xref: /openbmc/linux/arch/x86/kvm/svm/sev.c (revision 2a152512)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM-SEV support
6  *
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  */
9 
10 #include <linux/kvm_types.h>
11 #include <linux/kvm_host.h>
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/psp-sev.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/misc_cgroup.h>
18 #include <linux/processor.h>
19 #include <linux/trace_events.h>
20 #include <asm/fpu/internal.h>
21 
22 #include <asm/pkru.h>
23 #include <asm/trapnr.h>
24 
25 #include "x86.h"
26 #include "svm.h"
27 #include "svm_ops.h"
28 #include "cpuid.h"
29 #include "trace.h"
30 
31 #ifndef CONFIG_KVM_AMD_SEV
32 /*
33  * When this config is not defined, SEV feature is not supported and APIs in
34  * this file are not used but this file still gets compiled into the KVM AMD
35  * module.
36  *
37  * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
38  * misc_res_type {} defined in linux/misc_cgroup.h.
39  *
40  * Below macros allow compilation to succeed.
41  */
42 #define MISC_CG_RES_SEV MISC_CG_RES_TYPES
43 #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
44 #endif
45 
46 #ifdef CONFIG_KVM_AMD_SEV
47 /* enable/disable SEV support */
48 static bool sev_enabled = true;
49 module_param_named(sev, sev_enabled, bool, 0444);
50 
51 /* enable/disable SEV-ES support */
52 static bool sev_es_enabled = true;
53 module_param_named(sev_es, sev_es_enabled, bool, 0444);
54 #else
55 #define sev_enabled false
56 #define sev_es_enabled false
57 #endif /* CONFIG_KVM_AMD_SEV */
58 
59 static u8 sev_enc_bit;
60 static DECLARE_RWSEM(sev_deactivate_lock);
61 static DEFINE_MUTEX(sev_bitmap_lock);
62 unsigned int max_sev_asid;
63 static unsigned int min_sev_asid;
64 static unsigned long sev_me_mask;
65 static unsigned int nr_asids;
66 static unsigned long *sev_asid_bitmap;
67 static unsigned long *sev_reclaim_asid_bitmap;
68 
69 struct enc_region {
70 	struct list_head list;
71 	unsigned long npages;
72 	struct page **pages;
73 	unsigned long uaddr;
74 	unsigned long size;
75 };
76 
77 /* Called with the sev_bitmap_lock held, or on shutdown  */
78 static int sev_flush_asids(int min_asid, int max_asid)
79 {
80 	int ret, asid, error = 0;
81 
82 	/* Check if there are any ASIDs to reclaim before performing a flush */
83 	asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
84 	if (asid > max_asid)
85 		return -EBUSY;
86 
87 	/*
88 	 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
89 	 * so it must be guarded.
90 	 */
91 	down_write(&sev_deactivate_lock);
92 
93 	wbinvd_on_all_cpus();
94 	ret = sev_guest_df_flush(&error);
95 
96 	up_write(&sev_deactivate_lock);
97 
98 	if (ret)
99 		pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
100 
101 	return ret;
102 }
103 
104 static inline bool is_mirroring_enc_context(struct kvm *kvm)
105 {
106 	return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
107 }
108 
109 /* Must be called with the sev_bitmap_lock held */
110 static bool __sev_recycle_asids(int min_asid, int max_asid)
111 {
112 	if (sev_flush_asids(min_asid, max_asid))
113 		return false;
114 
115 	/* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
116 	bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
117 		   nr_asids);
118 	bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
119 
120 	return true;
121 }
122 
123 static int sev_asid_new(struct kvm_sev_info *sev)
124 {
125 	int asid, min_asid, max_asid, ret;
126 	bool retry = true;
127 	enum misc_res_type type;
128 
129 	type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
130 	WARN_ON(sev->misc_cg);
131 	sev->misc_cg = get_current_misc_cg();
132 	ret = misc_cg_try_charge(type, sev->misc_cg, 1);
133 	if (ret) {
134 		put_misc_cg(sev->misc_cg);
135 		sev->misc_cg = NULL;
136 		return ret;
137 	}
138 
139 	mutex_lock(&sev_bitmap_lock);
140 
141 	/*
142 	 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
143 	 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
144 	 */
145 	min_asid = sev->es_active ? 1 : min_sev_asid;
146 	max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
147 again:
148 	asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
149 	if (asid > max_asid) {
150 		if (retry && __sev_recycle_asids(min_asid, max_asid)) {
151 			retry = false;
152 			goto again;
153 		}
154 		mutex_unlock(&sev_bitmap_lock);
155 		ret = -EBUSY;
156 		goto e_uncharge;
157 	}
158 
159 	__set_bit(asid, sev_asid_bitmap);
160 
161 	mutex_unlock(&sev_bitmap_lock);
162 
163 	return asid;
164 e_uncharge:
165 	misc_cg_uncharge(type, sev->misc_cg, 1);
166 	put_misc_cg(sev->misc_cg);
167 	sev->misc_cg = NULL;
168 	return ret;
169 }
170 
171 static int sev_get_asid(struct kvm *kvm)
172 {
173 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
174 
175 	return sev->asid;
176 }
177 
178 static void sev_asid_free(struct kvm_sev_info *sev)
179 {
180 	struct svm_cpu_data *sd;
181 	int cpu;
182 	enum misc_res_type type;
183 
184 	mutex_lock(&sev_bitmap_lock);
185 
186 	__set_bit(sev->asid, sev_reclaim_asid_bitmap);
187 
188 	for_each_possible_cpu(cpu) {
189 		sd = per_cpu(svm_data, cpu);
190 		sd->sev_vmcbs[sev->asid] = NULL;
191 	}
192 
193 	mutex_unlock(&sev_bitmap_lock);
194 
195 	type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
196 	misc_cg_uncharge(type, sev->misc_cg, 1);
197 	put_misc_cg(sev->misc_cg);
198 	sev->misc_cg = NULL;
199 }
200 
201 static void sev_decommission(unsigned int handle)
202 {
203 	struct sev_data_decommission decommission;
204 
205 	if (!handle)
206 		return;
207 
208 	decommission.handle = handle;
209 	sev_guest_decommission(&decommission, NULL);
210 }
211 
212 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
213 {
214 	struct sev_data_deactivate deactivate;
215 
216 	if (!handle)
217 		return;
218 
219 	deactivate.handle = handle;
220 
221 	/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
222 	down_read(&sev_deactivate_lock);
223 	sev_guest_deactivate(&deactivate, NULL);
224 	up_read(&sev_deactivate_lock);
225 
226 	sev_decommission(handle);
227 }
228 
229 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
230 {
231 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
232 	bool es_active = argp->id == KVM_SEV_ES_INIT;
233 	int asid, ret;
234 
235 	if (kvm->created_vcpus)
236 		return -EINVAL;
237 
238 	ret = -EBUSY;
239 	if (unlikely(sev->active))
240 		return ret;
241 
242 	sev->es_active = es_active;
243 	asid = sev_asid_new(sev);
244 	if (asid < 0)
245 		goto e_no_asid;
246 	sev->asid = asid;
247 
248 	ret = sev_platform_init(&argp->error);
249 	if (ret)
250 		goto e_free;
251 
252 	sev->active = true;
253 	sev->asid = asid;
254 	INIT_LIST_HEAD(&sev->regions_list);
255 
256 	return 0;
257 
258 e_free:
259 	sev_asid_free(sev);
260 	sev->asid = 0;
261 e_no_asid:
262 	sev->es_active = false;
263 	return ret;
264 }
265 
266 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
267 {
268 	struct sev_data_activate activate;
269 	int asid = sev_get_asid(kvm);
270 	int ret;
271 
272 	/* activate ASID on the given handle */
273 	activate.handle = handle;
274 	activate.asid   = asid;
275 	ret = sev_guest_activate(&activate, error);
276 
277 	return ret;
278 }
279 
280 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
281 {
282 	struct fd f;
283 	int ret;
284 
285 	f = fdget(fd);
286 	if (!f.file)
287 		return -EBADF;
288 
289 	ret = sev_issue_cmd_external_user(f.file, id, data, error);
290 
291 	fdput(f);
292 	return ret;
293 }
294 
295 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
296 {
297 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
298 
299 	return __sev_issue_cmd(sev->fd, id, data, error);
300 }
301 
302 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
303 {
304 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
305 	struct sev_data_launch_start start;
306 	struct kvm_sev_launch_start params;
307 	void *dh_blob, *session_blob;
308 	int *error = &argp->error;
309 	int ret;
310 
311 	if (!sev_guest(kvm))
312 		return -ENOTTY;
313 
314 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
315 		return -EFAULT;
316 
317 	memset(&start, 0, sizeof(start));
318 
319 	dh_blob = NULL;
320 	if (params.dh_uaddr) {
321 		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
322 		if (IS_ERR(dh_blob))
323 			return PTR_ERR(dh_blob);
324 
325 		start.dh_cert_address = __sme_set(__pa(dh_blob));
326 		start.dh_cert_len = params.dh_len;
327 	}
328 
329 	session_blob = NULL;
330 	if (params.session_uaddr) {
331 		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
332 		if (IS_ERR(session_blob)) {
333 			ret = PTR_ERR(session_blob);
334 			goto e_free_dh;
335 		}
336 
337 		start.session_address = __sme_set(__pa(session_blob));
338 		start.session_len = params.session_len;
339 	}
340 
341 	start.handle = params.handle;
342 	start.policy = params.policy;
343 
344 	/* create memory encryption context */
345 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
346 	if (ret)
347 		goto e_free_session;
348 
349 	/* Bind ASID to this guest */
350 	ret = sev_bind_asid(kvm, start.handle, error);
351 	if (ret) {
352 		sev_decommission(start.handle);
353 		goto e_free_session;
354 	}
355 
356 	/* return handle to userspace */
357 	params.handle = start.handle;
358 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
359 		sev_unbind_asid(kvm, start.handle);
360 		ret = -EFAULT;
361 		goto e_free_session;
362 	}
363 
364 	sev->handle = start.handle;
365 	sev->fd = argp->sev_fd;
366 
367 e_free_session:
368 	kfree(session_blob);
369 e_free_dh:
370 	kfree(dh_blob);
371 	return ret;
372 }
373 
374 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
375 				    unsigned long ulen, unsigned long *n,
376 				    int write)
377 {
378 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
379 	unsigned long npages, size;
380 	int npinned;
381 	unsigned long locked, lock_limit;
382 	struct page **pages;
383 	unsigned long first, last;
384 	int ret;
385 
386 	lockdep_assert_held(&kvm->lock);
387 
388 	if (ulen == 0 || uaddr + ulen < uaddr)
389 		return ERR_PTR(-EINVAL);
390 
391 	/* Calculate number of pages. */
392 	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
393 	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
394 	npages = (last - first + 1);
395 
396 	locked = sev->pages_locked + npages;
397 	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
398 	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
399 		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
400 		return ERR_PTR(-ENOMEM);
401 	}
402 
403 	if (WARN_ON_ONCE(npages > INT_MAX))
404 		return ERR_PTR(-EINVAL);
405 
406 	/* Avoid using vmalloc for smaller buffers. */
407 	size = npages * sizeof(struct page *);
408 	if (size > PAGE_SIZE)
409 		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
410 	else
411 		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
412 
413 	if (!pages)
414 		return ERR_PTR(-ENOMEM);
415 
416 	/* Pin the user virtual address. */
417 	npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
418 	if (npinned != npages) {
419 		pr_err("SEV: Failure locking %lu pages.\n", npages);
420 		ret = -ENOMEM;
421 		goto err;
422 	}
423 
424 	*n = npages;
425 	sev->pages_locked = locked;
426 
427 	return pages;
428 
429 err:
430 	if (npinned > 0)
431 		unpin_user_pages(pages, npinned);
432 
433 	kvfree(pages);
434 	return ERR_PTR(ret);
435 }
436 
437 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
438 			     unsigned long npages)
439 {
440 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
441 
442 	unpin_user_pages(pages, npages);
443 	kvfree(pages);
444 	sev->pages_locked -= npages;
445 }
446 
447 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
448 {
449 	uint8_t *page_virtual;
450 	unsigned long i;
451 
452 	if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
453 	    pages == NULL)
454 		return;
455 
456 	for (i = 0; i < npages; i++) {
457 		page_virtual = kmap_atomic(pages[i]);
458 		clflush_cache_range(page_virtual, PAGE_SIZE);
459 		kunmap_atomic(page_virtual);
460 	}
461 }
462 
463 static unsigned long get_num_contig_pages(unsigned long idx,
464 				struct page **inpages, unsigned long npages)
465 {
466 	unsigned long paddr, next_paddr;
467 	unsigned long i = idx + 1, pages = 1;
468 
469 	/* find the number of contiguous pages starting from idx */
470 	paddr = __sme_page_pa(inpages[idx]);
471 	while (i < npages) {
472 		next_paddr = __sme_page_pa(inpages[i++]);
473 		if ((paddr + PAGE_SIZE) == next_paddr) {
474 			pages++;
475 			paddr = next_paddr;
476 			continue;
477 		}
478 		break;
479 	}
480 
481 	return pages;
482 }
483 
484 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
485 {
486 	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
487 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
488 	struct kvm_sev_launch_update_data params;
489 	struct sev_data_launch_update_data data;
490 	struct page **inpages;
491 	int ret;
492 
493 	if (!sev_guest(kvm))
494 		return -ENOTTY;
495 
496 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
497 		return -EFAULT;
498 
499 	vaddr = params.uaddr;
500 	size = params.len;
501 	vaddr_end = vaddr + size;
502 
503 	/* Lock the user memory. */
504 	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
505 	if (IS_ERR(inpages))
506 		return PTR_ERR(inpages);
507 
508 	/*
509 	 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
510 	 * place; the cache may contain the data that was written unencrypted.
511 	 */
512 	sev_clflush_pages(inpages, npages);
513 
514 	data.reserved = 0;
515 	data.handle = sev->handle;
516 
517 	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
518 		int offset, len;
519 
520 		/*
521 		 * If the user buffer is not page-aligned, calculate the offset
522 		 * within the page.
523 		 */
524 		offset = vaddr & (PAGE_SIZE - 1);
525 
526 		/* Calculate the number of pages that can be encrypted in one go. */
527 		pages = get_num_contig_pages(i, inpages, npages);
528 
529 		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
530 
531 		data.len = len;
532 		data.address = __sme_page_pa(inpages[i]) + offset;
533 		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
534 		if (ret)
535 			goto e_unpin;
536 
537 		size -= len;
538 		next_vaddr = vaddr + len;
539 	}
540 
541 e_unpin:
542 	/* content of memory is updated, mark pages dirty */
543 	for (i = 0; i < npages; i++) {
544 		set_page_dirty_lock(inpages[i]);
545 		mark_page_accessed(inpages[i]);
546 	}
547 	/* unlock the user pages */
548 	sev_unpin_memory(kvm, inpages, npages);
549 	return ret;
550 }
551 
552 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
553 {
554 	struct vmcb_save_area *save = &svm->vmcb->save;
555 
556 	/* Check some debug related fields before encrypting the VMSA */
557 	if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1))
558 		return -EINVAL;
559 
560 	/* Sync registgers */
561 	save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
562 	save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
563 	save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
564 	save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
565 	save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
566 	save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
567 	save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
568 	save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
569 #ifdef CONFIG_X86_64
570 	save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
571 	save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
572 	save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
573 	save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
574 	save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
575 	save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
576 	save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
577 	save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
578 #endif
579 	save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
580 
581 	/* Sync some non-GPR registers before encrypting */
582 	save->xcr0 = svm->vcpu.arch.xcr0;
583 	save->pkru = svm->vcpu.arch.pkru;
584 	save->xss  = svm->vcpu.arch.ia32_xss;
585 	save->dr6  = svm->vcpu.arch.dr6;
586 
587 	/*
588 	 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
589 	 * the traditional VMSA that is part of the VMCB. Copy the
590 	 * traditional VMSA as it has been built so far (in prep
591 	 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
592 	 */
593 	memcpy(svm->vmsa, save, sizeof(*save));
594 
595 	return 0;
596 }
597 
598 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
599 				    int *error)
600 {
601 	struct sev_data_launch_update_vmsa vmsa;
602 	struct vcpu_svm *svm = to_svm(vcpu);
603 	int ret;
604 
605 	/* Perform some pre-encryption checks against the VMSA */
606 	ret = sev_es_sync_vmsa(svm);
607 	if (ret)
608 		return ret;
609 
610 	/*
611 	 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
612 	 * the VMSA memory content (i.e it will write the same memory region
613 	 * with the guest's key), so invalidate it first.
614 	 */
615 	clflush_cache_range(svm->vmsa, PAGE_SIZE);
616 
617 	vmsa.reserved = 0;
618 	vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
619 	vmsa.address = __sme_pa(svm->vmsa);
620 	vmsa.len = PAGE_SIZE;
621 	return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
622 }
623 
624 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
625 {
626 	struct kvm_vcpu *vcpu;
627 	int i, ret;
628 
629 	if (!sev_es_guest(kvm))
630 		return -ENOTTY;
631 
632 	kvm_for_each_vcpu(i, vcpu, kvm) {
633 		ret = mutex_lock_killable(&vcpu->mutex);
634 		if (ret)
635 			return ret;
636 
637 		ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
638 
639 		mutex_unlock(&vcpu->mutex);
640 		if (ret)
641 			return ret;
642 	}
643 
644 	return 0;
645 }
646 
647 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
648 {
649 	void __user *measure = (void __user *)(uintptr_t)argp->data;
650 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
651 	struct sev_data_launch_measure data;
652 	struct kvm_sev_launch_measure params;
653 	void __user *p = NULL;
654 	void *blob = NULL;
655 	int ret;
656 
657 	if (!sev_guest(kvm))
658 		return -ENOTTY;
659 
660 	if (copy_from_user(&params, measure, sizeof(params)))
661 		return -EFAULT;
662 
663 	memset(&data, 0, sizeof(data));
664 
665 	/* User wants to query the blob length */
666 	if (!params.len)
667 		goto cmd;
668 
669 	p = (void __user *)(uintptr_t)params.uaddr;
670 	if (p) {
671 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
672 			return -EINVAL;
673 
674 		blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
675 		if (!blob)
676 			return -ENOMEM;
677 
678 		data.address = __psp_pa(blob);
679 		data.len = params.len;
680 	}
681 
682 cmd:
683 	data.handle = sev->handle;
684 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
685 
686 	/*
687 	 * If we query the session length, FW responded with expected data.
688 	 */
689 	if (!params.len)
690 		goto done;
691 
692 	if (ret)
693 		goto e_free_blob;
694 
695 	if (blob) {
696 		if (copy_to_user(p, blob, params.len))
697 			ret = -EFAULT;
698 	}
699 
700 done:
701 	params.len = data.len;
702 	if (copy_to_user(measure, &params, sizeof(params)))
703 		ret = -EFAULT;
704 e_free_blob:
705 	kfree(blob);
706 	return ret;
707 }
708 
709 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
710 {
711 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
712 	struct sev_data_launch_finish data;
713 
714 	if (!sev_guest(kvm))
715 		return -ENOTTY;
716 
717 	data.handle = sev->handle;
718 	return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
719 }
720 
721 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
722 {
723 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
724 	struct kvm_sev_guest_status params;
725 	struct sev_data_guest_status data;
726 	int ret;
727 
728 	if (!sev_guest(kvm))
729 		return -ENOTTY;
730 
731 	memset(&data, 0, sizeof(data));
732 
733 	data.handle = sev->handle;
734 	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
735 	if (ret)
736 		return ret;
737 
738 	params.policy = data.policy;
739 	params.state = data.state;
740 	params.handle = data.handle;
741 
742 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
743 		ret = -EFAULT;
744 
745 	return ret;
746 }
747 
748 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
749 			       unsigned long dst, int size,
750 			       int *error, bool enc)
751 {
752 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
753 	struct sev_data_dbg data;
754 
755 	data.reserved = 0;
756 	data.handle = sev->handle;
757 	data.dst_addr = dst;
758 	data.src_addr = src;
759 	data.len = size;
760 
761 	return sev_issue_cmd(kvm,
762 			     enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
763 			     &data, error);
764 }
765 
766 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
767 			     unsigned long dst_paddr, int sz, int *err)
768 {
769 	int offset;
770 
771 	/*
772 	 * Its safe to read more than we are asked, caller should ensure that
773 	 * destination has enough space.
774 	 */
775 	offset = src_paddr & 15;
776 	src_paddr = round_down(src_paddr, 16);
777 	sz = round_up(sz + offset, 16);
778 
779 	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
780 }
781 
782 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
783 				  void __user *dst_uaddr,
784 				  unsigned long dst_paddr,
785 				  int size, int *err)
786 {
787 	struct page *tpage = NULL;
788 	int ret, offset;
789 
790 	/* if inputs are not 16-byte then use intermediate buffer */
791 	if (!IS_ALIGNED(dst_paddr, 16) ||
792 	    !IS_ALIGNED(paddr,     16) ||
793 	    !IS_ALIGNED(size,      16)) {
794 		tpage = (void *)alloc_page(GFP_KERNEL);
795 		if (!tpage)
796 			return -ENOMEM;
797 
798 		dst_paddr = __sme_page_pa(tpage);
799 	}
800 
801 	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
802 	if (ret)
803 		goto e_free;
804 
805 	if (tpage) {
806 		offset = paddr & 15;
807 		if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
808 			ret = -EFAULT;
809 	}
810 
811 e_free:
812 	if (tpage)
813 		__free_page(tpage);
814 
815 	return ret;
816 }
817 
818 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
819 				  void __user *vaddr,
820 				  unsigned long dst_paddr,
821 				  void __user *dst_vaddr,
822 				  int size, int *error)
823 {
824 	struct page *src_tpage = NULL;
825 	struct page *dst_tpage = NULL;
826 	int ret, len = size;
827 
828 	/* If source buffer is not aligned then use an intermediate buffer */
829 	if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
830 		src_tpage = alloc_page(GFP_KERNEL);
831 		if (!src_tpage)
832 			return -ENOMEM;
833 
834 		if (copy_from_user(page_address(src_tpage), vaddr, size)) {
835 			__free_page(src_tpage);
836 			return -EFAULT;
837 		}
838 
839 		paddr = __sme_page_pa(src_tpage);
840 	}
841 
842 	/*
843 	 *  If destination buffer or length is not aligned then do read-modify-write:
844 	 *   - decrypt destination in an intermediate buffer
845 	 *   - copy the source buffer in an intermediate buffer
846 	 *   - use the intermediate buffer as source buffer
847 	 */
848 	if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
849 		int dst_offset;
850 
851 		dst_tpage = alloc_page(GFP_KERNEL);
852 		if (!dst_tpage) {
853 			ret = -ENOMEM;
854 			goto e_free;
855 		}
856 
857 		ret = __sev_dbg_decrypt(kvm, dst_paddr,
858 					__sme_page_pa(dst_tpage), size, error);
859 		if (ret)
860 			goto e_free;
861 
862 		/*
863 		 *  If source is kernel buffer then use memcpy() otherwise
864 		 *  copy_from_user().
865 		 */
866 		dst_offset = dst_paddr & 15;
867 
868 		if (src_tpage)
869 			memcpy(page_address(dst_tpage) + dst_offset,
870 			       page_address(src_tpage), size);
871 		else {
872 			if (copy_from_user(page_address(dst_tpage) + dst_offset,
873 					   vaddr, size)) {
874 				ret = -EFAULT;
875 				goto e_free;
876 			}
877 		}
878 
879 		paddr = __sme_page_pa(dst_tpage);
880 		dst_paddr = round_down(dst_paddr, 16);
881 		len = round_up(size, 16);
882 	}
883 
884 	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
885 
886 e_free:
887 	if (src_tpage)
888 		__free_page(src_tpage);
889 	if (dst_tpage)
890 		__free_page(dst_tpage);
891 	return ret;
892 }
893 
894 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
895 {
896 	unsigned long vaddr, vaddr_end, next_vaddr;
897 	unsigned long dst_vaddr;
898 	struct page **src_p, **dst_p;
899 	struct kvm_sev_dbg debug;
900 	unsigned long n;
901 	unsigned int size;
902 	int ret;
903 
904 	if (!sev_guest(kvm))
905 		return -ENOTTY;
906 
907 	if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
908 		return -EFAULT;
909 
910 	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
911 		return -EINVAL;
912 	if (!debug.dst_uaddr)
913 		return -EINVAL;
914 
915 	vaddr = debug.src_uaddr;
916 	size = debug.len;
917 	vaddr_end = vaddr + size;
918 	dst_vaddr = debug.dst_uaddr;
919 
920 	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
921 		int len, s_off, d_off;
922 
923 		/* lock userspace source and destination page */
924 		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
925 		if (IS_ERR(src_p))
926 			return PTR_ERR(src_p);
927 
928 		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
929 		if (IS_ERR(dst_p)) {
930 			sev_unpin_memory(kvm, src_p, n);
931 			return PTR_ERR(dst_p);
932 		}
933 
934 		/*
935 		 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
936 		 * the pages; flush the destination too so that future accesses do not
937 		 * see stale data.
938 		 */
939 		sev_clflush_pages(src_p, 1);
940 		sev_clflush_pages(dst_p, 1);
941 
942 		/*
943 		 * Since user buffer may not be page aligned, calculate the
944 		 * offset within the page.
945 		 */
946 		s_off = vaddr & ~PAGE_MASK;
947 		d_off = dst_vaddr & ~PAGE_MASK;
948 		len = min_t(size_t, (PAGE_SIZE - s_off), size);
949 
950 		if (dec)
951 			ret = __sev_dbg_decrypt_user(kvm,
952 						     __sme_page_pa(src_p[0]) + s_off,
953 						     (void __user *)dst_vaddr,
954 						     __sme_page_pa(dst_p[0]) + d_off,
955 						     len, &argp->error);
956 		else
957 			ret = __sev_dbg_encrypt_user(kvm,
958 						     __sme_page_pa(src_p[0]) + s_off,
959 						     (void __user *)vaddr,
960 						     __sme_page_pa(dst_p[0]) + d_off,
961 						     (void __user *)dst_vaddr,
962 						     len, &argp->error);
963 
964 		sev_unpin_memory(kvm, src_p, n);
965 		sev_unpin_memory(kvm, dst_p, n);
966 
967 		if (ret)
968 			goto err;
969 
970 		next_vaddr = vaddr + len;
971 		dst_vaddr = dst_vaddr + len;
972 		size -= len;
973 	}
974 err:
975 	return ret;
976 }
977 
978 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
979 {
980 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
981 	struct sev_data_launch_secret data;
982 	struct kvm_sev_launch_secret params;
983 	struct page **pages;
984 	void *blob, *hdr;
985 	unsigned long n, i;
986 	int ret, offset;
987 
988 	if (!sev_guest(kvm))
989 		return -ENOTTY;
990 
991 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
992 		return -EFAULT;
993 
994 	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
995 	if (IS_ERR(pages))
996 		return PTR_ERR(pages);
997 
998 	/*
999 	 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1000 	 * place; the cache may contain the data that was written unencrypted.
1001 	 */
1002 	sev_clflush_pages(pages, n);
1003 
1004 	/*
1005 	 * The secret must be copied into contiguous memory region, lets verify
1006 	 * that userspace memory pages are contiguous before we issue command.
1007 	 */
1008 	if (get_num_contig_pages(0, pages, n) != n) {
1009 		ret = -EINVAL;
1010 		goto e_unpin_memory;
1011 	}
1012 
1013 	memset(&data, 0, sizeof(data));
1014 
1015 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1016 	data.guest_address = __sme_page_pa(pages[0]) + offset;
1017 	data.guest_len = params.guest_len;
1018 
1019 	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1020 	if (IS_ERR(blob)) {
1021 		ret = PTR_ERR(blob);
1022 		goto e_unpin_memory;
1023 	}
1024 
1025 	data.trans_address = __psp_pa(blob);
1026 	data.trans_len = params.trans_len;
1027 
1028 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1029 	if (IS_ERR(hdr)) {
1030 		ret = PTR_ERR(hdr);
1031 		goto e_free_blob;
1032 	}
1033 	data.hdr_address = __psp_pa(hdr);
1034 	data.hdr_len = params.hdr_len;
1035 
1036 	data.handle = sev->handle;
1037 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1038 
1039 	kfree(hdr);
1040 
1041 e_free_blob:
1042 	kfree(blob);
1043 e_unpin_memory:
1044 	/* content of memory is updated, mark pages dirty */
1045 	for (i = 0; i < n; i++) {
1046 		set_page_dirty_lock(pages[i]);
1047 		mark_page_accessed(pages[i]);
1048 	}
1049 	sev_unpin_memory(kvm, pages, n);
1050 	return ret;
1051 }
1052 
1053 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1054 {
1055 	void __user *report = (void __user *)(uintptr_t)argp->data;
1056 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1057 	struct sev_data_attestation_report data;
1058 	struct kvm_sev_attestation_report params;
1059 	void __user *p;
1060 	void *blob = NULL;
1061 	int ret;
1062 
1063 	if (!sev_guest(kvm))
1064 		return -ENOTTY;
1065 
1066 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1067 		return -EFAULT;
1068 
1069 	memset(&data, 0, sizeof(data));
1070 
1071 	/* User wants to query the blob length */
1072 	if (!params.len)
1073 		goto cmd;
1074 
1075 	p = (void __user *)(uintptr_t)params.uaddr;
1076 	if (p) {
1077 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
1078 			return -EINVAL;
1079 
1080 		blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
1081 		if (!blob)
1082 			return -ENOMEM;
1083 
1084 		data.address = __psp_pa(blob);
1085 		data.len = params.len;
1086 		memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1087 	}
1088 cmd:
1089 	data.handle = sev->handle;
1090 	ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1091 	/*
1092 	 * If we query the session length, FW responded with expected data.
1093 	 */
1094 	if (!params.len)
1095 		goto done;
1096 
1097 	if (ret)
1098 		goto e_free_blob;
1099 
1100 	if (blob) {
1101 		if (copy_to_user(p, blob, params.len))
1102 			ret = -EFAULT;
1103 	}
1104 
1105 done:
1106 	params.len = data.len;
1107 	if (copy_to_user(report, &params, sizeof(params)))
1108 		ret = -EFAULT;
1109 e_free_blob:
1110 	kfree(blob);
1111 	return ret;
1112 }
1113 
1114 /* Userspace wants to query session length. */
1115 static int
1116 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1117 				      struct kvm_sev_send_start *params)
1118 {
1119 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1120 	struct sev_data_send_start data;
1121 	int ret;
1122 
1123 	memset(&data, 0, sizeof(data));
1124 	data.handle = sev->handle;
1125 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1126 
1127 	params->session_len = data.session_len;
1128 	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1129 				sizeof(struct kvm_sev_send_start)))
1130 		ret = -EFAULT;
1131 
1132 	return ret;
1133 }
1134 
1135 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1136 {
1137 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1138 	struct sev_data_send_start data;
1139 	struct kvm_sev_send_start params;
1140 	void *amd_certs, *session_data;
1141 	void *pdh_cert, *plat_certs;
1142 	int ret;
1143 
1144 	if (!sev_guest(kvm))
1145 		return -ENOTTY;
1146 
1147 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1148 				sizeof(struct kvm_sev_send_start)))
1149 		return -EFAULT;
1150 
1151 	/* if session_len is zero, userspace wants to query the session length */
1152 	if (!params.session_len)
1153 		return __sev_send_start_query_session_length(kvm, argp,
1154 				&params);
1155 
1156 	/* some sanity checks */
1157 	if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1158 	    !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1159 		return -EINVAL;
1160 
1161 	/* allocate the memory to hold the session data blob */
1162 	session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1163 	if (!session_data)
1164 		return -ENOMEM;
1165 
1166 	/* copy the certificate blobs from userspace */
1167 	pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1168 				params.pdh_cert_len);
1169 	if (IS_ERR(pdh_cert)) {
1170 		ret = PTR_ERR(pdh_cert);
1171 		goto e_free_session;
1172 	}
1173 
1174 	plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1175 				params.plat_certs_len);
1176 	if (IS_ERR(plat_certs)) {
1177 		ret = PTR_ERR(plat_certs);
1178 		goto e_free_pdh;
1179 	}
1180 
1181 	amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1182 				params.amd_certs_len);
1183 	if (IS_ERR(amd_certs)) {
1184 		ret = PTR_ERR(amd_certs);
1185 		goto e_free_plat_cert;
1186 	}
1187 
1188 	/* populate the FW SEND_START field with system physical address */
1189 	memset(&data, 0, sizeof(data));
1190 	data.pdh_cert_address = __psp_pa(pdh_cert);
1191 	data.pdh_cert_len = params.pdh_cert_len;
1192 	data.plat_certs_address = __psp_pa(plat_certs);
1193 	data.plat_certs_len = params.plat_certs_len;
1194 	data.amd_certs_address = __psp_pa(amd_certs);
1195 	data.amd_certs_len = params.amd_certs_len;
1196 	data.session_address = __psp_pa(session_data);
1197 	data.session_len = params.session_len;
1198 	data.handle = sev->handle;
1199 
1200 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1201 
1202 	if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1203 			session_data, params.session_len)) {
1204 		ret = -EFAULT;
1205 		goto e_free_amd_cert;
1206 	}
1207 
1208 	params.policy = data.policy;
1209 	params.session_len = data.session_len;
1210 	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params,
1211 				sizeof(struct kvm_sev_send_start)))
1212 		ret = -EFAULT;
1213 
1214 e_free_amd_cert:
1215 	kfree(amd_certs);
1216 e_free_plat_cert:
1217 	kfree(plat_certs);
1218 e_free_pdh:
1219 	kfree(pdh_cert);
1220 e_free_session:
1221 	kfree(session_data);
1222 	return ret;
1223 }
1224 
1225 /* Userspace wants to query either header or trans length. */
1226 static int
1227 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1228 				     struct kvm_sev_send_update_data *params)
1229 {
1230 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1231 	struct sev_data_send_update_data data;
1232 	int ret;
1233 
1234 	memset(&data, 0, sizeof(data));
1235 	data.handle = sev->handle;
1236 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1237 
1238 	params->hdr_len = data.hdr_len;
1239 	params->trans_len = data.trans_len;
1240 
1241 	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1242 			 sizeof(struct kvm_sev_send_update_data)))
1243 		ret = -EFAULT;
1244 
1245 	return ret;
1246 }
1247 
1248 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1249 {
1250 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1251 	struct sev_data_send_update_data data;
1252 	struct kvm_sev_send_update_data params;
1253 	void *hdr, *trans_data;
1254 	struct page **guest_page;
1255 	unsigned long n;
1256 	int ret, offset;
1257 
1258 	if (!sev_guest(kvm))
1259 		return -ENOTTY;
1260 
1261 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1262 			sizeof(struct kvm_sev_send_update_data)))
1263 		return -EFAULT;
1264 
1265 	/* userspace wants to query either header or trans length */
1266 	if (!params.trans_len || !params.hdr_len)
1267 		return __sev_send_update_data_query_lengths(kvm, argp, &params);
1268 
1269 	if (!params.trans_uaddr || !params.guest_uaddr ||
1270 	    !params.guest_len || !params.hdr_uaddr)
1271 		return -EINVAL;
1272 
1273 	/* Check if we are crossing the page boundary */
1274 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1275 	if ((params.guest_len + offset > PAGE_SIZE))
1276 		return -EINVAL;
1277 
1278 	/* Pin guest memory */
1279 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1280 				    PAGE_SIZE, &n, 0);
1281 	if (IS_ERR(guest_page))
1282 		return PTR_ERR(guest_page);
1283 
1284 	/* allocate memory for header and transport buffer */
1285 	ret = -ENOMEM;
1286 	hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1287 	if (!hdr)
1288 		goto e_unpin;
1289 
1290 	trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1291 	if (!trans_data)
1292 		goto e_free_hdr;
1293 
1294 	memset(&data, 0, sizeof(data));
1295 	data.hdr_address = __psp_pa(hdr);
1296 	data.hdr_len = params.hdr_len;
1297 	data.trans_address = __psp_pa(trans_data);
1298 	data.trans_len = params.trans_len;
1299 
1300 	/* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1301 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1302 	data.guest_address |= sev_me_mask;
1303 	data.guest_len = params.guest_len;
1304 	data.handle = sev->handle;
1305 
1306 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1307 
1308 	if (ret)
1309 		goto e_free_trans_data;
1310 
1311 	/* copy transport buffer to user space */
1312 	if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1313 			 trans_data, params.trans_len)) {
1314 		ret = -EFAULT;
1315 		goto e_free_trans_data;
1316 	}
1317 
1318 	/* Copy packet header to userspace. */
1319 	if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1320 			 params.hdr_len))
1321 		ret = -EFAULT;
1322 
1323 e_free_trans_data:
1324 	kfree(trans_data);
1325 e_free_hdr:
1326 	kfree(hdr);
1327 e_unpin:
1328 	sev_unpin_memory(kvm, guest_page, n);
1329 
1330 	return ret;
1331 }
1332 
1333 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1334 {
1335 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1336 	struct sev_data_send_finish data;
1337 
1338 	if (!sev_guest(kvm))
1339 		return -ENOTTY;
1340 
1341 	data.handle = sev->handle;
1342 	return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1343 }
1344 
1345 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1346 {
1347 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1348 	struct sev_data_send_cancel data;
1349 
1350 	if (!sev_guest(kvm))
1351 		return -ENOTTY;
1352 
1353 	data.handle = sev->handle;
1354 	return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1355 }
1356 
1357 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1358 {
1359 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1360 	struct sev_data_receive_start start;
1361 	struct kvm_sev_receive_start params;
1362 	int *error = &argp->error;
1363 	void *session_data;
1364 	void *pdh_data;
1365 	int ret;
1366 
1367 	if (!sev_guest(kvm))
1368 		return -ENOTTY;
1369 
1370 	/* Get parameter from the userspace */
1371 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1372 			sizeof(struct kvm_sev_receive_start)))
1373 		return -EFAULT;
1374 
1375 	/* some sanity checks */
1376 	if (!params.pdh_uaddr || !params.pdh_len ||
1377 	    !params.session_uaddr || !params.session_len)
1378 		return -EINVAL;
1379 
1380 	pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1381 	if (IS_ERR(pdh_data))
1382 		return PTR_ERR(pdh_data);
1383 
1384 	session_data = psp_copy_user_blob(params.session_uaddr,
1385 			params.session_len);
1386 	if (IS_ERR(session_data)) {
1387 		ret = PTR_ERR(session_data);
1388 		goto e_free_pdh;
1389 	}
1390 
1391 	memset(&start, 0, sizeof(start));
1392 	start.handle = params.handle;
1393 	start.policy = params.policy;
1394 	start.pdh_cert_address = __psp_pa(pdh_data);
1395 	start.pdh_cert_len = params.pdh_len;
1396 	start.session_address = __psp_pa(session_data);
1397 	start.session_len = params.session_len;
1398 
1399 	/* create memory encryption context */
1400 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1401 				error);
1402 	if (ret)
1403 		goto e_free_session;
1404 
1405 	/* Bind ASID to this guest */
1406 	ret = sev_bind_asid(kvm, start.handle, error);
1407 	if (ret) {
1408 		sev_decommission(start.handle);
1409 		goto e_free_session;
1410 	}
1411 
1412 	params.handle = start.handle;
1413 	if (copy_to_user((void __user *)(uintptr_t)argp->data,
1414 			 &params, sizeof(struct kvm_sev_receive_start))) {
1415 		ret = -EFAULT;
1416 		sev_unbind_asid(kvm, start.handle);
1417 		goto e_free_session;
1418 	}
1419 
1420     	sev->handle = start.handle;
1421 	sev->fd = argp->sev_fd;
1422 
1423 e_free_session:
1424 	kfree(session_data);
1425 e_free_pdh:
1426 	kfree(pdh_data);
1427 
1428 	return ret;
1429 }
1430 
1431 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1432 {
1433 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1434 	struct kvm_sev_receive_update_data params;
1435 	struct sev_data_receive_update_data data;
1436 	void *hdr = NULL, *trans = NULL;
1437 	struct page **guest_page;
1438 	unsigned long n;
1439 	int ret, offset;
1440 
1441 	if (!sev_guest(kvm))
1442 		return -EINVAL;
1443 
1444 	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1445 			sizeof(struct kvm_sev_receive_update_data)))
1446 		return -EFAULT;
1447 
1448 	if (!params.hdr_uaddr || !params.hdr_len ||
1449 	    !params.guest_uaddr || !params.guest_len ||
1450 	    !params.trans_uaddr || !params.trans_len)
1451 		return -EINVAL;
1452 
1453 	/* Check if we are crossing the page boundary */
1454 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1455 	if ((params.guest_len + offset > PAGE_SIZE))
1456 		return -EINVAL;
1457 
1458 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1459 	if (IS_ERR(hdr))
1460 		return PTR_ERR(hdr);
1461 
1462 	trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1463 	if (IS_ERR(trans)) {
1464 		ret = PTR_ERR(trans);
1465 		goto e_free_hdr;
1466 	}
1467 
1468 	memset(&data, 0, sizeof(data));
1469 	data.hdr_address = __psp_pa(hdr);
1470 	data.hdr_len = params.hdr_len;
1471 	data.trans_address = __psp_pa(trans);
1472 	data.trans_len = params.trans_len;
1473 
1474 	/* Pin guest memory */
1475 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1476 				    PAGE_SIZE, &n, 1);
1477 	if (IS_ERR(guest_page)) {
1478 		ret = PTR_ERR(guest_page);
1479 		goto e_free_trans;
1480 	}
1481 
1482 	/* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1483 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1484 	data.guest_address |= sev_me_mask;
1485 	data.guest_len = params.guest_len;
1486 	data.handle = sev->handle;
1487 
1488 	ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1489 				&argp->error);
1490 
1491 	sev_unpin_memory(kvm, guest_page, n);
1492 
1493 e_free_trans:
1494 	kfree(trans);
1495 e_free_hdr:
1496 	kfree(hdr);
1497 
1498 	return ret;
1499 }
1500 
1501 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1502 {
1503 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1504 	struct sev_data_receive_finish data;
1505 
1506 	if (!sev_guest(kvm))
1507 		return -ENOTTY;
1508 
1509 	data.handle = sev->handle;
1510 	return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1511 }
1512 
1513 static bool cmd_allowed_from_miror(u32 cmd_id)
1514 {
1515 	/*
1516 	 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1517 	 * active mirror VMs. Also allow the debugging and status commands.
1518 	 */
1519 	if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1520 	    cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1521 	    cmd_id == KVM_SEV_DBG_ENCRYPT)
1522 		return true;
1523 
1524 	return false;
1525 }
1526 
1527 int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
1528 {
1529 	struct kvm_sev_cmd sev_cmd;
1530 	int r;
1531 
1532 	if (!sev_enabled)
1533 		return -ENOTTY;
1534 
1535 	if (!argp)
1536 		return 0;
1537 
1538 	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1539 		return -EFAULT;
1540 
1541 	mutex_lock(&kvm->lock);
1542 
1543 	/* Only the enc_context_owner handles some memory enc operations. */
1544 	if (is_mirroring_enc_context(kvm) &&
1545 	    !cmd_allowed_from_miror(sev_cmd.id)) {
1546 		r = -EINVAL;
1547 		goto out;
1548 	}
1549 
1550 	switch (sev_cmd.id) {
1551 	case KVM_SEV_ES_INIT:
1552 		if (!sev_es_enabled) {
1553 			r = -ENOTTY;
1554 			goto out;
1555 		}
1556 		fallthrough;
1557 	case KVM_SEV_INIT:
1558 		r = sev_guest_init(kvm, &sev_cmd);
1559 		break;
1560 	case KVM_SEV_LAUNCH_START:
1561 		r = sev_launch_start(kvm, &sev_cmd);
1562 		break;
1563 	case KVM_SEV_LAUNCH_UPDATE_DATA:
1564 		r = sev_launch_update_data(kvm, &sev_cmd);
1565 		break;
1566 	case KVM_SEV_LAUNCH_UPDATE_VMSA:
1567 		r = sev_launch_update_vmsa(kvm, &sev_cmd);
1568 		break;
1569 	case KVM_SEV_LAUNCH_MEASURE:
1570 		r = sev_launch_measure(kvm, &sev_cmd);
1571 		break;
1572 	case KVM_SEV_LAUNCH_FINISH:
1573 		r = sev_launch_finish(kvm, &sev_cmd);
1574 		break;
1575 	case KVM_SEV_GUEST_STATUS:
1576 		r = sev_guest_status(kvm, &sev_cmd);
1577 		break;
1578 	case KVM_SEV_DBG_DECRYPT:
1579 		r = sev_dbg_crypt(kvm, &sev_cmd, true);
1580 		break;
1581 	case KVM_SEV_DBG_ENCRYPT:
1582 		r = sev_dbg_crypt(kvm, &sev_cmd, false);
1583 		break;
1584 	case KVM_SEV_LAUNCH_SECRET:
1585 		r = sev_launch_secret(kvm, &sev_cmd);
1586 		break;
1587 	case KVM_SEV_GET_ATTESTATION_REPORT:
1588 		r = sev_get_attestation_report(kvm, &sev_cmd);
1589 		break;
1590 	case KVM_SEV_SEND_START:
1591 		r = sev_send_start(kvm, &sev_cmd);
1592 		break;
1593 	case KVM_SEV_SEND_UPDATE_DATA:
1594 		r = sev_send_update_data(kvm, &sev_cmd);
1595 		break;
1596 	case KVM_SEV_SEND_FINISH:
1597 		r = sev_send_finish(kvm, &sev_cmd);
1598 		break;
1599 	case KVM_SEV_SEND_CANCEL:
1600 		r = sev_send_cancel(kvm, &sev_cmd);
1601 		break;
1602 	case KVM_SEV_RECEIVE_START:
1603 		r = sev_receive_start(kvm, &sev_cmd);
1604 		break;
1605 	case KVM_SEV_RECEIVE_UPDATE_DATA:
1606 		r = sev_receive_update_data(kvm, &sev_cmd);
1607 		break;
1608 	case KVM_SEV_RECEIVE_FINISH:
1609 		r = sev_receive_finish(kvm, &sev_cmd);
1610 		break;
1611 	default:
1612 		r = -EINVAL;
1613 		goto out;
1614 	}
1615 
1616 	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1617 		r = -EFAULT;
1618 
1619 out:
1620 	mutex_unlock(&kvm->lock);
1621 	return r;
1622 }
1623 
1624 int svm_register_enc_region(struct kvm *kvm,
1625 			    struct kvm_enc_region *range)
1626 {
1627 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1628 	struct enc_region *region;
1629 	int ret = 0;
1630 
1631 	if (!sev_guest(kvm))
1632 		return -ENOTTY;
1633 
1634 	/* If kvm is mirroring encryption context it isn't responsible for it */
1635 	if (is_mirroring_enc_context(kvm))
1636 		return -EINVAL;
1637 
1638 	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1639 		return -EINVAL;
1640 
1641 	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1642 	if (!region)
1643 		return -ENOMEM;
1644 
1645 	mutex_lock(&kvm->lock);
1646 	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
1647 	if (IS_ERR(region->pages)) {
1648 		ret = PTR_ERR(region->pages);
1649 		mutex_unlock(&kvm->lock);
1650 		goto e_free;
1651 	}
1652 
1653 	region->uaddr = range->addr;
1654 	region->size = range->size;
1655 
1656 	list_add_tail(&region->list, &sev->regions_list);
1657 	mutex_unlock(&kvm->lock);
1658 
1659 	/*
1660 	 * The guest may change the memory encryption attribute from C=0 -> C=1
1661 	 * or vice versa for this memory range. Lets make sure caches are
1662 	 * flushed to ensure that guest data gets written into memory with
1663 	 * correct C-bit.
1664 	 */
1665 	sev_clflush_pages(region->pages, region->npages);
1666 
1667 	return ret;
1668 
1669 e_free:
1670 	kfree(region);
1671 	return ret;
1672 }
1673 
1674 static struct enc_region *
1675 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1676 {
1677 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1678 	struct list_head *head = &sev->regions_list;
1679 	struct enc_region *i;
1680 
1681 	list_for_each_entry(i, head, list) {
1682 		if (i->uaddr == range->addr &&
1683 		    i->size == range->size)
1684 			return i;
1685 	}
1686 
1687 	return NULL;
1688 }
1689 
1690 static void __unregister_enc_region_locked(struct kvm *kvm,
1691 					   struct enc_region *region)
1692 {
1693 	sev_unpin_memory(kvm, region->pages, region->npages);
1694 	list_del(&region->list);
1695 	kfree(region);
1696 }
1697 
1698 int svm_unregister_enc_region(struct kvm *kvm,
1699 			      struct kvm_enc_region *range)
1700 {
1701 	struct enc_region *region;
1702 	int ret;
1703 
1704 	/* If kvm is mirroring encryption context it isn't responsible for it */
1705 	if (is_mirroring_enc_context(kvm))
1706 		return -EINVAL;
1707 
1708 	mutex_lock(&kvm->lock);
1709 
1710 	if (!sev_guest(kvm)) {
1711 		ret = -ENOTTY;
1712 		goto failed;
1713 	}
1714 
1715 	region = find_enc_region(kvm, range);
1716 	if (!region) {
1717 		ret = -EINVAL;
1718 		goto failed;
1719 	}
1720 
1721 	/*
1722 	 * Ensure that all guest tagged cache entries are flushed before
1723 	 * releasing the pages back to the system for use. CLFLUSH will
1724 	 * not do this, so issue a WBINVD.
1725 	 */
1726 	wbinvd_on_all_cpus();
1727 
1728 	__unregister_enc_region_locked(kvm, region);
1729 
1730 	mutex_unlock(&kvm->lock);
1731 	return 0;
1732 
1733 failed:
1734 	mutex_unlock(&kvm->lock);
1735 	return ret;
1736 }
1737 
1738 int svm_vm_copy_asid_from(struct kvm *kvm, unsigned int source_fd)
1739 {
1740 	struct file *source_kvm_file;
1741 	struct kvm *source_kvm;
1742 	struct kvm_sev_info source_sev, *mirror_sev;
1743 	int ret;
1744 
1745 	source_kvm_file = fget(source_fd);
1746 	if (!file_is_kvm(source_kvm_file)) {
1747 		ret = -EBADF;
1748 		goto e_source_put;
1749 	}
1750 
1751 	source_kvm = source_kvm_file->private_data;
1752 	mutex_lock(&source_kvm->lock);
1753 
1754 	if (!sev_guest(source_kvm)) {
1755 		ret = -EINVAL;
1756 		goto e_source_unlock;
1757 	}
1758 
1759 	/* Mirrors of mirrors should work, but let's not get silly */
1760 	if (is_mirroring_enc_context(source_kvm) || source_kvm == kvm) {
1761 		ret = -EINVAL;
1762 		goto e_source_unlock;
1763 	}
1764 
1765 	memcpy(&source_sev, &to_kvm_svm(source_kvm)->sev_info,
1766 	       sizeof(source_sev));
1767 
1768 	/*
1769 	 * The mirror kvm holds an enc_context_owner ref so its asid can't
1770 	 * disappear until we're done with it
1771 	 */
1772 	kvm_get_kvm(source_kvm);
1773 
1774 	fput(source_kvm_file);
1775 	mutex_unlock(&source_kvm->lock);
1776 	mutex_lock(&kvm->lock);
1777 
1778 	if (sev_guest(kvm)) {
1779 		ret = -EINVAL;
1780 		goto e_mirror_unlock;
1781 	}
1782 
1783 	/* Set enc_context_owner and copy its encryption context over */
1784 	mirror_sev = &to_kvm_svm(kvm)->sev_info;
1785 	mirror_sev->enc_context_owner = source_kvm;
1786 	mirror_sev->active = true;
1787 	mirror_sev->asid = source_sev.asid;
1788 	mirror_sev->fd = source_sev.fd;
1789 	mirror_sev->es_active = source_sev.es_active;
1790 	mirror_sev->handle = source_sev.handle;
1791 	/*
1792 	 * Do not copy ap_jump_table. Since the mirror does not share the same
1793 	 * KVM contexts as the original, and they may have different
1794 	 * memory-views.
1795 	 */
1796 
1797 	mutex_unlock(&kvm->lock);
1798 	return 0;
1799 
1800 e_mirror_unlock:
1801 	mutex_unlock(&kvm->lock);
1802 	kvm_put_kvm(source_kvm);
1803 	return ret;
1804 e_source_unlock:
1805 	mutex_unlock(&source_kvm->lock);
1806 e_source_put:
1807 	if (source_kvm_file)
1808 		fput(source_kvm_file);
1809 	return ret;
1810 }
1811 
1812 void sev_vm_destroy(struct kvm *kvm)
1813 {
1814 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1815 	struct list_head *head = &sev->regions_list;
1816 	struct list_head *pos, *q;
1817 
1818 	if (!sev_guest(kvm))
1819 		return;
1820 
1821 	/* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
1822 	if (is_mirroring_enc_context(kvm)) {
1823 		kvm_put_kvm(sev->enc_context_owner);
1824 		return;
1825 	}
1826 
1827 	mutex_lock(&kvm->lock);
1828 
1829 	/*
1830 	 * Ensure that all guest tagged cache entries are flushed before
1831 	 * releasing the pages back to the system for use. CLFLUSH will
1832 	 * not do this, so issue a WBINVD.
1833 	 */
1834 	wbinvd_on_all_cpus();
1835 
1836 	/*
1837 	 * if userspace was terminated before unregistering the memory regions
1838 	 * then lets unpin all the registered memory.
1839 	 */
1840 	if (!list_empty(head)) {
1841 		list_for_each_safe(pos, q, head) {
1842 			__unregister_enc_region_locked(kvm,
1843 				list_entry(pos, struct enc_region, list));
1844 			cond_resched();
1845 		}
1846 	}
1847 
1848 	mutex_unlock(&kvm->lock);
1849 
1850 	sev_unbind_asid(kvm, sev->handle);
1851 	sev_asid_free(sev);
1852 }
1853 
1854 void __init sev_set_cpu_caps(void)
1855 {
1856 	if (!sev_enabled)
1857 		kvm_cpu_cap_clear(X86_FEATURE_SEV);
1858 	if (!sev_es_enabled)
1859 		kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
1860 }
1861 
1862 void __init sev_hardware_setup(void)
1863 {
1864 #ifdef CONFIG_KVM_AMD_SEV
1865 	unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
1866 	bool sev_es_supported = false;
1867 	bool sev_supported = false;
1868 
1869 	if (!sev_enabled || !npt_enabled)
1870 		goto out;
1871 
1872 	/* Does the CPU support SEV? */
1873 	if (!boot_cpu_has(X86_FEATURE_SEV))
1874 		goto out;
1875 
1876 	/* Retrieve SEV CPUID information */
1877 	cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
1878 
1879 	/* Set encryption bit location for SEV-ES guests */
1880 	sev_enc_bit = ebx & 0x3f;
1881 
1882 	/* Maximum number of encrypted guests supported simultaneously */
1883 	max_sev_asid = ecx;
1884 	if (!max_sev_asid)
1885 		goto out;
1886 
1887 	/* Minimum ASID value that should be used for SEV guest */
1888 	min_sev_asid = edx;
1889 	sev_me_mask = 1UL << (ebx & 0x3f);
1890 
1891 	/*
1892 	 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
1893 	 * even though it's never used, so that the bitmap is indexed by the
1894 	 * actual ASID.
1895 	 */
1896 	nr_asids = max_sev_asid + 1;
1897 	sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
1898 	if (!sev_asid_bitmap)
1899 		goto out;
1900 
1901 	sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
1902 	if (!sev_reclaim_asid_bitmap) {
1903 		bitmap_free(sev_asid_bitmap);
1904 		sev_asid_bitmap = NULL;
1905 		goto out;
1906 	}
1907 
1908 	sev_asid_count = max_sev_asid - min_sev_asid + 1;
1909 	if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count))
1910 		goto out;
1911 
1912 	pr_info("SEV supported: %u ASIDs\n", sev_asid_count);
1913 	sev_supported = true;
1914 
1915 	/* SEV-ES support requested? */
1916 	if (!sev_es_enabled)
1917 		goto out;
1918 
1919 	/* Does the CPU support SEV-ES? */
1920 	if (!boot_cpu_has(X86_FEATURE_SEV_ES))
1921 		goto out;
1922 
1923 	/* Has the system been allocated ASIDs for SEV-ES? */
1924 	if (min_sev_asid == 1)
1925 		goto out;
1926 
1927 	sev_es_asid_count = min_sev_asid - 1;
1928 	if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count))
1929 		goto out;
1930 
1931 	pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count);
1932 	sev_es_supported = true;
1933 
1934 out:
1935 	sev_enabled = sev_supported;
1936 	sev_es_enabled = sev_es_supported;
1937 #endif
1938 }
1939 
1940 void sev_hardware_teardown(void)
1941 {
1942 	if (!sev_enabled)
1943 		return;
1944 
1945 	/* No need to take sev_bitmap_lock, all VMs have been destroyed. */
1946 	sev_flush_asids(1, max_sev_asid);
1947 
1948 	bitmap_free(sev_asid_bitmap);
1949 	bitmap_free(sev_reclaim_asid_bitmap);
1950 
1951 	misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
1952 	misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
1953 }
1954 
1955 int sev_cpu_init(struct svm_cpu_data *sd)
1956 {
1957 	if (!sev_enabled)
1958 		return 0;
1959 
1960 	sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
1961 	if (!sd->sev_vmcbs)
1962 		return -ENOMEM;
1963 
1964 	return 0;
1965 }
1966 
1967 /*
1968  * Pages used by hardware to hold guest encrypted state must be flushed before
1969  * returning them to the system.
1970  */
1971 static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va,
1972 				   unsigned long len)
1973 {
1974 	/*
1975 	 * If hardware enforced cache coherency for encrypted mappings of the
1976 	 * same physical page is supported, nothing to do.
1977 	 */
1978 	if (boot_cpu_has(X86_FEATURE_SME_COHERENT))
1979 		return;
1980 
1981 	/*
1982 	 * If the VM Page Flush MSR is supported, use it to flush the page
1983 	 * (using the page virtual address and the guest ASID).
1984 	 */
1985 	if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) {
1986 		struct kvm_sev_info *sev;
1987 		unsigned long va_start;
1988 		u64 start, stop;
1989 
1990 		/* Align start and stop to page boundaries. */
1991 		va_start = (unsigned long)va;
1992 		start = (u64)va_start & PAGE_MASK;
1993 		stop = PAGE_ALIGN((u64)va_start + len);
1994 
1995 		if (start < stop) {
1996 			sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
1997 
1998 			while (start < stop) {
1999 				wrmsrl(MSR_AMD64_VM_PAGE_FLUSH,
2000 				       start | sev->asid);
2001 
2002 				start += PAGE_SIZE;
2003 			}
2004 
2005 			return;
2006 		}
2007 
2008 		WARN(1, "Address overflow, using WBINVD\n");
2009 	}
2010 
2011 	/*
2012 	 * Hardware should always have one of the above features,
2013 	 * but if not, use WBINVD and issue a warning.
2014 	 */
2015 	WARN_ONCE(1, "Using WBINVD to flush guest memory\n");
2016 	wbinvd_on_all_cpus();
2017 }
2018 
2019 void sev_free_vcpu(struct kvm_vcpu *vcpu)
2020 {
2021 	struct vcpu_svm *svm;
2022 
2023 	if (!sev_es_guest(vcpu->kvm))
2024 		return;
2025 
2026 	svm = to_svm(vcpu);
2027 
2028 	if (vcpu->arch.guest_state_protected)
2029 		sev_flush_guest_memory(svm, svm->vmsa, PAGE_SIZE);
2030 	__free_page(virt_to_page(svm->vmsa));
2031 
2032 	if (svm->ghcb_sa_free)
2033 		kfree(svm->ghcb_sa);
2034 }
2035 
2036 static void dump_ghcb(struct vcpu_svm *svm)
2037 {
2038 	struct ghcb *ghcb = svm->ghcb;
2039 	unsigned int nbits;
2040 
2041 	/* Re-use the dump_invalid_vmcb module parameter */
2042 	if (!dump_invalid_vmcb) {
2043 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2044 		return;
2045 	}
2046 
2047 	nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2048 
2049 	pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2050 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2051 	       ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2052 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2053 	       ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2054 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2055 	       ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2056 	pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2057 	       ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2058 	pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2059 }
2060 
2061 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2062 {
2063 	struct kvm_vcpu *vcpu = &svm->vcpu;
2064 	struct ghcb *ghcb = svm->ghcb;
2065 
2066 	/*
2067 	 * The GHCB protocol so far allows for the following data
2068 	 * to be returned:
2069 	 *   GPRs RAX, RBX, RCX, RDX
2070 	 *
2071 	 * Copy their values, even if they may not have been written during the
2072 	 * VM-Exit.  It's the guest's responsibility to not consume random data.
2073 	 */
2074 	ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2075 	ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2076 	ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2077 	ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2078 }
2079 
2080 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2081 {
2082 	struct vmcb_control_area *control = &svm->vmcb->control;
2083 	struct kvm_vcpu *vcpu = &svm->vcpu;
2084 	struct ghcb *ghcb = svm->ghcb;
2085 	u64 exit_code;
2086 
2087 	/*
2088 	 * The GHCB protocol so far allows for the following data
2089 	 * to be supplied:
2090 	 *   GPRs RAX, RBX, RCX, RDX
2091 	 *   XCR0
2092 	 *   CPL
2093 	 *
2094 	 * VMMCALL allows the guest to provide extra registers. KVM also
2095 	 * expects RSI for hypercalls, so include that, too.
2096 	 *
2097 	 * Copy their values to the appropriate location if supplied.
2098 	 */
2099 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2100 
2101 	vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb);
2102 	vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb);
2103 	vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb);
2104 	vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb);
2105 	vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb);
2106 
2107 	svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb);
2108 
2109 	if (ghcb_xcr0_is_valid(ghcb)) {
2110 		vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2111 		kvm_update_cpuid_runtime(vcpu);
2112 	}
2113 
2114 	/* Copy the GHCB exit information into the VMCB fields */
2115 	exit_code = ghcb_get_sw_exit_code(ghcb);
2116 	control->exit_code = lower_32_bits(exit_code);
2117 	control->exit_code_hi = upper_32_bits(exit_code);
2118 	control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2119 	control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2120 
2121 	/* Clear the valid entries fields */
2122 	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2123 }
2124 
2125 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2126 {
2127 	struct kvm_vcpu *vcpu;
2128 	struct ghcb *ghcb;
2129 	u64 exit_code = 0;
2130 
2131 	ghcb = svm->ghcb;
2132 
2133 	/* Only GHCB Usage code 0 is supported */
2134 	if (ghcb->ghcb_usage)
2135 		goto vmgexit_err;
2136 
2137 	/*
2138 	 * Retrieve the exit code now even though is may not be marked valid
2139 	 * as it could help with debugging.
2140 	 */
2141 	exit_code = ghcb_get_sw_exit_code(ghcb);
2142 
2143 	if (!ghcb_sw_exit_code_is_valid(ghcb) ||
2144 	    !ghcb_sw_exit_info_1_is_valid(ghcb) ||
2145 	    !ghcb_sw_exit_info_2_is_valid(ghcb))
2146 		goto vmgexit_err;
2147 
2148 	switch (ghcb_get_sw_exit_code(ghcb)) {
2149 	case SVM_EXIT_READ_DR7:
2150 		break;
2151 	case SVM_EXIT_WRITE_DR7:
2152 		if (!ghcb_rax_is_valid(ghcb))
2153 			goto vmgexit_err;
2154 		break;
2155 	case SVM_EXIT_RDTSC:
2156 		break;
2157 	case SVM_EXIT_RDPMC:
2158 		if (!ghcb_rcx_is_valid(ghcb))
2159 			goto vmgexit_err;
2160 		break;
2161 	case SVM_EXIT_CPUID:
2162 		if (!ghcb_rax_is_valid(ghcb) ||
2163 		    !ghcb_rcx_is_valid(ghcb))
2164 			goto vmgexit_err;
2165 		if (ghcb_get_rax(ghcb) == 0xd)
2166 			if (!ghcb_xcr0_is_valid(ghcb))
2167 				goto vmgexit_err;
2168 		break;
2169 	case SVM_EXIT_INVD:
2170 		break;
2171 	case SVM_EXIT_IOIO:
2172 		if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) {
2173 			if (!ghcb_sw_scratch_is_valid(ghcb))
2174 				goto vmgexit_err;
2175 		} else {
2176 			if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK))
2177 				if (!ghcb_rax_is_valid(ghcb))
2178 					goto vmgexit_err;
2179 		}
2180 		break;
2181 	case SVM_EXIT_MSR:
2182 		if (!ghcb_rcx_is_valid(ghcb))
2183 			goto vmgexit_err;
2184 		if (ghcb_get_sw_exit_info_1(ghcb)) {
2185 			if (!ghcb_rax_is_valid(ghcb) ||
2186 			    !ghcb_rdx_is_valid(ghcb))
2187 				goto vmgexit_err;
2188 		}
2189 		break;
2190 	case SVM_EXIT_VMMCALL:
2191 		if (!ghcb_rax_is_valid(ghcb) ||
2192 		    !ghcb_cpl_is_valid(ghcb))
2193 			goto vmgexit_err;
2194 		break;
2195 	case SVM_EXIT_RDTSCP:
2196 		break;
2197 	case SVM_EXIT_WBINVD:
2198 		break;
2199 	case SVM_EXIT_MONITOR:
2200 		if (!ghcb_rax_is_valid(ghcb) ||
2201 		    !ghcb_rcx_is_valid(ghcb) ||
2202 		    !ghcb_rdx_is_valid(ghcb))
2203 			goto vmgexit_err;
2204 		break;
2205 	case SVM_EXIT_MWAIT:
2206 		if (!ghcb_rax_is_valid(ghcb) ||
2207 		    !ghcb_rcx_is_valid(ghcb))
2208 			goto vmgexit_err;
2209 		break;
2210 	case SVM_VMGEXIT_MMIO_READ:
2211 	case SVM_VMGEXIT_MMIO_WRITE:
2212 		if (!ghcb_sw_scratch_is_valid(ghcb))
2213 			goto vmgexit_err;
2214 		break;
2215 	case SVM_VMGEXIT_NMI_COMPLETE:
2216 	case SVM_VMGEXIT_AP_HLT_LOOP:
2217 	case SVM_VMGEXIT_AP_JUMP_TABLE:
2218 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2219 		break;
2220 	default:
2221 		goto vmgexit_err;
2222 	}
2223 
2224 	return 0;
2225 
2226 vmgexit_err:
2227 	vcpu = &svm->vcpu;
2228 
2229 	if (ghcb->ghcb_usage) {
2230 		vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2231 			    ghcb->ghcb_usage);
2232 	} else {
2233 		vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n",
2234 			    exit_code);
2235 		dump_ghcb(svm);
2236 	}
2237 
2238 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2239 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
2240 	vcpu->run->internal.ndata = 2;
2241 	vcpu->run->internal.data[0] = exit_code;
2242 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
2243 
2244 	return -EINVAL;
2245 }
2246 
2247 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2248 {
2249 	if (!svm->ghcb)
2250 		return;
2251 
2252 	if (svm->ghcb_sa_free) {
2253 		/*
2254 		 * The scratch area lives outside the GHCB, so there is a
2255 		 * buffer that, depending on the operation performed, may
2256 		 * need to be synced, then freed.
2257 		 */
2258 		if (svm->ghcb_sa_sync) {
2259 			kvm_write_guest(svm->vcpu.kvm,
2260 					ghcb_get_sw_scratch(svm->ghcb),
2261 					svm->ghcb_sa, svm->ghcb_sa_len);
2262 			svm->ghcb_sa_sync = false;
2263 		}
2264 
2265 		kfree(svm->ghcb_sa);
2266 		svm->ghcb_sa = NULL;
2267 		svm->ghcb_sa_free = false;
2268 	}
2269 
2270 	trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->ghcb);
2271 
2272 	sev_es_sync_to_ghcb(svm);
2273 
2274 	kvm_vcpu_unmap(&svm->vcpu, &svm->ghcb_map, true);
2275 	svm->ghcb = NULL;
2276 }
2277 
2278 void pre_sev_run(struct vcpu_svm *svm, int cpu)
2279 {
2280 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2281 	int asid = sev_get_asid(svm->vcpu.kvm);
2282 
2283 	/* Assign the asid allocated with this SEV guest */
2284 	svm->asid = asid;
2285 
2286 	/*
2287 	 * Flush guest TLB:
2288 	 *
2289 	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2290 	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2291 	 */
2292 	if (sd->sev_vmcbs[asid] == svm->vmcb &&
2293 	    svm->vcpu.arch.last_vmentry_cpu == cpu)
2294 		return;
2295 
2296 	sd->sev_vmcbs[asid] = svm->vmcb;
2297 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2298 	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2299 }
2300 
2301 #define GHCB_SCRATCH_AREA_LIMIT		(16ULL * PAGE_SIZE)
2302 static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2303 {
2304 	struct vmcb_control_area *control = &svm->vmcb->control;
2305 	struct ghcb *ghcb = svm->ghcb;
2306 	u64 ghcb_scratch_beg, ghcb_scratch_end;
2307 	u64 scratch_gpa_beg, scratch_gpa_end;
2308 	void *scratch_va;
2309 
2310 	scratch_gpa_beg = ghcb_get_sw_scratch(ghcb);
2311 	if (!scratch_gpa_beg) {
2312 		pr_err("vmgexit: scratch gpa not provided\n");
2313 		return false;
2314 	}
2315 
2316 	scratch_gpa_end = scratch_gpa_beg + len;
2317 	if (scratch_gpa_end < scratch_gpa_beg) {
2318 		pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2319 		       len, scratch_gpa_beg);
2320 		return false;
2321 	}
2322 
2323 	if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2324 		/* Scratch area begins within GHCB */
2325 		ghcb_scratch_beg = control->ghcb_gpa +
2326 				   offsetof(struct ghcb, shared_buffer);
2327 		ghcb_scratch_end = control->ghcb_gpa +
2328 				   offsetof(struct ghcb, reserved_1);
2329 
2330 		/*
2331 		 * If the scratch area begins within the GHCB, it must be
2332 		 * completely contained in the GHCB shared buffer area.
2333 		 */
2334 		if (scratch_gpa_beg < ghcb_scratch_beg ||
2335 		    scratch_gpa_end > ghcb_scratch_end) {
2336 			pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2337 			       scratch_gpa_beg, scratch_gpa_end);
2338 			return false;
2339 		}
2340 
2341 		scratch_va = (void *)svm->ghcb;
2342 		scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2343 	} else {
2344 		/*
2345 		 * The guest memory must be read into a kernel buffer, so
2346 		 * limit the size
2347 		 */
2348 		if (len > GHCB_SCRATCH_AREA_LIMIT) {
2349 			pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2350 			       len, GHCB_SCRATCH_AREA_LIMIT);
2351 			return false;
2352 		}
2353 		scratch_va = kzalloc(len, GFP_KERNEL_ACCOUNT);
2354 		if (!scratch_va)
2355 			return false;
2356 
2357 		if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2358 			/* Unable to copy scratch area from guest */
2359 			pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2360 
2361 			kfree(scratch_va);
2362 			return false;
2363 		}
2364 
2365 		/*
2366 		 * The scratch area is outside the GHCB. The operation will
2367 		 * dictate whether the buffer needs to be synced before running
2368 		 * the vCPU next time (i.e. a read was requested so the data
2369 		 * must be written back to the guest memory).
2370 		 */
2371 		svm->ghcb_sa_sync = sync;
2372 		svm->ghcb_sa_free = true;
2373 	}
2374 
2375 	svm->ghcb_sa = scratch_va;
2376 	svm->ghcb_sa_len = len;
2377 
2378 	return true;
2379 }
2380 
2381 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2382 			      unsigned int pos)
2383 {
2384 	svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2385 	svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2386 }
2387 
2388 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2389 {
2390 	return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2391 }
2392 
2393 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2394 {
2395 	svm->vmcb->control.ghcb_gpa = value;
2396 }
2397 
2398 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2399 {
2400 	struct vmcb_control_area *control = &svm->vmcb->control;
2401 	struct kvm_vcpu *vcpu = &svm->vcpu;
2402 	u64 ghcb_info;
2403 	int ret = 1;
2404 
2405 	ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2406 
2407 	trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2408 					     control->ghcb_gpa);
2409 
2410 	switch (ghcb_info) {
2411 	case GHCB_MSR_SEV_INFO_REQ:
2412 		set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2413 						    GHCB_VERSION_MIN,
2414 						    sev_enc_bit));
2415 		break;
2416 	case GHCB_MSR_CPUID_REQ: {
2417 		u64 cpuid_fn, cpuid_reg, cpuid_value;
2418 
2419 		cpuid_fn = get_ghcb_msr_bits(svm,
2420 					     GHCB_MSR_CPUID_FUNC_MASK,
2421 					     GHCB_MSR_CPUID_FUNC_POS);
2422 
2423 		/* Initialize the registers needed by the CPUID intercept */
2424 		vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2425 		vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2426 
2427 		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2428 		if (!ret) {
2429 			ret = -EINVAL;
2430 			break;
2431 		}
2432 
2433 		cpuid_reg = get_ghcb_msr_bits(svm,
2434 					      GHCB_MSR_CPUID_REG_MASK,
2435 					      GHCB_MSR_CPUID_REG_POS);
2436 		if (cpuid_reg == 0)
2437 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2438 		else if (cpuid_reg == 1)
2439 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2440 		else if (cpuid_reg == 2)
2441 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2442 		else
2443 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2444 
2445 		set_ghcb_msr_bits(svm, cpuid_value,
2446 				  GHCB_MSR_CPUID_VALUE_MASK,
2447 				  GHCB_MSR_CPUID_VALUE_POS);
2448 
2449 		set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2450 				  GHCB_MSR_INFO_MASK,
2451 				  GHCB_MSR_INFO_POS);
2452 		break;
2453 	}
2454 	case GHCB_MSR_TERM_REQ: {
2455 		u64 reason_set, reason_code;
2456 
2457 		reason_set = get_ghcb_msr_bits(svm,
2458 					       GHCB_MSR_TERM_REASON_SET_MASK,
2459 					       GHCB_MSR_TERM_REASON_SET_POS);
2460 		reason_code = get_ghcb_msr_bits(svm,
2461 						GHCB_MSR_TERM_REASON_MASK,
2462 						GHCB_MSR_TERM_REASON_POS);
2463 		pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2464 			reason_set, reason_code);
2465 		fallthrough;
2466 	}
2467 	default:
2468 		ret = -EINVAL;
2469 	}
2470 
2471 	trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2472 					    control->ghcb_gpa, ret);
2473 
2474 	return ret;
2475 }
2476 
2477 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2478 {
2479 	struct vcpu_svm *svm = to_svm(vcpu);
2480 	struct vmcb_control_area *control = &svm->vmcb->control;
2481 	u64 ghcb_gpa, exit_code;
2482 	struct ghcb *ghcb;
2483 	int ret;
2484 
2485 	/* Validate the GHCB */
2486 	ghcb_gpa = control->ghcb_gpa;
2487 	if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2488 		return sev_handle_vmgexit_msr_protocol(svm);
2489 
2490 	if (!ghcb_gpa) {
2491 		vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2492 		return -EINVAL;
2493 	}
2494 
2495 	if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->ghcb_map)) {
2496 		/* Unable to map GHCB from guest */
2497 		vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2498 			    ghcb_gpa);
2499 		return -EINVAL;
2500 	}
2501 
2502 	svm->ghcb = svm->ghcb_map.hva;
2503 	ghcb = svm->ghcb_map.hva;
2504 
2505 	trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb);
2506 
2507 	exit_code = ghcb_get_sw_exit_code(ghcb);
2508 
2509 	ret = sev_es_validate_vmgexit(svm);
2510 	if (ret)
2511 		return ret;
2512 
2513 	sev_es_sync_from_ghcb(svm);
2514 	ghcb_set_sw_exit_info_1(ghcb, 0);
2515 	ghcb_set_sw_exit_info_2(ghcb, 0);
2516 
2517 	ret = -EINVAL;
2518 	switch (exit_code) {
2519 	case SVM_VMGEXIT_MMIO_READ:
2520 		if (!setup_vmgexit_scratch(svm, true, control->exit_info_2))
2521 			break;
2522 
2523 		ret = kvm_sev_es_mmio_read(vcpu,
2524 					   control->exit_info_1,
2525 					   control->exit_info_2,
2526 					   svm->ghcb_sa);
2527 		break;
2528 	case SVM_VMGEXIT_MMIO_WRITE:
2529 		if (!setup_vmgexit_scratch(svm, false, control->exit_info_2))
2530 			break;
2531 
2532 		ret = kvm_sev_es_mmio_write(vcpu,
2533 					    control->exit_info_1,
2534 					    control->exit_info_2,
2535 					    svm->ghcb_sa);
2536 		break;
2537 	case SVM_VMGEXIT_NMI_COMPLETE:
2538 		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET);
2539 		break;
2540 	case SVM_VMGEXIT_AP_HLT_LOOP:
2541 		ret = kvm_emulate_ap_reset_hold(vcpu);
2542 		break;
2543 	case SVM_VMGEXIT_AP_JUMP_TABLE: {
2544 		struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2545 
2546 		switch (control->exit_info_1) {
2547 		case 0:
2548 			/* Set AP jump table address */
2549 			sev->ap_jump_table = control->exit_info_2;
2550 			break;
2551 		case 1:
2552 			/* Get AP jump table address */
2553 			ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
2554 			break;
2555 		default:
2556 			pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2557 			       control->exit_info_1);
2558 			ghcb_set_sw_exit_info_1(ghcb, 1);
2559 			ghcb_set_sw_exit_info_2(ghcb,
2560 						X86_TRAP_UD |
2561 						SVM_EVTINJ_TYPE_EXEPT |
2562 						SVM_EVTINJ_VALID);
2563 		}
2564 
2565 		ret = 1;
2566 		break;
2567 	}
2568 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2569 		vcpu_unimpl(vcpu,
2570 			    "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2571 			    control->exit_info_1, control->exit_info_2);
2572 		break;
2573 	default:
2574 		ret = svm_invoke_exit_handler(vcpu, exit_code);
2575 	}
2576 
2577 	return ret;
2578 }
2579 
2580 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2581 {
2582 	if (!setup_vmgexit_scratch(svm, in, svm->vmcb->control.exit_info_2))
2583 		return -EINVAL;
2584 
2585 	return kvm_sev_es_string_io(&svm->vcpu, size, port,
2586 				    svm->ghcb_sa, svm->ghcb_sa_len, in);
2587 }
2588 
2589 void sev_es_init_vmcb(struct vcpu_svm *svm)
2590 {
2591 	struct kvm_vcpu *vcpu = &svm->vcpu;
2592 
2593 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
2594 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
2595 
2596 	/*
2597 	 * An SEV-ES guest requires a VMSA area that is a separate from the
2598 	 * VMCB page. Do not include the encryption mask on the VMSA physical
2599 	 * address since hardware will access it using the guest key.
2600 	 */
2601 	svm->vmcb->control.vmsa_pa = __pa(svm->vmsa);
2602 
2603 	/* Can't intercept CR register access, HV can't modify CR registers */
2604 	svm_clr_intercept(svm, INTERCEPT_CR0_READ);
2605 	svm_clr_intercept(svm, INTERCEPT_CR4_READ);
2606 	svm_clr_intercept(svm, INTERCEPT_CR8_READ);
2607 	svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
2608 	svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
2609 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
2610 
2611 	svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
2612 
2613 	/* Track EFER/CR register changes */
2614 	svm_set_intercept(svm, TRAP_EFER_WRITE);
2615 	svm_set_intercept(svm, TRAP_CR0_WRITE);
2616 	svm_set_intercept(svm, TRAP_CR4_WRITE);
2617 	svm_set_intercept(svm, TRAP_CR8_WRITE);
2618 
2619 	/* No support for enable_vmware_backdoor */
2620 	clr_exception_intercept(svm, GP_VECTOR);
2621 
2622 	/* Can't intercept XSETBV, HV can't modify XCR0 directly */
2623 	svm_clr_intercept(svm, INTERCEPT_XSETBV);
2624 
2625 	/* Clear intercepts on selected MSRs */
2626 	set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
2627 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
2628 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
2629 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
2630 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
2631 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
2632 }
2633 
2634 void sev_es_create_vcpu(struct vcpu_svm *svm)
2635 {
2636 	/*
2637 	 * Set the GHCB MSR value as per the GHCB specification when creating
2638 	 * a vCPU for an SEV-ES guest.
2639 	 */
2640 	set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2641 					    GHCB_VERSION_MIN,
2642 					    sev_enc_bit));
2643 }
2644 
2645 void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu)
2646 {
2647 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2648 	struct vmcb_save_area *hostsa;
2649 
2650 	/*
2651 	 * As an SEV-ES guest, hardware will restore the host state on VMEXIT,
2652 	 * of which one step is to perform a VMLOAD. Since hardware does not
2653 	 * perform a VMSAVE on VMRUN, the host savearea must be updated.
2654 	 */
2655 	vmsave(__sme_page_pa(sd->save_area));
2656 
2657 	/* XCR0 is restored on VMEXIT, save the current host value */
2658 	hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400);
2659 	hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
2660 
2661 	/* PKRU is restored on VMEXIT, save the current host value */
2662 	hostsa->pkru = read_pkru();
2663 
2664 	/* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
2665 	hostsa->xss = host_xss;
2666 }
2667 
2668 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
2669 {
2670 	struct vcpu_svm *svm = to_svm(vcpu);
2671 
2672 	/* First SIPI: Use the values as initially set by the VMM */
2673 	if (!svm->received_first_sipi) {
2674 		svm->received_first_sipi = true;
2675 		return;
2676 	}
2677 
2678 	/*
2679 	 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
2680 	 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
2681 	 * non-zero value.
2682 	 */
2683 	if (!svm->ghcb)
2684 		return;
2685 
2686 	ghcb_set_sw_exit_info_2(svm->ghcb, 1);
2687 }
2688