1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM-SEV support 6 * 7 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 8 */ 9 10 #include <linux/kvm_types.h> 11 #include <linux/kvm_host.h> 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 14 #include <linux/psp-sev.h> 15 #include <linux/pagemap.h> 16 #include <linux/swap.h> 17 #include <linux/misc_cgroup.h> 18 #include <linux/processor.h> 19 #include <linux/trace_events.h> 20 #include <asm/fpu/internal.h> 21 22 #include <asm/pkru.h> 23 #include <asm/trapnr.h> 24 25 #include "x86.h" 26 #include "svm.h" 27 #include "svm_ops.h" 28 #include "cpuid.h" 29 #include "trace.h" 30 31 #define __ex(x) __kvm_handle_fault_on_reboot(x) 32 33 #ifndef CONFIG_KVM_AMD_SEV 34 /* 35 * When this config is not defined, SEV feature is not supported and APIs in 36 * this file are not used but this file still gets compiled into the KVM AMD 37 * module. 38 * 39 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum 40 * misc_res_type {} defined in linux/misc_cgroup.h. 41 * 42 * Below macros allow compilation to succeed. 43 */ 44 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES 45 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES 46 #endif 47 48 #ifdef CONFIG_KVM_AMD_SEV 49 /* enable/disable SEV support */ 50 static bool sev_enabled = true; 51 module_param_named(sev, sev_enabled, bool, 0444); 52 53 /* enable/disable SEV-ES support */ 54 static bool sev_es_enabled = true; 55 module_param_named(sev_es, sev_es_enabled, bool, 0444); 56 #else 57 #define sev_enabled false 58 #define sev_es_enabled false 59 #endif /* CONFIG_KVM_AMD_SEV */ 60 61 static u8 sev_enc_bit; 62 static DECLARE_RWSEM(sev_deactivate_lock); 63 static DEFINE_MUTEX(sev_bitmap_lock); 64 unsigned int max_sev_asid; 65 static unsigned int min_sev_asid; 66 static unsigned long sev_me_mask; 67 static unsigned long *sev_asid_bitmap; 68 static unsigned long *sev_reclaim_asid_bitmap; 69 70 struct enc_region { 71 struct list_head list; 72 unsigned long npages; 73 struct page **pages; 74 unsigned long uaddr; 75 unsigned long size; 76 }; 77 78 /* Called with the sev_bitmap_lock held, or on shutdown */ 79 static int sev_flush_asids(int min_asid, int max_asid) 80 { 81 int ret, pos, error = 0; 82 83 /* Check if there are any ASIDs to reclaim before performing a flush */ 84 pos = find_next_bit(sev_reclaim_asid_bitmap, max_asid, min_asid); 85 if (pos >= max_asid) 86 return -EBUSY; 87 88 /* 89 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail, 90 * so it must be guarded. 91 */ 92 down_write(&sev_deactivate_lock); 93 94 wbinvd_on_all_cpus(); 95 ret = sev_guest_df_flush(&error); 96 97 up_write(&sev_deactivate_lock); 98 99 if (ret) 100 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error); 101 102 return ret; 103 } 104 105 static inline bool is_mirroring_enc_context(struct kvm *kvm) 106 { 107 return !!to_kvm_svm(kvm)->sev_info.enc_context_owner; 108 } 109 110 /* Must be called with the sev_bitmap_lock held */ 111 static bool __sev_recycle_asids(int min_asid, int max_asid) 112 { 113 if (sev_flush_asids(min_asid, max_asid)) 114 return false; 115 116 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */ 117 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap, 118 max_sev_asid); 119 bitmap_zero(sev_reclaim_asid_bitmap, max_sev_asid); 120 121 return true; 122 } 123 124 static int sev_asid_new(struct kvm_sev_info *sev) 125 { 126 int pos, min_asid, max_asid, ret; 127 bool retry = true; 128 enum misc_res_type type; 129 130 type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 131 WARN_ON(sev->misc_cg); 132 sev->misc_cg = get_current_misc_cg(); 133 ret = misc_cg_try_charge(type, sev->misc_cg, 1); 134 if (ret) { 135 put_misc_cg(sev->misc_cg); 136 sev->misc_cg = NULL; 137 return ret; 138 } 139 140 mutex_lock(&sev_bitmap_lock); 141 142 /* 143 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid. 144 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1. 145 */ 146 min_asid = sev->es_active ? 0 : min_sev_asid - 1; 147 max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid; 148 again: 149 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_asid); 150 if (pos >= max_asid) { 151 if (retry && __sev_recycle_asids(min_asid, max_asid)) { 152 retry = false; 153 goto again; 154 } 155 mutex_unlock(&sev_bitmap_lock); 156 ret = -EBUSY; 157 goto e_uncharge; 158 } 159 160 __set_bit(pos, sev_asid_bitmap); 161 162 mutex_unlock(&sev_bitmap_lock); 163 164 return pos + 1; 165 e_uncharge: 166 misc_cg_uncharge(type, sev->misc_cg, 1); 167 put_misc_cg(sev->misc_cg); 168 sev->misc_cg = NULL; 169 return ret; 170 } 171 172 static int sev_get_asid(struct kvm *kvm) 173 { 174 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 175 176 return sev->asid; 177 } 178 179 static void sev_asid_free(struct kvm_sev_info *sev) 180 { 181 struct svm_cpu_data *sd; 182 int cpu, pos; 183 enum misc_res_type type; 184 185 mutex_lock(&sev_bitmap_lock); 186 187 pos = sev->asid - 1; 188 __set_bit(pos, sev_reclaim_asid_bitmap); 189 190 for_each_possible_cpu(cpu) { 191 sd = per_cpu(svm_data, cpu); 192 sd->sev_vmcbs[pos] = NULL; 193 } 194 195 mutex_unlock(&sev_bitmap_lock); 196 197 type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV; 198 misc_cg_uncharge(type, sev->misc_cg, 1); 199 put_misc_cg(sev->misc_cg); 200 sev->misc_cg = NULL; 201 } 202 203 static void sev_decommission(unsigned int handle) 204 { 205 struct sev_data_decommission decommission; 206 207 if (!handle) 208 return; 209 210 decommission.handle = handle; 211 sev_guest_decommission(&decommission, NULL); 212 } 213 214 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) 215 { 216 struct sev_data_deactivate deactivate; 217 218 if (!handle) 219 return; 220 221 deactivate.handle = handle; 222 223 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */ 224 down_read(&sev_deactivate_lock); 225 sev_guest_deactivate(&deactivate, NULL); 226 up_read(&sev_deactivate_lock); 227 228 sev_decommission(handle); 229 } 230 231 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) 232 { 233 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 234 bool es_active = argp->id == KVM_SEV_ES_INIT; 235 int asid, ret; 236 237 if (kvm->created_vcpus) 238 return -EINVAL; 239 240 ret = -EBUSY; 241 if (unlikely(sev->active)) 242 return ret; 243 244 sev->es_active = es_active; 245 asid = sev_asid_new(sev); 246 if (asid < 0) 247 goto e_no_asid; 248 sev->asid = asid; 249 250 ret = sev_platform_init(&argp->error); 251 if (ret) 252 goto e_free; 253 254 sev->active = true; 255 sev->asid = asid; 256 INIT_LIST_HEAD(&sev->regions_list); 257 258 return 0; 259 260 e_free: 261 sev_asid_free(sev); 262 sev->asid = 0; 263 e_no_asid: 264 sev->es_active = false; 265 return ret; 266 } 267 268 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) 269 { 270 struct sev_data_activate activate; 271 int asid = sev_get_asid(kvm); 272 int ret; 273 274 /* activate ASID on the given handle */ 275 activate.handle = handle; 276 activate.asid = asid; 277 ret = sev_guest_activate(&activate, error); 278 279 return ret; 280 } 281 282 static int __sev_issue_cmd(int fd, int id, void *data, int *error) 283 { 284 struct fd f; 285 int ret; 286 287 f = fdget(fd); 288 if (!f.file) 289 return -EBADF; 290 291 ret = sev_issue_cmd_external_user(f.file, id, data, error); 292 293 fdput(f); 294 return ret; 295 } 296 297 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) 298 { 299 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 300 301 return __sev_issue_cmd(sev->fd, id, data, error); 302 } 303 304 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 305 { 306 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 307 struct sev_data_launch_start start; 308 struct kvm_sev_launch_start params; 309 void *dh_blob, *session_blob; 310 int *error = &argp->error; 311 int ret; 312 313 if (!sev_guest(kvm)) 314 return -ENOTTY; 315 316 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 317 return -EFAULT; 318 319 memset(&start, 0, sizeof(start)); 320 321 dh_blob = NULL; 322 if (params.dh_uaddr) { 323 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); 324 if (IS_ERR(dh_blob)) 325 return PTR_ERR(dh_blob); 326 327 start.dh_cert_address = __sme_set(__pa(dh_blob)); 328 start.dh_cert_len = params.dh_len; 329 } 330 331 session_blob = NULL; 332 if (params.session_uaddr) { 333 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); 334 if (IS_ERR(session_blob)) { 335 ret = PTR_ERR(session_blob); 336 goto e_free_dh; 337 } 338 339 start.session_address = __sme_set(__pa(session_blob)); 340 start.session_len = params.session_len; 341 } 342 343 start.handle = params.handle; 344 start.policy = params.policy; 345 346 /* create memory encryption context */ 347 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error); 348 if (ret) 349 goto e_free_session; 350 351 /* Bind ASID to this guest */ 352 ret = sev_bind_asid(kvm, start.handle, error); 353 if (ret) { 354 sev_decommission(start.handle); 355 goto e_free_session; 356 } 357 358 /* return handle to userspace */ 359 params.handle = start.handle; 360 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { 361 sev_unbind_asid(kvm, start.handle); 362 ret = -EFAULT; 363 goto e_free_session; 364 } 365 366 sev->handle = start.handle; 367 sev->fd = argp->sev_fd; 368 369 e_free_session: 370 kfree(session_blob); 371 e_free_dh: 372 kfree(dh_blob); 373 return ret; 374 } 375 376 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, 377 unsigned long ulen, unsigned long *n, 378 int write) 379 { 380 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 381 unsigned long npages, size; 382 int npinned; 383 unsigned long locked, lock_limit; 384 struct page **pages; 385 unsigned long first, last; 386 int ret; 387 388 lockdep_assert_held(&kvm->lock); 389 390 if (ulen == 0 || uaddr + ulen < uaddr) 391 return ERR_PTR(-EINVAL); 392 393 /* Calculate number of pages. */ 394 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; 395 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; 396 npages = (last - first + 1); 397 398 locked = sev->pages_locked + npages; 399 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; 400 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { 401 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); 402 return ERR_PTR(-ENOMEM); 403 } 404 405 if (WARN_ON_ONCE(npages > INT_MAX)) 406 return ERR_PTR(-EINVAL); 407 408 /* Avoid using vmalloc for smaller buffers. */ 409 size = npages * sizeof(struct page *); 410 if (size > PAGE_SIZE) 411 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO); 412 else 413 pages = kmalloc(size, GFP_KERNEL_ACCOUNT); 414 415 if (!pages) 416 return ERR_PTR(-ENOMEM); 417 418 /* Pin the user virtual address. */ 419 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); 420 if (npinned != npages) { 421 pr_err("SEV: Failure locking %lu pages.\n", npages); 422 ret = -ENOMEM; 423 goto err; 424 } 425 426 *n = npages; 427 sev->pages_locked = locked; 428 429 return pages; 430 431 err: 432 if (npinned > 0) 433 unpin_user_pages(pages, npinned); 434 435 kvfree(pages); 436 return ERR_PTR(ret); 437 } 438 439 static void sev_unpin_memory(struct kvm *kvm, struct page **pages, 440 unsigned long npages) 441 { 442 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 443 444 unpin_user_pages(pages, npages); 445 kvfree(pages); 446 sev->pages_locked -= npages; 447 } 448 449 static void sev_clflush_pages(struct page *pages[], unsigned long npages) 450 { 451 uint8_t *page_virtual; 452 unsigned long i; 453 454 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 || 455 pages == NULL) 456 return; 457 458 for (i = 0; i < npages; i++) { 459 page_virtual = kmap_atomic(pages[i]); 460 clflush_cache_range(page_virtual, PAGE_SIZE); 461 kunmap_atomic(page_virtual); 462 } 463 } 464 465 static unsigned long get_num_contig_pages(unsigned long idx, 466 struct page **inpages, unsigned long npages) 467 { 468 unsigned long paddr, next_paddr; 469 unsigned long i = idx + 1, pages = 1; 470 471 /* find the number of contiguous pages starting from idx */ 472 paddr = __sme_page_pa(inpages[idx]); 473 while (i < npages) { 474 next_paddr = __sme_page_pa(inpages[i++]); 475 if ((paddr + PAGE_SIZE) == next_paddr) { 476 pages++; 477 paddr = next_paddr; 478 continue; 479 } 480 break; 481 } 482 483 return pages; 484 } 485 486 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 487 { 488 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; 489 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 490 struct kvm_sev_launch_update_data params; 491 struct sev_data_launch_update_data data; 492 struct page **inpages; 493 int ret; 494 495 if (!sev_guest(kvm)) 496 return -ENOTTY; 497 498 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 499 return -EFAULT; 500 501 vaddr = params.uaddr; 502 size = params.len; 503 vaddr_end = vaddr + size; 504 505 /* Lock the user memory. */ 506 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); 507 if (IS_ERR(inpages)) 508 return PTR_ERR(inpages); 509 510 /* 511 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in 512 * place; the cache may contain the data that was written unencrypted. 513 */ 514 sev_clflush_pages(inpages, npages); 515 516 data.reserved = 0; 517 data.handle = sev->handle; 518 519 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { 520 int offset, len; 521 522 /* 523 * If the user buffer is not page-aligned, calculate the offset 524 * within the page. 525 */ 526 offset = vaddr & (PAGE_SIZE - 1); 527 528 /* Calculate the number of pages that can be encrypted in one go. */ 529 pages = get_num_contig_pages(i, inpages, npages); 530 531 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); 532 533 data.len = len; 534 data.address = __sme_page_pa(inpages[i]) + offset; 535 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error); 536 if (ret) 537 goto e_unpin; 538 539 size -= len; 540 next_vaddr = vaddr + len; 541 } 542 543 e_unpin: 544 /* content of memory is updated, mark pages dirty */ 545 for (i = 0; i < npages; i++) { 546 set_page_dirty_lock(inpages[i]); 547 mark_page_accessed(inpages[i]); 548 } 549 /* unlock the user pages */ 550 sev_unpin_memory(kvm, inpages, npages); 551 return ret; 552 } 553 554 static int sev_es_sync_vmsa(struct vcpu_svm *svm) 555 { 556 struct vmcb_save_area *save = &svm->vmcb->save; 557 558 /* Check some debug related fields before encrypting the VMSA */ 559 if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1)) 560 return -EINVAL; 561 562 /* Sync registgers */ 563 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX]; 564 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX]; 565 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; 566 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX]; 567 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP]; 568 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP]; 569 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI]; 570 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI]; 571 #ifdef CONFIG_X86_64 572 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8]; 573 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9]; 574 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10]; 575 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11]; 576 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12]; 577 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13]; 578 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14]; 579 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15]; 580 #endif 581 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP]; 582 583 /* Sync some non-GPR registers before encrypting */ 584 save->xcr0 = svm->vcpu.arch.xcr0; 585 save->pkru = svm->vcpu.arch.pkru; 586 save->xss = svm->vcpu.arch.ia32_xss; 587 588 /* 589 * SEV-ES will use a VMSA that is pointed to by the VMCB, not 590 * the traditional VMSA that is part of the VMCB. Copy the 591 * traditional VMSA as it has been built so far (in prep 592 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state. 593 */ 594 memcpy(svm->vmsa, save, sizeof(*save)); 595 596 return 0; 597 } 598 599 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp) 600 { 601 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 602 struct sev_data_launch_update_vmsa vmsa; 603 struct kvm_vcpu *vcpu; 604 int i, ret; 605 606 if (!sev_es_guest(kvm)) 607 return -ENOTTY; 608 609 vmsa.reserved = 0; 610 611 kvm_for_each_vcpu(i, vcpu, kvm) { 612 struct vcpu_svm *svm = to_svm(vcpu); 613 614 /* Perform some pre-encryption checks against the VMSA */ 615 ret = sev_es_sync_vmsa(svm); 616 if (ret) 617 return ret; 618 619 /* 620 * The LAUNCH_UPDATE_VMSA command will perform in-place 621 * encryption of the VMSA memory content (i.e it will write 622 * the same memory region with the guest's key), so invalidate 623 * it first. 624 */ 625 clflush_cache_range(svm->vmsa, PAGE_SIZE); 626 627 vmsa.handle = sev->handle; 628 vmsa.address = __sme_pa(svm->vmsa); 629 vmsa.len = PAGE_SIZE; 630 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, 631 &argp->error); 632 if (ret) 633 return ret; 634 635 svm->vcpu.arch.guest_state_protected = true; 636 } 637 638 return 0; 639 } 640 641 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) 642 { 643 void __user *measure = (void __user *)(uintptr_t)argp->data; 644 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 645 struct sev_data_launch_measure data; 646 struct kvm_sev_launch_measure params; 647 void __user *p = NULL; 648 void *blob = NULL; 649 int ret; 650 651 if (!sev_guest(kvm)) 652 return -ENOTTY; 653 654 if (copy_from_user(¶ms, measure, sizeof(params))) 655 return -EFAULT; 656 657 memset(&data, 0, sizeof(data)); 658 659 /* User wants to query the blob length */ 660 if (!params.len) 661 goto cmd; 662 663 p = (void __user *)(uintptr_t)params.uaddr; 664 if (p) { 665 if (params.len > SEV_FW_BLOB_MAX_SIZE) 666 return -EINVAL; 667 668 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); 669 if (!blob) 670 return -ENOMEM; 671 672 data.address = __psp_pa(blob); 673 data.len = params.len; 674 } 675 676 cmd: 677 data.handle = sev->handle; 678 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error); 679 680 /* 681 * If we query the session length, FW responded with expected data. 682 */ 683 if (!params.len) 684 goto done; 685 686 if (ret) 687 goto e_free_blob; 688 689 if (blob) { 690 if (copy_to_user(p, blob, params.len)) 691 ret = -EFAULT; 692 } 693 694 done: 695 params.len = data.len; 696 if (copy_to_user(measure, ¶ms, sizeof(params))) 697 ret = -EFAULT; 698 e_free_blob: 699 kfree(blob); 700 return ret; 701 } 702 703 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 704 { 705 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 706 struct sev_data_launch_finish data; 707 708 if (!sev_guest(kvm)) 709 return -ENOTTY; 710 711 data.handle = sev->handle; 712 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error); 713 } 714 715 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) 716 { 717 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 718 struct kvm_sev_guest_status params; 719 struct sev_data_guest_status data; 720 int ret; 721 722 if (!sev_guest(kvm)) 723 return -ENOTTY; 724 725 memset(&data, 0, sizeof(data)); 726 727 data.handle = sev->handle; 728 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error); 729 if (ret) 730 return ret; 731 732 params.policy = data.policy; 733 params.state = data.state; 734 params.handle = data.handle; 735 736 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) 737 ret = -EFAULT; 738 739 return ret; 740 } 741 742 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, 743 unsigned long dst, int size, 744 int *error, bool enc) 745 { 746 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 747 struct sev_data_dbg data; 748 749 data.reserved = 0; 750 data.handle = sev->handle; 751 data.dst_addr = dst; 752 data.src_addr = src; 753 data.len = size; 754 755 return sev_issue_cmd(kvm, 756 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, 757 &data, error); 758 } 759 760 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, 761 unsigned long dst_paddr, int sz, int *err) 762 { 763 int offset; 764 765 /* 766 * Its safe to read more than we are asked, caller should ensure that 767 * destination has enough space. 768 */ 769 offset = src_paddr & 15; 770 src_paddr = round_down(src_paddr, 16); 771 sz = round_up(sz + offset, 16); 772 773 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); 774 } 775 776 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, 777 void __user *dst_uaddr, 778 unsigned long dst_paddr, 779 int size, int *err) 780 { 781 struct page *tpage = NULL; 782 int ret, offset; 783 784 /* if inputs are not 16-byte then use intermediate buffer */ 785 if (!IS_ALIGNED(dst_paddr, 16) || 786 !IS_ALIGNED(paddr, 16) || 787 !IS_ALIGNED(size, 16)) { 788 tpage = (void *)alloc_page(GFP_KERNEL); 789 if (!tpage) 790 return -ENOMEM; 791 792 dst_paddr = __sme_page_pa(tpage); 793 } 794 795 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); 796 if (ret) 797 goto e_free; 798 799 if (tpage) { 800 offset = paddr & 15; 801 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size)) 802 ret = -EFAULT; 803 } 804 805 e_free: 806 if (tpage) 807 __free_page(tpage); 808 809 return ret; 810 } 811 812 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, 813 void __user *vaddr, 814 unsigned long dst_paddr, 815 void __user *dst_vaddr, 816 int size, int *error) 817 { 818 struct page *src_tpage = NULL; 819 struct page *dst_tpage = NULL; 820 int ret, len = size; 821 822 /* If source buffer is not aligned then use an intermediate buffer */ 823 if (!IS_ALIGNED((unsigned long)vaddr, 16)) { 824 src_tpage = alloc_page(GFP_KERNEL); 825 if (!src_tpage) 826 return -ENOMEM; 827 828 if (copy_from_user(page_address(src_tpage), vaddr, size)) { 829 __free_page(src_tpage); 830 return -EFAULT; 831 } 832 833 paddr = __sme_page_pa(src_tpage); 834 } 835 836 /* 837 * If destination buffer or length is not aligned then do read-modify-write: 838 * - decrypt destination in an intermediate buffer 839 * - copy the source buffer in an intermediate buffer 840 * - use the intermediate buffer as source buffer 841 */ 842 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { 843 int dst_offset; 844 845 dst_tpage = alloc_page(GFP_KERNEL); 846 if (!dst_tpage) { 847 ret = -ENOMEM; 848 goto e_free; 849 } 850 851 ret = __sev_dbg_decrypt(kvm, dst_paddr, 852 __sme_page_pa(dst_tpage), size, error); 853 if (ret) 854 goto e_free; 855 856 /* 857 * If source is kernel buffer then use memcpy() otherwise 858 * copy_from_user(). 859 */ 860 dst_offset = dst_paddr & 15; 861 862 if (src_tpage) 863 memcpy(page_address(dst_tpage) + dst_offset, 864 page_address(src_tpage), size); 865 else { 866 if (copy_from_user(page_address(dst_tpage) + dst_offset, 867 vaddr, size)) { 868 ret = -EFAULT; 869 goto e_free; 870 } 871 } 872 873 paddr = __sme_page_pa(dst_tpage); 874 dst_paddr = round_down(dst_paddr, 16); 875 len = round_up(size, 16); 876 } 877 878 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); 879 880 e_free: 881 if (src_tpage) 882 __free_page(src_tpage); 883 if (dst_tpage) 884 __free_page(dst_tpage); 885 return ret; 886 } 887 888 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) 889 { 890 unsigned long vaddr, vaddr_end, next_vaddr; 891 unsigned long dst_vaddr; 892 struct page **src_p, **dst_p; 893 struct kvm_sev_dbg debug; 894 unsigned long n; 895 unsigned int size; 896 int ret; 897 898 if (!sev_guest(kvm)) 899 return -ENOTTY; 900 901 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) 902 return -EFAULT; 903 904 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) 905 return -EINVAL; 906 if (!debug.dst_uaddr) 907 return -EINVAL; 908 909 vaddr = debug.src_uaddr; 910 size = debug.len; 911 vaddr_end = vaddr + size; 912 dst_vaddr = debug.dst_uaddr; 913 914 for (; vaddr < vaddr_end; vaddr = next_vaddr) { 915 int len, s_off, d_off; 916 917 /* lock userspace source and destination page */ 918 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); 919 if (IS_ERR(src_p)) 920 return PTR_ERR(src_p); 921 922 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); 923 if (IS_ERR(dst_p)) { 924 sev_unpin_memory(kvm, src_p, n); 925 return PTR_ERR(dst_p); 926 } 927 928 /* 929 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify 930 * the pages; flush the destination too so that future accesses do not 931 * see stale data. 932 */ 933 sev_clflush_pages(src_p, 1); 934 sev_clflush_pages(dst_p, 1); 935 936 /* 937 * Since user buffer may not be page aligned, calculate the 938 * offset within the page. 939 */ 940 s_off = vaddr & ~PAGE_MASK; 941 d_off = dst_vaddr & ~PAGE_MASK; 942 len = min_t(size_t, (PAGE_SIZE - s_off), size); 943 944 if (dec) 945 ret = __sev_dbg_decrypt_user(kvm, 946 __sme_page_pa(src_p[0]) + s_off, 947 (void __user *)dst_vaddr, 948 __sme_page_pa(dst_p[0]) + d_off, 949 len, &argp->error); 950 else 951 ret = __sev_dbg_encrypt_user(kvm, 952 __sme_page_pa(src_p[0]) + s_off, 953 (void __user *)vaddr, 954 __sme_page_pa(dst_p[0]) + d_off, 955 (void __user *)dst_vaddr, 956 len, &argp->error); 957 958 sev_unpin_memory(kvm, src_p, n); 959 sev_unpin_memory(kvm, dst_p, n); 960 961 if (ret) 962 goto err; 963 964 next_vaddr = vaddr + len; 965 dst_vaddr = dst_vaddr + len; 966 size -= len; 967 } 968 err: 969 return ret; 970 } 971 972 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) 973 { 974 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 975 struct sev_data_launch_secret data; 976 struct kvm_sev_launch_secret params; 977 struct page **pages; 978 void *blob, *hdr; 979 unsigned long n, i; 980 int ret, offset; 981 982 if (!sev_guest(kvm)) 983 return -ENOTTY; 984 985 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 986 return -EFAULT; 987 988 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); 989 if (IS_ERR(pages)) 990 return PTR_ERR(pages); 991 992 /* 993 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in 994 * place; the cache may contain the data that was written unencrypted. 995 */ 996 sev_clflush_pages(pages, n); 997 998 /* 999 * The secret must be copied into contiguous memory region, lets verify 1000 * that userspace memory pages are contiguous before we issue command. 1001 */ 1002 if (get_num_contig_pages(0, pages, n) != n) { 1003 ret = -EINVAL; 1004 goto e_unpin_memory; 1005 } 1006 1007 memset(&data, 0, sizeof(data)); 1008 1009 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1010 data.guest_address = __sme_page_pa(pages[0]) + offset; 1011 data.guest_len = params.guest_len; 1012 1013 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1014 if (IS_ERR(blob)) { 1015 ret = PTR_ERR(blob); 1016 goto e_unpin_memory; 1017 } 1018 1019 data.trans_address = __psp_pa(blob); 1020 data.trans_len = params.trans_len; 1021 1022 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1023 if (IS_ERR(hdr)) { 1024 ret = PTR_ERR(hdr); 1025 goto e_free_blob; 1026 } 1027 data.hdr_address = __psp_pa(hdr); 1028 data.hdr_len = params.hdr_len; 1029 1030 data.handle = sev->handle; 1031 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error); 1032 1033 kfree(hdr); 1034 1035 e_free_blob: 1036 kfree(blob); 1037 e_unpin_memory: 1038 /* content of memory is updated, mark pages dirty */ 1039 for (i = 0; i < n; i++) { 1040 set_page_dirty_lock(pages[i]); 1041 mark_page_accessed(pages[i]); 1042 } 1043 sev_unpin_memory(kvm, pages, n); 1044 return ret; 1045 } 1046 1047 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp) 1048 { 1049 void __user *report = (void __user *)(uintptr_t)argp->data; 1050 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1051 struct sev_data_attestation_report data; 1052 struct kvm_sev_attestation_report params; 1053 void __user *p; 1054 void *blob = NULL; 1055 int ret; 1056 1057 if (!sev_guest(kvm)) 1058 return -ENOTTY; 1059 1060 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) 1061 return -EFAULT; 1062 1063 memset(&data, 0, sizeof(data)); 1064 1065 /* User wants to query the blob length */ 1066 if (!params.len) 1067 goto cmd; 1068 1069 p = (void __user *)(uintptr_t)params.uaddr; 1070 if (p) { 1071 if (params.len > SEV_FW_BLOB_MAX_SIZE) 1072 return -EINVAL; 1073 1074 blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT); 1075 if (!blob) 1076 return -ENOMEM; 1077 1078 data.address = __psp_pa(blob); 1079 data.len = params.len; 1080 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce)); 1081 } 1082 cmd: 1083 data.handle = sev->handle; 1084 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error); 1085 /* 1086 * If we query the session length, FW responded with expected data. 1087 */ 1088 if (!params.len) 1089 goto done; 1090 1091 if (ret) 1092 goto e_free_blob; 1093 1094 if (blob) { 1095 if (copy_to_user(p, blob, params.len)) 1096 ret = -EFAULT; 1097 } 1098 1099 done: 1100 params.len = data.len; 1101 if (copy_to_user(report, ¶ms, sizeof(params))) 1102 ret = -EFAULT; 1103 e_free_blob: 1104 kfree(blob); 1105 return ret; 1106 } 1107 1108 /* Userspace wants to query session length. */ 1109 static int 1110 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp, 1111 struct kvm_sev_send_start *params) 1112 { 1113 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1114 struct sev_data_send_start data; 1115 int ret; 1116 1117 memset(&data, 0, sizeof(data)); 1118 data.handle = sev->handle; 1119 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1120 1121 params->session_len = data.session_len; 1122 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1123 sizeof(struct kvm_sev_send_start))) 1124 ret = -EFAULT; 1125 1126 return ret; 1127 } 1128 1129 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1130 { 1131 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1132 struct sev_data_send_start data; 1133 struct kvm_sev_send_start params; 1134 void *amd_certs, *session_data; 1135 void *pdh_cert, *plat_certs; 1136 int ret; 1137 1138 if (!sev_guest(kvm)) 1139 return -ENOTTY; 1140 1141 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1142 sizeof(struct kvm_sev_send_start))) 1143 return -EFAULT; 1144 1145 /* if session_len is zero, userspace wants to query the session length */ 1146 if (!params.session_len) 1147 return __sev_send_start_query_session_length(kvm, argp, 1148 ¶ms); 1149 1150 /* some sanity checks */ 1151 if (!params.pdh_cert_uaddr || !params.pdh_cert_len || 1152 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE) 1153 return -EINVAL; 1154 1155 /* allocate the memory to hold the session data blob */ 1156 session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT); 1157 if (!session_data) 1158 return -ENOMEM; 1159 1160 /* copy the certificate blobs from userspace */ 1161 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr, 1162 params.pdh_cert_len); 1163 if (IS_ERR(pdh_cert)) { 1164 ret = PTR_ERR(pdh_cert); 1165 goto e_free_session; 1166 } 1167 1168 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr, 1169 params.plat_certs_len); 1170 if (IS_ERR(plat_certs)) { 1171 ret = PTR_ERR(plat_certs); 1172 goto e_free_pdh; 1173 } 1174 1175 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr, 1176 params.amd_certs_len); 1177 if (IS_ERR(amd_certs)) { 1178 ret = PTR_ERR(amd_certs); 1179 goto e_free_plat_cert; 1180 } 1181 1182 /* populate the FW SEND_START field with system physical address */ 1183 memset(&data, 0, sizeof(data)); 1184 data.pdh_cert_address = __psp_pa(pdh_cert); 1185 data.pdh_cert_len = params.pdh_cert_len; 1186 data.plat_certs_address = __psp_pa(plat_certs); 1187 data.plat_certs_len = params.plat_certs_len; 1188 data.amd_certs_address = __psp_pa(amd_certs); 1189 data.amd_certs_len = params.amd_certs_len; 1190 data.session_address = __psp_pa(session_data); 1191 data.session_len = params.session_len; 1192 data.handle = sev->handle; 1193 1194 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error); 1195 1196 if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr, 1197 session_data, params.session_len)) { 1198 ret = -EFAULT; 1199 goto e_free_amd_cert; 1200 } 1201 1202 params.policy = data.policy; 1203 params.session_len = data.session_len; 1204 if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, 1205 sizeof(struct kvm_sev_send_start))) 1206 ret = -EFAULT; 1207 1208 e_free_amd_cert: 1209 kfree(amd_certs); 1210 e_free_plat_cert: 1211 kfree(plat_certs); 1212 e_free_pdh: 1213 kfree(pdh_cert); 1214 e_free_session: 1215 kfree(session_data); 1216 return ret; 1217 } 1218 1219 /* Userspace wants to query either header or trans length. */ 1220 static int 1221 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp, 1222 struct kvm_sev_send_update_data *params) 1223 { 1224 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1225 struct sev_data_send_update_data data; 1226 int ret; 1227 1228 memset(&data, 0, sizeof(data)); 1229 data.handle = sev->handle; 1230 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1231 1232 params->hdr_len = data.hdr_len; 1233 params->trans_len = data.trans_len; 1234 1235 if (copy_to_user((void __user *)(uintptr_t)argp->data, params, 1236 sizeof(struct kvm_sev_send_update_data))) 1237 ret = -EFAULT; 1238 1239 return ret; 1240 } 1241 1242 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1243 { 1244 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1245 struct sev_data_send_update_data data; 1246 struct kvm_sev_send_update_data params; 1247 void *hdr, *trans_data; 1248 struct page **guest_page; 1249 unsigned long n; 1250 int ret, offset; 1251 1252 if (!sev_guest(kvm)) 1253 return -ENOTTY; 1254 1255 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1256 sizeof(struct kvm_sev_send_update_data))) 1257 return -EFAULT; 1258 1259 /* userspace wants to query either header or trans length */ 1260 if (!params.trans_len || !params.hdr_len) 1261 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms); 1262 1263 if (!params.trans_uaddr || !params.guest_uaddr || 1264 !params.guest_len || !params.hdr_uaddr) 1265 return -EINVAL; 1266 1267 /* Check if we are crossing the page boundary */ 1268 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1269 if ((params.guest_len + offset > PAGE_SIZE)) 1270 return -EINVAL; 1271 1272 /* Pin guest memory */ 1273 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1274 PAGE_SIZE, &n, 0); 1275 if (IS_ERR(guest_page)) 1276 return PTR_ERR(guest_page); 1277 1278 /* allocate memory for header and transport buffer */ 1279 ret = -ENOMEM; 1280 hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT); 1281 if (!hdr) 1282 goto e_unpin; 1283 1284 trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT); 1285 if (!trans_data) 1286 goto e_free_hdr; 1287 1288 memset(&data, 0, sizeof(data)); 1289 data.hdr_address = __psp_pa(hdr); 1290 data.hdr_len = params.hdr_len; 1291 data.trans_address = __psp_pa(trans_data); 1292 data.trans_len = params.trans_len; 1293 1294 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */ 1295 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1296 data.guest_address |= sev_me_mask; 1297 data.guest_len = params.guest_len; 1298 data.handle = sev->handle; 1299 1300 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error); 1301 1302 if (ret) 1303 goto e_free_trans_data; 1304 1305 /* copy transport buffer to user space */ 1306 if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr, 1307 trans_data, params.trans_len)) { 1308 ret = -EFAULT; 1309 goto e_free_trans_data; 1310 } 1311 1312 /* Copy packet header to userspace. */ 1313 if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr, 1314 params.hdr_len)) 1315 ret = -EFAULT; 1316 1317 e_free_trans_data: 1318 kfree(trans_data); 1319 e_free_hdr: 1320 kfree(hdr); 1321 e_unpin: 1322 sev_unpin_memory(kvm, guest_page, n); 1323 1324 return ret; 1325 } 1326 1327 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1328 { 1329 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1330 struct sev_data_send_finish data; 1331 1332 if (!sev_guest(kvm)) 1333 return -ENOTTY; 1334 1335 data.handle = sev->handle; 1336 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error); 1337 } 1338 1339 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp) 1340 { 1341 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1342 struct sev_data_send_cancel data; 1343 1344 if (!sev_guest(kvm)) 1345 return -ENOTTY; 1346 1347 data.handle = sev->handle; 1348 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error); 1349 } 1350 1351 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp) 1352 { 1353 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1354 struct sev_data_receive_start start; 1355 struct kvm_sev_receive_start params; 1356 int *error = &argp->error; 1357 void *session_data; 1358 void *pdh_data; 1359 int ret; 1360 1361 if (!sev_guest(kvm)) 1362 return -ENOTTY; 1363 1364 /* Get parameter from the userspace */ 1365 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1366 sizeof(struct kvm_sev_receive_start))) 1367 return -EFAULT; 1368 1369 /* some sanity checks */ 1370 if (!params.pdh_uaddr || !params.pdh_len || 1371 !params.session_uaddr || !params.session_len) 1372 return -EINVAL; 1373 1374 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len); 1375 if (IS_ERR(pdh_data)) 1376 return PTR_ERR(pdh_data); 1377 1378 session_data = psp_copy_user_blob(params.session_uaddr, 1379 params.session_len); 1380 if (IS_ERR(session_data)) { 1381 ret = PTR_ERR(session_data); 1382 goto e_free_pdh; 1383 } 1384 1385 memset(&start, 0, sizeof(start)); 1386 start.handle = params.handle; 1387 start.policy = params.policy; 1388 start.pdh_cert_address = __psp_pa(pdh_data); 1389 start.pdh_cert_len = params.pdh_len; 1390 start.session_address = __psp_pa(session_data); 1391 start.session_len = params.session_len; 1392 1393 /* create memory encryption context */ 1394 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start, 1395 error); 1396 if (ret) 1397 goto e_free_session; 1398 1399 /* Bind ASID to this guest */ 1400 ret = sev_bind_asid(kvm, start.handle, error); 1401 if (ret) 1402 goto e_free_session; 1403 1404 params.handle = start.handle; 1405 if (copy_to_user((void __user *)(uintptr_t)argp->data, 1406 ¶ms, sizeof(struct kvm_sev_receive_start))) { 1407 ret = -EFAULT; 1408 sev_unbind_asid(kvm, start.handle); 1409 goto e_free_session; 1410 } 1411 1412 sev->handle = start.handle; 1413 sev->fd = argp->sev_fd; 1414 1415 e_free_session: 1416 kfree(session_data); 1417 e_free_pdh: 1418 kfree(pdh_data); 1419 1420 return ret; 1421 } 1422 1423 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) 1424 { 1425 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1426 struct kvm_sev_receive_update_data params; 1427 struct sev_data_receive_update_data data; 1428 void *hdr = NULL, *trans = NULL; 1429 struct page **guest_page; 1430 unsigned long n; 1431 int ret, offset; 1432 1433 if (!sev_guest(kvm)) 1434 return -EINVAL; 1435 1436 if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, 1437 sizeof(struct kvm_sev_receive_update_data))) 1438 return -EFAULT; 1439 1440 if (!params.hdr_uaddr || !params.hdr_len || 1441 !params.guest_uaddr || !params.guest_len || 1442 !params.trans_uaddr || !params.trans_len) 1443 return -EINVAL; 1444 1445 /* Check if we are crossing the page boundary */ 1446 offset = params.guest_uaddr & (PAGE_SIZE - 1); 1447 if ((params.guest_len + offset > PAGE_SIZE)) 1448 return -EINVAL; 1449 1450 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); 1451 if (IS_ERR(hdr)) 1452 return PTR_ERR(hdr); 1453 1454 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len); 1455 if (IS_ERR(trans)) { 1456 ret = PTR_ERR(trans); 1457 goto e_free_hdr; 1458 } 1459 1460 memset(&data, 0, sizeof(data)); 1461 data.hdr_address = __psp_pa(hdr); 1462 data.hdr_len = params.hdr_len; 1463 data.trans_address = __psp_pa(trans); 1464 data.trans_len = params.trans_len; 1465 1466 /* Pin guest memory */ 1467 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK, 1468 PAGE_SIZE, &n, 0); 1469 if (IS_ERR(guest_page)) { 1470 ret = PTR_ERR(guest_page); 1471 goto e_free_trans; 1472 } 1473 1474 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */ 1475 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset; 1476 data.guest_address |= sev_me_mask; 1477 data.guest_len = params.guest_len; 1478 data.handle = sev->handle; 1479 1480 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data, 1481 &argp->error); 1482 1483 sev_unpin_memory(kvm, guest_page, n); 1484 1485 e_free_trans: 1486 kfree(trans); 1487 e_free_hdr: 1488 kfree(hdr); 1489 1490 return ret; 1491 } 1492 1493 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) 1494 { 1495 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1496 struct sev_data_receive_finish data; 1497 1498 if (!sev_guest(kvm)) 1499 return -ENOTTY; 1500 1501 data.handle = sev->handle; 1502 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error); 1503 } 1504 1505 int svm_mem_enc_op(struct kvm *kvm, void __user *argp) 1506 { 1507 struct kvm_sev_cmd sev_cmd; 1508 int r; 1509 1510 if (!sev_enabled) 1511 return -ENOTTY; 1512 1513 if (!argp) 1514 return 0; 1515 1516 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) 1517 return -EFAULT; 1518 1519 mutex_lock(&kvm->lock); 1520 1521 /* enc_context_owner handles all memory enc operations */ 1522 if (is_mirroring_enc_context(kvm)) { 1523 r = -EINVAL; 1524 goto out; 1525 } 1526 1527 switch (sev_cmd.id) { 1528 case KVM_SEV_ES_INIT: 1529 if (!sev_es_enabled) { 1530 r = -ENOTTY; 1531 goto out; 1532 } 1533 fallthrough; 1534 case KVM_SEV_INIT: 1535 r = sev_guest_init(kvm, &sev_cmd); 1536 break; 1537 case KVM_SEV_LAUNCH_START: 1538 r = sev_launch_start(kvm, &sev_cmd); 1539 break; 1540 case KVM_SEV_LAUNCH_UPDATE_DATA: 1541 r = sev_launch_update_data(kvm, &sev_cmd); 1542 break; 1543 case KVM_SEV_LAUNCH_UPDATE_VMSA: 1544 r = sev_launch_update_vmsa(kvm, &sev_cmd); 1545 break; 1546 case KVM_SEV_LAUNCH_MEASURE: 1547 r = sev_launch_measure(kvm, &sev_cmd); 1548 break; 1549 case KVM_SEV_LAUNCH_FINISH: 1550 r = sev_launch_finish(kvm, &sev_cmd); 1551 break; 1552 case KVM_SEV_GUEST_STATUS: 1553 r = sev_guest_status(kvm, &sev_cmd); 1554 break; 1555 case KVM_SEV_DBG_DECRYPT: 1556 r = sev_dbg_crypt(kvm, &sev_cmd, true); 1557 break; 1558 case KVM_SEV_DBG_ENCRYPT: 1559 r = sev_dbg_crypt(kvm, &sev_cmd, false); 1560 break; 1561 case KVM_SEV_LAUNCH_SECRET: 1562 r = sev_launch_secret(kvm, &sev_cmd); 1563 break; 1564 case KVM_SEV_GET_ATTESTATION_REPORT: 1565 r = sev_get_attestation_report(kvm, &sev_cmd); 1566 break; 1567 case KVM_SEV_SEND_START: 1568 r = sev_send_start(kvm, &sev_cmd); 1569 break; 1570 case KVM_SEV_SEND_UPDATE_DATA: 1571 r = sev_send_update_data(kvm, &sev_cmd); 1572 break; 1573 case KVM_SEV_SEND_FINISH: 1574 r = sev_send_finish(kvm, &sev_cmd); 1575 break; 1576 case KVM_SEV_SEND_CANCEL: 1577 r = sev_send_cancel(kvm, &sev_cmd); 1578 break; 1579 case KVM_SEV_RECEIVE_START: 1580 r = sev_receive_start(kvm, &sev_cmd); 1581 break; 1582 case KVM_SEV_RECEIVE_UPDATE_DATA: 1583 r = sev_receive_update_data(kvm, &sev_cmd); 1584 break; 1585 case KVM_SEV_RECEIVE_FINISH: 1586 r = sev_receive_finish(kvm, &sev_cmd); 1587 break; 1588 default: 1589 r = -EINVAL; 1590 goto out; 1591 } 1592 1593 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) 1594 r = -EFAULT; 1595 1596 out: 1597 mutex_unlock(&kvm->lock); 1598 return r; 1599 } 1600 1601 int svm_register_enc_region(struct kvm *kvm, 1602 struct kvm_enc_region *range) 1603 { 1604 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1605 struct enc_region *region; 1606 int ret = 0; 1607 1608 if (!sev_guest(kvm)) 1609 return -ENOTTY; 1610 1611 /* If kvm is mirroring encryption context it isn't responsible for it */ 1612 if (is_mirroring_enc_context(kvm)) 1613 return -EINVAL; 1614 1615 if (range->addr > ULONG_MAX || range->size > ULONG_MAX) 1616 return -EINVAL; 1617 1618 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT); 1619 if (!region) 1620 return -ENOMEM; 1621 1622 mutex_lock(&kvm->lock); 1623 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); 1624 if (IS_ERR(region->pages)) { 1625 ret = PTR_ERR(region->pages); 1626 mutex_unlock(&kvm->lock); 1627 goto e_free; 1628 } 1629 1630 region->uaddr = range->addr; 1631 region->size = range->size; 1632 1633 list_add_tail(®ion->list, &sev->regions_list); 1634 mutex_unlock(&kvm->lock); 1635 1636 /* 1637 * The guest may change the memory encryption attribute from C=0 -> C=1 1638 * or vice versa for this memory range. Lets make sure caches are 1639 * flushed to ensure that guest data gets written into memory with 1640 * correct C-bit. 1641 */ 1642 sev_clflush_pages(region->pages, region->npages); 1643 1644 return ret; 1645 1646 e_free: 1647 kfree(region); 1648 return ret; 1649 } 1650 1651 static struct enc_region * 1652 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) 1653 { 1654 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1655 struct list_head *head = &sev->regions_list; 1656 struct enc_region *i; 1657 1658 list_for_each_entry(i, head, list) { 1659 if (i->uaddr == range->addr && 1660 i->size == range->size) 1661 return i; 1662 } 1663 1664 return NULL; 1665 } 1666 1667 static void __unregister_enc_region_locked(struct kvm *kvm, 1668 struct enc_region *region) 1669 { 1670 sev_unpin_memory(kvm, region->pages, region->npages); 1671 list_del(®ion->list); 1672 kfree(region); 1673 } 1674 1675 int svm_unregister_enc_region(struct kvm *kvm, 1676 struct kvm_enc_region *range) 1677 { 1678 struct enc_region *region; 1679 int ret; 1680 1681 /* If kvm is mirroring encryption context it isn't responsible for it */ 1682 if (is_mirroring_enc_context(kvm)) 1683 return -EINVAL; 1684 1685 mutex_lock(&kvm->lock); 1686 1687 if (!sev_guest(kvm)) { 1688 ret = -ENOTTY; 1689 goto failed; 1690 } 1691 1692 region = find_enc_region(kvm, range); 1693 if (!region) { 1694 ret = -EINVAL; 1695 goto failed; 1696 } 1697 1698 /* 1699 * Ensure that all guest tagged cache entries are flushed before 1700 * releasing the pages back to the system for use. CLFLUSH will 1701 * not do this, so issue a WBINVD. 1702 */ 1703 wbinvd_on_all_cpus(); 1704 1705 __unregister_enc_region_locked(kvm, region); 1706 1707 mutex_unlock(&kvm->lock); 1708 return 0; 1709 1710 failed: 1711 mutex_unlock(&kvm->lock); 1712 return ret; 1713 } 1714 1715 int svm_vm_copy_asid_from(struct kvm *kvm, unsigned int source_fd) 1716 { 1717 struct file *source_kvm_file; 1718 struct kvm *source_kvm; 1719 struct kvm_sev_info *mirror_sev; 1720 unsigned int asid; 1721 int ret; 1722 1723 source_kvm_file = fget(source_fd); 1724 if (!file_is_kvm(source_kvm_file)) { 1725 ret = -EBADF; 1726 goto e_source_put; 1727 } 1728 1729 source_kvm = source_kvm_file->private_data; 1730 mutex_lock(&source_kvm->lock); 1731 1732 if (!sev_guest(source_kvm)) { 1733 ret = -EINVAL; 1734 goto e_source_unlock; 1735 } 1736 1737 /* Mirrors of mirrors should work, but let's not get silly */ 1738 if (is_mirroring_enc_context(source_kvm) || source_kvm == kvm) { 1739 ret = -EINVAL; 1740 goto e_source_unlock; 1741 } 1742 1743 asid = to_kvm_svm(source_kvm)->sev_info.asid; 1744 1745 /* 1746 * The mirror kvm holds an enc_context_owner ref so its asid can't 1747 * disappear until we're done with it 1748 */ 1749 kvm_get_kvm(source_kvm); 1750 1751 fput(source_kvm_file); 1752 mutex_unlock(&source_kvm->lock); 1753 mutex_lock(&kvm->lock); 1754 1755 if (sev_guest(kvm)) { 1756 ret = -EINVAL; 1757 goto e_mirror_unlock; 1758 } 1759 1760 /* Set enc_context_owner and copy its encryption context over */ 1761 mirror_sev = &to_kvm_svm(kvm)->sev_info; 1762 mirror_sev->enc_context_owner = source_kvm; 1763 mirror_sev->asid = asid; 1764 mirror_sev->active = true; 1765 1766 mutex_unlock(&kvm->lock); 1767 return 0; 1768 1769 e_mirror_unlock: 1770 mutex_unlock(&kvm->lock); 1771 kvm_put_kvm(source_kvm); 1772 return ret; 1773 e_source_unlock: 1774 mutex_unlock(&source_kvm->lock); 1775 e_source_put: 1776 if (source_kvm_file) 1777 fput(source_kvm_file); 1778 return ret; 1779 } 1780 1781 void sev_vm_destroy(struct kvm *kvm) 1782 { 1783 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; 1784 struct list_head *head = &sev->regions_list; 1785 struct list_head *pos, *q; 1786 1787 if (!sev_guest(kvm)) 1788 return; 1789 1790 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */ 1791 if (is_mirroring_enc_context(kvm)) { 1792 kvm_put_kvm(sev->enc_context_owner); 1793 return; 1794 } 1795 1796 mutex_lock(&kvm->lock); 1797 1798 /* 1799 * Ensure that all guest tagged cache entries are flushed before 1800 * releasing the pages back to the system for use. CLFLUSH will 1801 * not do this, so issue a WBINVD. 1802 */ 1803 wbinvd_on_all_cpus(); 1804 1805 /* 1806 * if userspace was terminated before unregistering the memory regions 1807 * then lets unpin all the registered memory. 1808 */ 1809 if (!list_empty(head)) { 1810 list_for_each_safe(pos, q, head) { 1811 __unregister_enc_region_locked(kvm, 1812 list_entry(pos, struct enc_region, list)); 1813 cond_resched(); 1814 } 1815 } 1816 1817 mutex_unlock(&kvm->lock); 1818 1819 sev_unbind_asid(kvm, sev->handle); 1820 sev_asid_free(sev); 1821 } 1822 1823 void __init sev_set_cpu_caps(void) 1824 { 1825 if (!sev_enabled) 1826 kvm_cpu_cap_clear(X86_FEATURE_SEV); 1827 if (!sev_es_enabled) 1828 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES); 1829 } 1830 1831 void __init sev_hardware_setup(void) 1832 { 1833 #ifdef CONFIG_KVM_AMD_SEV 1834 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count; 1835 bool sev_es_supported = false; 1836 bool sev_supported = false; 1837 1838 if (!sev_enabled || !npt_enabled) 1839 goto out; 1840 1841 /* Does the CPU support SEV? */ 1842 if (!boot_cpu_has(X86_FEATURE_SEV)) 1843 goto out; 1844 1845 /* Retrieve SEV CPUID information */ 1846 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx); 1847 1848 /* Set encryption bit location for SEV-ES guests */ 1849 sev_enc_bit = ebx & 0x3f; 1850 1851 /* Maximum number of encrypted guests supported simultaneously */ 1852 max_sev_asid = ecx; 1853 if (!max_sev_asid) 1854 goto out; 1855 1856 /* Minimum ASID value that should be used for SEV guest */ 1857 min_sev_asid = edx; 1858 sev_me_mask = 1UL << (ebx & 0x3f); 1859 1860 /* Initialize SEV ASID bitmaps */ 1861 sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); 1862 if (!sev_asid_bitmap) 1863 goto out; 1864 1865 sev_reclaim_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); 1866 if (!sev_reclaim_asid_bitmap) { 1867 bitmap_free(sev_asid_bitmap); 1868 sev_asid_bitmap = NULL; 1869 goto out; 1870 } 1871 1872 sev_asid_count = max_sev_asid - min_sev_asid + 1; 1873 if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count)) 1874 goto out; 1875 1876 pr_info("SEV supported: %u ASIDs\n", sev_asid_count); 1877 sev_supported = true; 1878 1879 /* SEV-ES support requested? */ 1880 if (!sev_es_enabled) 1881 goto out; 1882 1883 /* Does the CPU support SEV-ES? */ 1884 if (!boot_cpu_has(X86_FEATURE_SEV_ES)) 1885 goto out; 1886 1887 /* Has the system been allocated ASIDs for SEV-ES? */ 1888 if (min_sev_asid == 1) 1889 goto out; 1890 1891 sev_es_asid_count = min_sev_asid - 1; 1892 if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count)) 1893 goto out; 1894 1895 pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count); 1896 sev_es_supported = true; 1897 1898 out: 1899 sev_enabled = sev_supported; 1900 sev_es_enabled = sev_es_supported; 1901 #endif 1902 } 1903 1904 void sev_hardware_teardown(void) 1905 { 1906 if (!sev_enabled) 1907 return; 1908 1909 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */ 1910 sev_flush_asids(0, max_sev_asid); 1911 1912 bitmap_free(sev_asid_bitmap); 1913 bitmap_free(sev_reclaim_asid_bitmap); 1914 1915 misc_cg_set_capacity(MISC_CG_RES_SEV, 0); 1916 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0); 1917 } 1918 1919 int sev_cpu_init(struct svm_cpu_data *sd) 1920 { 1921 if (!sev_enabled) 1922 return 0; 1923 1924 sd->sev_vmcbs = kcalloc(max_sev_asid + 1, sizeof(void *), GFP_KERNEL); 1925 if (!sd->sev_vmcbs) 1926 return -ENOMEM; 1927 1928 return 0; 1929 } 1930 1931 /* 1932 * Pages used by hardware to hold guest encrypted state must be flushed before 1933 * returning them to the system. 1934 */ 1935 static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va, 1936 unsigned long len) 1937 { 1938 /* 1939 * If hardware enforced cache coherency for encrypted mappings of the 1940 * same physical page is supported, nothing to do. 1941 */ 1942 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) 1943 return; 1944 1945 /* 1946 * If the VM Page Flush MSR is supported, use it to flush the page 1947 * (using the page virtual address and the guest ASID). 1948 */ 1949 if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) { 1950 struct kvm_sev_info *sev; 1951 unsigned long va_start; 1952 u64 start, stop; 1953 1954 /* Align start and stop to page boundaries. */ 1955 va_start = (unsigned long)va; 1956 start = (u64)va_start & PAGE_MASK; 1957 stop = PAGE_ALIGN((u64)va_start + len); 1958 1959 if (start < stop) { 1960 sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info; 1961 1962 while (start < stop) { 1963 wrmsrl(MSR_AMD64_VM_PAGE_FLUSH, 1964 start | sev->asid); 1965 1966 start += PAGE_SIZE; 1967 } 1968 1969 return; 1970 } 1971 1972 WARN(1, "Address overflow, using WBINVD\n"); 1973 } 1974 1975 /* 1976 * Hardware should always have one of the above features, 1977 * but if not, use WBINVD and issue a warning. 1978 */ 1979 WARN_ONCE(1, "Using WBINVD to flush guest memory\n"); 1980 wbinvd_on_all_cpus(); 1981 } 1982 1983 void sev_free_vcpu(struct kvm_vcpu *vcpu) 1984 { 1985 struct vcpu_svm *svm; 1986 1987 if (!sev_es_guest(vcpu->kvm)) 1988 return; 1989 1990 svm = to_svm(vcpu); 1991 1992 if (vcpu->arch.guest_state_protected) 1993 sev_flush_guest_memory(svm, svm->vmsa, PAGE_SIZE); 1994 __free_page(virt_to_page(svm->vmsa)); 1995 1996 if (svm->ghcb_sa_free) 1997 kfree(svm->ghcb_sa); 1998 } 1999 2000 static void dump_ghcb(struct vcpu_svm *svm) 2001 { 2002 struct ghcb *ghcb = svm->ghcb; 2003 unsigned int nbits; 2004 2005 /* Re-use the dump_invalid_vmcb module parameter */ 2006 if (!dump_invalid_vmcb) { 2007 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n"); 2008 return; 2009 } 2010 2011 nbits = sizeof(ghcb->save.valid_bitmap) * 8; 2012 2013 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa); 2014 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code", 2015 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb)); 2016 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1", 2017 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb)); 2018 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2", 2019 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb)); 2020 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch", 2021 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb)); 2022 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap); 2023 } 2024 2025 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm) 2026 { 2027 struct kvm_vcpu *vcpu = &svm->vcpu; 2028 struct ghcb *ghcb = svm->ghcb; 2029 2030 /* 2031 * The GHCB protocol so far allows for the following data 2032 * to be returned: 2033 * GPRs RAX, RBX, RCX, RDX 2034 * 2035 * Copy their values, even if they may not have been written during the 2036 * VM-Exit. It's the guest's responsibility to not consume random data. 2037 */ 2038 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]); 2039 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]); 2040 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]); 2041 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]); 2042 } 2043 2044 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm) 2045 { 2046 struct vmcb_control_area *control = &svm->vmcb->control; 2047 struct kvm_vcpu *vcpu = &svm->vcpu; 2048 struct ghcb *ghcb = svm->ghcb; 2049 u64 exit_code; 2050 2051 /* 2052 * The GHCB protocol so far allows for the following data 2053 * to be supplied: 2054 * GPRs RAX, RBX, RCX, RDX 2055 * XCR0 2056 * CPL 2057 * 2058 * VMMCALL allows the guest to provide extra registers. KVM also 2059 * expects RSI for hypercalls, so include that, too. 2060 * 2061 * Copy their values to the appropriate location if supplied. 2062 */ 2063 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 2064 2065 vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb); 2066 vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb); 2067 vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb); 2068 vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb); 2069 vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb); 2070 2071 svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb); 2072 2073 if (ghcb_xcr0_is_valid(ghcb)) { 2074 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb); 2075 kvm_update_cpuid_runtime(vcpu); 2076 } 2077 2078 /* Copy the GHCB exit information into the VMCB fields */ 2079 exit_code = ghcb_get_sw_exit_code(ghcb); 2080 control->exit_code = lower_32_bits(exit_code); 2081 control->exit_code_hi = upper_32_bits(exit_code); 2082 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb); 2083 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb); 2084 2085 /* Clear the valid entries fields */ 2086 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); 2087 } 2088 2089 static int sev_es_validate_vmgexit(struct vcpu_svm *svm) 2090 { 2091 struct kvm_vcpu *vcpu; 2092 struct ghcb *ghcb; 2093 u64 exit_code = 0; 2094 2095 ghcb = svm->ghcb; 2096 2097 /* Only GHCB Usage code 0 is supported */ 2098 if (ghcb->ghcb_usage) 2099 goto vmgexit_err; 2100 2101 /* 2102 * Retrieve the exit code now even though is may not be marked valid 2103 * as it could help with debugging. 2104 */ 2105 exit_code = ghcb_get_sw_exit_code(ghcb); 2106 2107 if (!ghcb_sw_exit_code_is_valid(ghcb) || 2108 !ghcb_sw_exit_info_1_is_valid(ghcb) || 2109 !ghcb_sw_exit_info_2_is_valid(ghcb)) 2110 goto vmgexit_err; 2111 2112 switch (ghcb_get_sw_exit_code(ghcb)) { 2113 case SVM_EXIT_READ_DR7: 2114 break; 2115 case SVM_EXIT_WRITE_DR7: 2116 if (!ghcb_rax_is_valid(ghcb)) 2117 goto vmgexit_err; 2118 break; 2119 case SVM_EXIT_RDTSC: 2120 break; 2121 case SVM_EXIT_RDPMC: 2122 if (!ghcb_rcx_is_valid(ghcb)) 2123 goto vmgexit_err; 2124 break; 2125 case SVM_EXIT_CPUID: 2126 if (!ghcb_rax_is_valid(ghcb) || 2127 !ghcb_rcx_is_valid(ghcb)) 2128 goto vmgexit_err; 2129 if (ghcb_get_rax(ghcb) == 0xd) 2130 if (!ghcb_xcr0_is_valid(ghcb)) 2131 goto vmgexit_err; 2132 break; 2133 case SVM_EXIT_INVD: 2134 break; 2135 case SVM_EXIT_IOIO: 2136 if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) { 2137 if (!ghcb_sw_scratch_is_valid(ghcb)) 2138 goto vmgexit_err; 2139 } else { 2140 if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK)) 2141 if (!ghcb_rax_is_valid(ghcb)) 2142 goto vmgexit_err; 2143 } 2144 break; 2145 case SVM_EXIT_MSR: 2146 if (!ghcb_rcx_is_valid(ghcb)) 2147 goto vmgexit_err; 2148 if (ghcb_get_sw_exit_info_1(ghcb)) { 2149 if (!ghcb_rax_is_valid(ghcb) || 2150 !ghcb_rdx_is_valid(ghcb)) 2151 goto vmgexit_err; 2152 } 2153 break; 2154 case SVM_EXIT_VMMCALL: 2155 if (!ghcb_rax_is_valid(ghcb) || 2156 !ghcb_cpl_is_valid(ghcb)) 2157 goto vmgexit_err; 2158 break; 2159 case SVM_EXIT_RDTSCP: 2160 break; 2161 case SVM_EXIT_WBINVD: 2162 break; 2163 case SVM_EXIT_MONITOR: 2164 if (!ghcb_rax_is_valid(ghcb) || 2165 !ghcb_rcx_is_valid(ghcb) || 2166 !ghcb_rdx_is_valid(ghcb)) 2167 goto vmgexit_err; 2168 break; 2169 case SVM_EXIT_MWAIT: 2170 if (!ghcb_rax_is_valid(ghcb) || 2171 !ghcb_rcx_is_valid(ghcb)) 2172 goto vmgexit_err; 2173 break; 2174 case SVM_VMGEXIT_MMIO_READ: 2175 case SVM_VMGEXIT_MMIO_WRITE: 2176 if (!ghcb_sw_scratch_is_valid(ghcb)) 2177 goto vmgexit_err; 2178 break; 2179 case SVM_VMGEXIT_NMI_COMPLETE: 2180 case SVM_VMGEXIT_AP_HLT_LOOP: 2181 case SVM_VMGEXIT_AP_JUMP_TABLE: 2182 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2183 break; 2184 default: 2185 goto vmgexit_err; 2186 } 2187 2188 return 0; 2189 2190 vmgexit_err: 2191 vcpu = &svm->vcpu; 2192 2193 if (ghcb->ghcb_usage) { 2194 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n", 2195 ghcb->ghcb_usage); 2196 } else { 2197 vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n", 2198 exit_code); 2199 dump_ghcb(svm); 2200 } 2201 2202 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 2203 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 2204 vcpu->run->internal.ndata = 2; 2205 vcpu->run->internal.data[0] = exit_code; 2206 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 2207 2208 return -EINVAL; 2209 } 2210 2211 void sev_es_unmap_ghcb(struct vcpu_svm *svm) 2212 { 2213 if (!svm->ghcb) 2214 return; 2215 2216 if (svm->ghcb_sa_free) { 2217 /* 2218 * The scratch area lives outside the GHCB, so there is a 2219 * buffer that, depending on the operation performed, may 2220 * need to be synced, then freed. 2221 */ 2222 if (svm->ghcb_sa_sync) { 2223 kvm_write_guest(svm->vcpu.kvm, 2224 ghcb_get_sw_scratch(svm->ghcb), 2225 svm->ghcb_sa, svm->ghcb_sa_len); 2226 svm->ghcb_sa_sync = false; 2227 } 2228 2229 kfree(svm->ghcb_sa); 2230 svm->ghcb_sa = NULL; 2231 svm->ghcb_sa_free = false; 2232 } 2233 2234 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->ghcb); 2235 2236 sev_es_sync_to_ghcb(svm); 2237 2238 kvm_vcpu_unmap(&svm->vcpu, &svm->ghcb_map, true); 2239 svm->ghcb = NULL; 2240 } 2241 2242 void pre_sev_run(struct vcpu_svm *svm, int cpu) 2243 { 2244 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 2245 int asid = sev_get_asid(svm->vcpu.kvm); 2246 2247 /* Assign the asid allocated with this SEV guest */ 2248 svm->asid = asid; 2249 2250 /* 2251 * Flush guest TLB: 2252 * 2253 * 1) when different VMCB for the same ASID is to be run on the same host CPU. 2254 * 2) or this VMCB was executed on different host CPU in previous VMRUNs. 2255 */ 2256 if (sd->sev_vmcbs[asid] == svm->vmcb && 2257 svm->vcpu.arch.last_vmentry_cpu == cpu) 2258 return; 2259 2260 sd->sev_vmcbs[asid] = svm->vmcb; 2261 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; 2262 vmcb_mark_dirty(svm->vmcb, VMCB_ASID); 2263 } 2264 2265 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE) 2266 static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len) 2267 { 2268 struct vmcb_control_area *control = &svm->vmcb->control; 2269 struct ghcb *ghcb = svm->ghcb; 2270 u64 ghcb_scratch_beg, ghcb_scratch_end; 2271 u64 scratch_gpa_beg, scratch_gpa_end; 2272 void *scratch_va; 2273 2274 scratch_gpa_beg = ghcb_get_sw_scratch(ghcb); 2275 if (!scratch_gpa_beg) { 2276 pr_err("vmgexit: scratch gpa not provided\n"); 2277 return false; 2278 } 2279 2280 scratch_gpa_end = scratch_gpa_beg + len; 2281 if (scratch_gpa_end < scratch_gpa_beg) { 2282 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n", 2283 len, scratch_gpa_beg); 2284 return false; 2285 } 2286 2287 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) { 2288 /* Scratch area begins within GHCB */ 2289 ghcb_scratch_beg = control->ghcb_gpa + 2290 offsetof(struct ghcb, shared_buffer); 2291 ghcb_scratch_end = control->ghcb_gpa + 2292 offsetof(struct ghcb, reserved_1); 2293 2294 /* 2295 * If the scratch area begins within the GHCB, it must be 2296 * completely contained in the GHCB shared buffer area. 2297 */ 2298 if (scratch_gpa_beg < ghcb_scratch_beg || 2299 scratch_gpa_end > ghcb_scratch_end) { 2300 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n", 2301 scratch_gpa_beg, scratch_gpa_end); 2302 return false; 2303 } 2304 2305 scratch_va = (void *)svm->ghcb; 2306 scratch_va += (scratch_gpa_beg - control->ghcb_gpa); 2307 } else { 2308 /* 2309 * The guest memory must be read into a kernel buffer, so 2310 * limit the size 2311 */ 2312 if (len > GHCB_SCRATCH_AREA_LIMIT) { 2313 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n", 2314 len, GHCB_SCRATCH_AREA_LIMIT); 2315 return false; 2316 } 2317 scratch_va = kzalloc(len, GFP_KERNEL_ACCOUNT); 2318 if (!scratch_va) 2319 return false; 2320 2321 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) { 2322 /* Unable to copy scratch area from guest */ 2323 pr_err("vmgexit: kvm_read_guest for scratch area failed\n"); 2324 2325 kfree(scratch_va); 2326 return false; 2327 } 2328 2329 /* 2330 * The scratch area is outside the GHCB. The operation will 2331 * dictate whether the buffer needs to be synced before running 2332 * the vCPU next time (i.e. a read was requested so the data 2333 * must be written back to the guest memory). 2334 */ 2335 svm->ghcb_sa_sync = sync; 2336 svm->ghcb_sa_free = true; 2337 } 2338 2339 svm->ghcb_sa = scratch_va; 2340 svm->ghcb_sa_len = len; 2341 2342 return true; 2343 } 2344 2345 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask, 2346 unsigned int pos) 2347 { 2348 svm->vmcb->control.ghcb_gpa &= ~(mask << pos); 2349 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos; 2350 } 2351 2352 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos) 2353 { 2354 return (svm->vmcb->control.ghcb_gpa >> pos) & mask; 2355 } 2356 2357 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value) 2358 { 2359 svm->vmcb->control.ghcb_gpa = value; 2360 } 2361 2362 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm) 2363 { 2364 struct vmcb_control_area *control = &svm->vmcb->control; 2365 struct kvm_vcpu *vcpu = &svm->vcpu; 2366 u64 ghcb_info; 2367 int ret = 1; 2368 2369 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK; 2370 2371 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id, 2372 control->ghcb_gpa); 2373 2374 switch (ghcb_info) { 2375 case GHCB_MSR_SEV_INFO_REQ: 2376 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2377 GHCB_VERSION_MIN, 2378 sev_enc_bit)); 2379 break; 2380 case GHCB_MSR_CPUID_REQ: { 2381 u64 cpuid_fn, cpuid_reg, cpuid_value; 2382 2383 cpuid_fn = get_ghcb_msr_bits(svm, 2384 GHCB_MSR_CPUID_FUNC_MASK, 2385 GHCB_MSR_CPUID_FUNC_POS); 2386 2387 /* Initialize the registers needed by the CPUID intercept */ 2388 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn; 2389 vcpu->arch.regs[VCPU_REGS_RCX] = 0; 2390 2391 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID); 2392 if (!ret) { 2393 ret = -EINVAL; 2394 break; 2395 } 2396 2397 cpuid_reg = get_ghcb_msr_bits(svm, 2398 GHCB_MSR_CPUID_REG_MASK, 2399 GHCB_MSR_CPUID_REG_POS); 2400 if (cpuid_reg == 0) 2401 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX]; 2402 else if (cpuid_reg == 1) 2403 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX]; 2404 else if (cpuid_reg == 2) 2405 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX]; 2406 else 2407 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX]; 2408 2409 set_ghcb_msr_bits(svm, cpuid_value, 2410 GHCB_MSR_CPUID_VALUE_MASK, 2411 GHCB_MSR_CPUID_VALUE_POS); 2412 2413 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP, 2414 GHCB_MSR_INFO_MASK, 2415 GHCB_MSR_INFO_POS); 2416 break; 2417 } 2418 case GHCB_MSR_TERM_REQ: { 2419 u64 reason_set, reason_code; 2420 2421 reason_set = get_ghcb_msr_bits(svm, 2422 GHCB_MSR_TERM_REASON_SET_MASK, 2423 GHCB_MSR_TERM_REASON_SET_POS); 2424 reason_code = get_ghcb_msr_bits(svm, 2425 GHCB_MSR_TERM_REASON_MASK, 2426 GHCB_MSR_TERM_REASON_POS); 2427 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n", 2428 reason_set, reason_code); 2429 fallthrough; 2430 } 2431 default: 2432 ret = -EINVAL; 2433 } 2434 2435 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id, 2436 control->ghcb_gpa, ret); 2437 2438 return ret; 2439 } 2440 2441 int sev_handle_vmgexit(struct kvm_vcpu *vcpu) 2442 { 2443 struct vcpu_svm *svm = to_svm(vcpu); 2444 struct vmcb_control_area *control = &svm->vmcb->control; 2445 u64 ghcb_gpa, exit_code; 2446 struct ghcb *ghcb; 2447 int ret; 2448 2449 /* Validate the GHCB */ 2450 ghcb_gpa = control->ghcb_gpa; 2451 if (ghcb_gpa & GHCB_MSR_INFO_MASK) 2452 return sev_handle_vmgexit_msr_protocol(svm); 2453 2454 if (!ghcb_gpa) { 2455 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n"); 2456 return -EINVAL; 2457 } 2458 2459 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->ghcb_map)) { 2460 /* Unable to map GHCB from guest */ 2461 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n", 2462 ghcb_gpa); 2463 return -EINVAL; 2464 } 2465 2466 svm->ghcb = svm->ghcb_map.hva; 2467 ghcb = svm->ghcb_map.hva; 2468 2469 trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb); 2470 2471 exit_code = ghcb_get_sw_exit_code(ghcb); 2472 2473 ret = sev_es_validate_vmgexit(svm); 2474 if (ret) 2475 return ret; 2476 2477 sev_es_sync_from_ghcb(svm); 2478 ghcb_set_sw_exit_info_1(ghcb, 0); 2479 ghcb_set_sw_exit_info_2(ghcb, 0); 2480 2481 ret = -EINVAL; 2482 switch (exit_code) { 2483 case SVM_VMGEXIT_MMIO_READ: 2484 if (!setup_vmgexit_scratch(svm, true, control->exit_info_2)) 2485 break; 2486 2487 ret = kvm_sev_es_mmio_read(vcpu, 2488 control->exit_info_1, 2489 control->exit_info_2, 2490 svm->ghcb_sa); 2491 break; 2492 case SVM_VMGEXIT_MMIO_WRITE: 2493 if (!setup_vmgexit_scratch(svm, false, control->exit_info_2)) 2494 break; 2495 2496 ret = kvm_sev_es_mmio_write(vcpu, 2497 control->exit_info_1, 2498 control->exit_info_2, 2499 svm->ghcb_sa); 2500 break; 2501 case SVM_VMGEXIT_NMI_COMPLETE: 2502 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET); 2503 break; 2504 case SVM_VMGEXIT_AP_HLT_LOOP: 2505 ret = kvm_emulate_ap_reset_hold(vcpu); 2506 break; 2507 case SVM_VMGEXIT_AP_JUMP_TABLE: { 2508 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info; 2509 2510 switch (control->exit_info_1) { 2511 case 0: 2512 /* Set AP jump table address */ 2513 sev->ap_jump_table = control->exit_info_2; 2514 break; 2515 case 1: 2516 /* Get AP jump table address */ 2517 ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table); 2518 break; 2519 default: 2520 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n", 2521 control->exit_info_1); 2522 ghcb_set_sw_exit_info_1(ghcb, 1); 2523 ghcb_set_sw_exit_info_2(ghcb, 2524 X86_TRAP_UD | 2525 SVM_EVTINJ_TYPE_EXEPT | 2526 SVM_EVTINJ_VALID); 2527 } 2528 2529 ret = 1; 2530 break; 2531 } 2532 case SVM_VMGEXIT_UNSUPPORTED_EVENT: 2533 vcpu_unimpl(vcpu, 2534 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n", 2535 control->exit_info_1, control->exit_info_2); 2536 break; 2537 default: 2538 ret = svm_invoke_exit_handler(vcpu, exit_code); 2539 } 2540 2541 return ret; 2542 } 2543 2544 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in) 2545 { 2546 if (!setup_vmgexit_scratch(svm, in, svm->vmcb->control.exit_info_2)) 2547 return -EINVAL; 2548 2549 return kvm_sev_es_string_io(&svm->vcpu, size, port, 2550 svm->ghcb_sa, svm->ghcb_sa_len, in); 2551 } 2552 2553 void sev_es_init_vmcb(struct vcpu_svm *svm) 2554 { 2555 struct kvm_vcpu *vcpu = &svm->vcpu; 2556 2557 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE; 2558 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; 2559 2560 /* 2561 * An SEV-ES guest requires a VMSA area that is a separate from the 2562 * VMCB page. Do not include the encryption mask on the VMSA physical 2563 * address since hardware will access it using the guest key. 2564 */ 2565 svm->vmcb->control.vmsa_pa = __pa(svm->vmsa); 2566 2567 /* Can't intercept CR register access, HV can't modify CR registers */ 2568 svm_clr_intercept(svm, INTERCEPT_CR0_READ); 2569 svm_clr_intercept(svm, INTERCEPT_CR4_READ); 2570 svm_clr_intercept(svm, INTERCEPT_CR8_READ); 2571 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE); 2572 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE); 2573 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE); 2574 2575 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0); 2576 2577 /* Track EFER/CR register changes */ 2578 svm_set_intercept(svm, TRAP_EFER_WRITE); 2579 svm_set_intercept(svm, TRAP_CR0_WRITE); 2580 svm_set_intercept(svm, TRAP_CR4_WRITE); 2581 svm_set_intercept(svm, TRAP_CR8_WRITE); 2582 2583 /* No support for enable_vmware_backdoor */ 2584 clr_exception_intercept(svm, GP_VECTOR); 2585 2586 /* Can't intercept XSETBV, HV can't modify XCR0 directly */ 2587 svm_clr_intercept(svm, INTERCEPT_XSETBV); 2588 2589 /* Clear intercepts on selected MSRs */ 2590 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1); 2591 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1); 2592 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); 2593 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); 2594 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); 2595 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1); 2596 } 2597 2598 void sev_es_create_vcpu(struct vcpu_svm *svm) 2599 { 2600 /* 2601 * Set the GHCB MSR value as per the GHCB specification when creating 2602 * a vCPU for an SEV-ES guest. 2603 */ 2604 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX, 2605 GHCB_VERSION_MIN, 2606 sev_enc_bit)); 2607 } 2608 2609 void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu) 2610 { 2611 struct svm_cpu_data *sd = per_cpu(svm_data, cpu); 2612 struct vmcb_save_area *hostsa; 2613 2614 /* 2615 * As an SEV-ES guest, hardware will restore the host state on VMEXIT, 2616 * of which one step is to perform a VMLOAD. Since hardware does not 2617 * perform a VMSAVE on VMRUN, the host savearea must be updated. 2618 */ 2619 vmsave(__sme_page_pa(sd->save_area)); 2620 2621 /* XCR0 is restored on VMEXIT, save the current host value */ 2622 hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400); 2623 hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 2624 2625 /* PKRU is restored on VMEXIT, save the current host value */ 2626 hostsa->pkru = read_pkru(); 2627 2628 /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */ 2629 hostsa->xss = host_xss; 2630 } 2631 2632 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 2633 { 2634 struct vcpu_svm *svm = to_svm(vcpu); 2635 2636 /* First SIPI: Use the values as initially set by the VMM */ 2637 if (!svm->received_first_sipi) { 2638 svm->received_first_sipi = true; 2639 return; 2640 } 2641 2642 /* 2643 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where 2644 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a 2645 * non-zero value. 2646 */ 2647 if (!svm->ghcb) 2648 return; 2649 2650 ghcb_set_sw_exit_info_2(svm->ghcb, 1); 2651 } 2652