_page_dirty_lock(inpages[i]); 485 mark_page_accessed(inpages[i]); 486 } 487 /* unlock the user pages */ 488 sev_unpin_memory(kvm, inpages, npages); 489 e_free: 490 kfree(data); 491 return ret; 492 } 493 494 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 495 { 496 void __user *measure = (void __user *)(uintptr_t)argp->data; 497 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 498 struct sev_data_launch_measure *data; 499 struct kvm_sev_launch_measure params; 500 void __user *p = NULL; 501 void *blob = NULL; 502 int ret; 503 504 if (!sev_guest(kvm)) 505 return -ENOTTY; 506 507 if (copy_from_user(¶ms, measure, sizeof(params))) 508 return -EFAULT; 509 510 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 511 if (!data) 512 return -ENOMEM; 513 514 /* User wants to query the blob length */ 515 if (!params.len) 516 goto cmd; 517 518 p = (void __user *)(uintptr_t)params.uaddr; 519 if (p) { 520 if (params.len > SEV_FW_BLOB_MAX_SIZE) { 521 ret = -EINVAL; 522 goto e_free; 523 } 524 525 ret = -ENOMEM; 526 blob = kmalloc(params.len, GFP_KERNEL); 527 if (!blob) 528 goto e_free; 529 530 data->address = __psp_pa(blob); 531 data->len = params.len; 532 } 533 534 cmd: 535 data->handle = sev->handle; 536 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error); 537 538 /* 539 * If we query the session length, FW responded with expected data. 540 */ 541 if (!params.len) 542 goto done; 543 544 if (ret) 545 goto e_free_blob; 546 547 if (blob) { 548 if (copy_to_user(p, blob, params.len)) 549 ret = -EFAULT; 550 } 551 552 done: 553 params.len = data->len; 554 if (copy_to_user(measure, ¶ms, sizeof(params))) 555 ret = -EFAULT; 556 e_free_blob: 557 kfree(blob); 558 e_free: 559 kfree(data); 560 return ret; 561 } 562 563 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 564 { 565 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 566 struct sev_data_launch_finish *data; 567 int ret; 568 569 if (!sev_guest(kvm)) 570 return -ENOTTY; 571 572 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 573 if (!data) 574 return -ENOMEM; 575 576 data->handle = sev->handle; 577 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error); 578 579 kfree(data); 580 return ret; 581 } 582 583 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 584 { 585 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 586 struct kvm_sev_guest_status params; 587 struct sev_data_guest_status *data; 588 int ret; 589 590 if (!sev_guest(kvm)) 591 return -ENOTTY; 592 593 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 594 if (!data) 595 return -ENOMEM; 596 597 data->handle = sev->handle; 598 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error); 599 if (ret) 600 goto e_free; 601 602 params.policy = data->policy; 603 params.state = data->state; 604 params.handle = data->handle; 605 606 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) 607 ret = -EFAULT; 608 e_free: 609 kfree(data); 610 return ret; 611 } 612 613 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 614 unsigned long dst, int size, 615 int *error, bool enc) 616 { 617 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 618 struct sev_data_dbg *data; 619 int ret; 620 621 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 622 if (!data) 623 return -ENOMEM; 624 625 data->handle = sev->handle; 626 data->dst_addr = dst; 627 data->src_addr = src; 628 data->len = size; 629 630 ret = sev_issue_cmd(kvm, 631 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 632 data, error); 633 kfree(data); 634 return ret; 635 } 636 637 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 638 unsigned long dst_paddr, int sz, int *err) 639 { 640 int offset; 641 642 /* 643 * Its safe to read more than we are asked, caller should ensure that 644 * destination has enough space. 645 */ 646 src_paddr = round_down(src_paddr, 16); 647 offset = src_paddr & 15; 648 sz = round_up(sz + offset, 16); 649 650 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 651 } 652 653 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 654 unsigned long __user dst_uaddr, 655 unsigned long dst_paddr, 656 int size, int *err) 657 { 658 struct page *tpage = NULL; 659 int ret, offset; 660 661 /* if inputs are not 16-byte then use intermediate buffer */ 662 if (!IS_ALIGNED(dst_paddr, 16) || 663 !IS_ALIGNED(paddr, 16) || 664 !IS_ALIGNED(size, 16)) { 665 tpage = (void *)alloc_page(GFP_KERNEL); 666 if (!tpage) 667 return -ENOMEM; 668 669 dst_paddr = __sme_page_pa(tpage); 670 } 671 672 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 673 if (ret) 674 goto e_free; 675 676 if (tpage) { 677 offset = paddr & 15; 678 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr, 679 page_address(tpage) + offset, size)) 680 ret = -EFAULT; 681 } 682 683 e_free: 684 if (tpage) 685 __free_page(tpage); 686 687 return ret; 688 } 689 690 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 691 unsigned long __user vaddr, 692 unsigned long dst_paddr, 693 unsigned long __user dst_vaddr, 694 int size, int *error) 695 { 696 struct page *src_tpage = NULL; 697 struct page *dst_tpage = NULL; 698 int ret, len = size; 699 700 /* If source buffer is not aligned then use an intermediate buffer */ 701 if (!IS_ALIGNED(vaddr, 16)) { 702 src_tpage = alloc_page(GFP_KERNEL); 703 if (!src_tpage) 704 return -ENOMEM; 705 706 if (copy_from_user(page_address(src_tpage), 707 (void __user *)(uintptr_t)vaddr, size)) { 708 __free_page(src_tpage); 709 return -EFAULT; 710 } 711 712 paddr = __sme_page_pa(src_tpage); 713 } 714 715 /* 716 * If destination buffer or length is not aligned then do read-modify-write: 717 * - decrypt destination in an intermediate buffer 718 * - copy the source buffer in an intermediate buffer 719 * - use the intermediate buffer as source buffer 720 */ 721 if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 722 int dst_offset; 723 724 dst_tpage = alloc_page(GFP_KERNEL); 725 if (!dst_tpage) { 726 ret = -ENOMEM; 727 goto e_free; 728 } 729 730 ret = __sev_dbg_decrypt(kvm, dst_paddr, 731 __sme_page_pa(dst_tpage), size, error); 732 if (ret) 733 goto e_free; 734 735 /* 736 * If source is kernel buffer then use memcpy() otherwise 737 * copy_from_user(). 738 */ 739 dst_offset = dst_paddr & 15; 740 741 if (src_tpage) 742 memcpy(page_address(dst_tpage) + dst_offset, 743 page_address(src_tpage), size); 744 else { 745 if (copy_from_user(page_address(dst_tpage) + dst_offset, 746 (void __user *)(uintptr_t)vaddr, size)) { 747 ret = -EFAULT; 748 goto e_free; 749 } 750 } 751 752 paddr = __sme_page_pa(dst_tpage); 753 dst_paddr = round_down(dst_paddr, 16); 754 len = round_up(size, 16); 755 } 756 757 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 758 759 e_free: 760 if (src_tpage) 761 __free_page(src_tpage); 762 if (dst_tpage) 763 __free_page(dst_tpage); 764 return ret; 765 } 766 767 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 768 { 769 unsigned long vaddr, vaddr_end, next_vaddr; 770 unsigned long dst_vaddr; 771 struct page **src_p, **dst_p; 772 struct kvm_sev_dbg debug; 773 unsigned long n; 774 unsigned int size; 775 int ret; 776 777 if (!sev_guest(kvm)) 778 return -ENOTTY; 779 780 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) 781 return -EFAULT; 782 783 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 784 return -EINVAL; 785 if (!debug.dst_uaddr) 786 return -EINVAL; 787 788 vaddr = debug.src_uaddr; 789 size = debug.len; 790 vaddr_end = vaddr + size; 791 dst_vaddr = debug.dst_uaddr; 792 793 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 794 int len, s_off, d_off; 795 796 /* lock userspace source and destination page */ 797 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 798 if (IS_ERR(src_p)) 799 return PTR_ERR(src_p); 800 801 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); 802 if (IS_ERR(dst_p)) { 803 sev_unpin_memory(kvm, src_p, n); 804 return PTR_ERR(dst_p); 805 } 806 807 /* 808 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the 809 * memory content (i.e it will write the same memory region with C=1). 810 * It's possible that the cache may contain the data with C=0, i.e., 811 * unencrypted so invalidate it first. 812 */ 813 sev_clflush_pages(src_p, 1); 814 sev_clflush_pages(dst_p, 1); 815 816 /* 817 * Since user buffer may not be page aligned, calculate the 818 * offset within the page. 819 */ 820 s_off = vaddr & ~PAGE_MASK; 821 d_off = dst_vaddr & ~PAGE_MASK; 822 len = min_t(size_t, (PAGE_SIZE - s_off), size); 823 824 if (dec) 825 ret = __sev_dbg_decrypt_user(kvm, 826 __sme_page_pa(src_p[0]) + s_off, 827 dst_vaddr, 828 __sme_page_pa(dst_p[0]) + d_off, 829 len, &argp->error); 830 else 831 ret = __sev_dbg_encrypt_user(kvm, 832 __sme_page_pa(src_p[0]) + s_off, 833 vaddr, 834 __sme_page_pa(dst_p[0]) + d_off, 835 dst_vaddr, 836 len, &argp->error); 837 838 sev_unpin_memory(kvm, src_p, n); 839 sev_unpin_memory(kvm, dst_p, n); 840 841 if (ret) 842 goto err; 843 844 next_vaddr = vaddr + len; 845 dst_vaddr = dst_vaddr + len; 846 size -= len; 847 } 848 err: 849 return ret; 850 } 851 852 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 853 { 854 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 855 struct sev_data_launch_secret *data; 856 struct kvm_sev_launch_secret params; 857 struct page **pages; 858 void *blob, *hdr; 859 unsigned long n; 860 int ret, offset; 861 862 if (!sev_guest(kvm)) 863 return -ENOTTY; 864 865 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 866 return -EFAULT; 867 868 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); 869 if (IS_ERR(pages)) 870 return PTR_ERR(pages); 871 872 /* 873 * The secret must be copied into contiguous memory region, lets verify 874 * that userspace memory pages are contiguous before we issue command. 875 */ 876 if (get_num_contig_pages(0, pages, n) != n) { 877 ret = -EINVAL; 878 goto e_unpin_memory; 879 } 880 881 ret = -ENOMEM; 882 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT); 883 if (!data) 884 goto e_unpin_memory; 885 886 offset = params.guest_uaddr & (PAGE_SIZE - 1); 887 data->guest_address = __sme_page_pa(pages[0]) + offset; 888 data->guest_len = params.guest_len; 889 890 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 891 if (IS_ERR(blob)) { 892 ret = PTR_ERR(blob); 893 goto e_free; 894 } 895 896 data->trans_address = __psp_pa(blob); 897 data->trans_len = params.trans_len; 898 899 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 900 if (IS_ERR(hdr)) { 901 ret = PTR_ERR(hdr); 902 goto e_free_blob; 903 } 904 data->hdr_address = __psp_pa(hdr); 905 data->hdr_len = params.hdr_len; 906 907 data->handle = sev->handle; 908 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error); 909 910 kfree(hdr); 911 912 e_free_blob: 913 kfree(blob); 914 e_free: 915 kfree(data); 916 e_unpin_memory: 917 sev_unpin_memory(kvm, pages, n); 918 return ret; 919 } 920 921 int svm_mem_enc_op(struct kvm *kvm, void __user *argp) 922 { 923 struct kvm_sev_cmd sev_cmd; 924 int r; 925 926 if (!svm_sev_enabled()) 927 return -ENOTTY; 928 929 if (!argp) 930 return 0; 931 932 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 933 return -EFAULT; 934 935 mutex_lock(&kvm->lock); 936 937 switch (sev_cmd.id) { 938 case KVM_SEV_INIT: 939 r = sev_guest_init(kvm, &sev_cmd); 940 break; 941 case KVM_SEV_LAUNCH_START: 942 r = sev_launch_start(kvm, &sev_cmd); 943 break; 944 case KVM_SEV_LAUNCH_UPDATE_DATA: 945 r = sev_launch_update_data(kvm, &sev_cmd); 946 break; 947 case KVM_SEV_LAUNCH_MEASURE: 948 r = sev_launch_measure(kvm, &sev_cmd); 949 break; 950 case KVM_SEV_LAUNCH_FINISH: 951 r = sev_launch_finish(kvm, &sev_cmd); 952 break; 953 case KVM_SEV_GUEST_STATUS: 954 r = sev_guest_status(kvm, &sev_cmd); 955 break; 956 case KVM_SEV_DBG_DECRYPT: 957 r = sev_dbg_crypt(kvm, &sev_cmd, true); 958 break; 959 case KVM_SEV_DBG_ENCRYPT: 960 r = sev_dbg_crypt(kvm, &sev_cmd, false); 961 break; 962 case KVM_SEV_LAUNCH_SECRET: 963 r = sev_launch_secret(kvm, &sev_cmd); 964 break; 965 default: 966 r = -EINVAL; 967 goto out; 968 } 969 970 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 971 r = -EFAULT; 972 973 out: 974 mutex_unlock(&kvm->lock); 975 return r; 976 } 977 978 int svm_register_enc_region(struct kvm *kvm, 979 struct kvm_enc_region *range) 980 { 981 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 982 struct enc_region *region; 983 int ret = 0; 984 985 if (!sev_guest(kvm)) 986 return -ENOTTY; 987 988 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 989 return -EINVAL; 990 991 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 992 if (!region) 993 return -ENOMEM; 994 995 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); 996 if (IS_ERR(region->pages)) { 997 ret = PTR_ERR(region->pages); 998 goto e_free; 999 } 1000 1001 /* 1002 * The guest may change the memory encryption attribute from C=0 -> C=1 1003 * or vice versa for this memory range. Lets make sure caches are 1004 * flushed to ensure that guest data gets written into memory with 1005 * correct C-bit. 1006 */ 1007 sev_clflush_pages(region->pages, region->npages); 1008 1009 region->uaddr = range->addr; 1010 region->size = range->size; 1011 1012 mutex_lock(&kvm->lock); 1013 list_add_tail(®ion->list, &sev->regions_list); 1014 mutex_unlock(&kvm->lock); 1015 1016 return ret; 1017 1018 e_free: 1019 kfree(region); 1020 return ret; 1021 } 1022 1023 static struct enc_region * 1024 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 1025 { 1026 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1027 struct list_head *head = &sev->regions_list; 1028 struct enc_region *i; 1029 1030 list_for_each_entry(i, head, list) { 1031 if (i->uaddr == range->addr && 1032 i->size == range->size) 1033 return i; 1034 } 1035 1036 return NULL; 1037 } 1038 1039 static void __unregister_enc_region_locked(struct kvm *kvm, 1040 struct enc_region *region) 1041 { 1042 sev_unpin_memory(kvm, region->pages, region->npages); 1043 list_del(®ion->list); 1044 kfree(region); 1045 } 1046 1047 int svm_unregister_enc_region(struct kvm *kvm, 1048 struct kvm_enc_region *range) 1049 { 1050 struct enc_region *region; 1051 int ret; 1052 1053 mutex_lock(&kvm->lock); 1054 1055 if (!sev_guest(kvm)) { 1056 ret = -ENOTTY; 1057 goto failed; 1058 } 1059 1060 region = find_enc_region(kvm, range); 1061 if (!region) { 1062 ret = -EINVAL; 1063 goto failed; 1064 } 1065 1066 /* 1067 * Ensure that all guest tagged cache entries are flushed before 1068 * releasing the pages back to the system for use. CLFLUSH will 1069 * not do this, so issue a WBINVD. 1070 */ 1071 wbinvd_on_all_cpus(); 1072 1073 __unregister_enc_region_locked(kvm, region); 1074 1075 mutex_unlock(&kvm->lock); 1076 return 0; 1077 1078 failed: 1079 mutex_unlock(&kvm->lock); 1080 return ret; 1081 } 1082 1083 void sev_vm_destroy(struct kvm *kvm) 1084 { 1085 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1086 struct list_head *head = &sev->regions_list; 1087 struct list_head *pos, *q; 1088 1089 if (!sev_guest(kvm)) 1090 return; 1091 1092 mutex_lock(&kvm->lock); 1093 1094 /* 1095 * Ensure that all guest tagged cache entries are flushed before 1096 * releasing the pages back to the system for use. CLFLUSH will 1097 * not do this, so issue a WBINVD. 1098 */ 1099 wbinvd_on_all_cpus(); 1100 1101 /* 1102 * if userspace was terminated before unregistering the memory regions 1103 * then lets unpin all the registered memory. 1104 */ 1105 if (!list_empty(head)) { 1106 list_for_each_safe(pos, q, head) { 1107 __unregister_enc_region_locked(kvm, 1108 list_entry(pos, struct enc_region, list)); 1109 cond_resched(); 1110 } 1111 } 1112 1113 mutex_unlock(&kvm->lock); 1114 1115 sev_unbind_asid(kvm, sev->handle); 1116 sev_asid_free(sev->asid); 1117 } 1118 1119 int __init sev_hardware_setup(void) 1120 { 1121 struct sev_user_data_status *status; 1122 int rc; 1123 1124 /* Maximum number of encrypted guests supported simultaneously */ 1125 max_sev_asid = cpuid_ecx(0x8000001F); 1126 1127 if (!svm_sev_enabled()) 1128 return 1; 1129 1130 /* Minimum ASID value that should be used for SEV guest */ 1131 min_sev_asid = cpuid_edx(0x8000001F); 1132 1133 /* Initialize SEV ASID bitmaps */ 1134 sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); 1135 if (!sev_asid_bitmap) 1136 return 1; 1137 1138 sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); 1139 if (!sev_reclaim_asid_bitmap) 1140 return 1; 1141 1142 status = kmalloc(sizeof(*status), GFP_KERNEL); 1143 if (!status) 1144 return 1; 1145 1146 /* 1147 * Check SEV platform status. 1148 * 1149 * PLATFORM_STATUS can be called in any state, if we failed to query 1150 * the PLATFORM status then either PSP firmware does not support SEV 1151 * feature or SEV firmware is dead. 1152 */ 1153 rc = sev_platform_status(status, NULL); 1154 if (rc) 1155 goto err; 1156 1157 pr_info("SEV supported\n"); 1158 1159 err: 1160 kfree(status); 1161 return rc; 1162 } 1163 1164 void sev_hardware_teardown(void) 1165 { 1166 if (!svm_sev_enabled()) 1167 return; 1168 1169 bitmap_free(sev_asid_bitmap); 1170 bitmap_free(sev_reclaim_asid_bitmap); 1171 1172 sev_flush_asids(); 1173 } 1174 1175 void pre_sev_run(struct vcpu_svm *svm, int cpu) 1176 { 1177 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 1178 int asid = sev_get_asid(svm->vcpu.kvm); 1179 1180 /* Assign the asid allocated with this SEV guest */ 1181 svm->vmcb->control.asid = asid; 1182 1183 /* 1184 * Flush guest TLB: 1185 * 1186 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 1187 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 1188 */ 1189 if (sd->sev_vmcbs[asid] == svm->vmcb && 1190 svm->vcpu.arch.last_vmentry_cpu == cpu) 1191 return; 1192 1193 sd->sev_vmcbs[asid] = svm->vmcb; 1194 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 1195 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 1196 } 1197