xref: /openbmc/linux/arch/x86/kvm/svm/avic.c (revision b48dbb99)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM support
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *   Avi Kivity   <avi@qumranet.com>
13  */
14 
15 #define pr_fmt(fmt) "SVM: " fmt
16 
17 #include <linux/kvm_types.h>
18 #include <linux/hashtable.h>
19 #include <linux/amd-iommu.h>
20 #include <linux/kvm_host.h>
21 
22 #include <asm/irq_remapping.h>
23 
24 #include "trace.h"
25 #include "lapic.h"
26 #include "x86.h"
27 #include "irq.h"
28 #include "svm.h"
29 
30 /* AVIC GATAG is encoded using VM and VCPU IDs */
31 #define AVIC_VCPU_ID_BITS		8
32 #define AVIC_VCPU_ID_MASK		((1 << AVIC_VCPU_ID_BITS) - 1)
33 
34 #define AVIC_VM_ID_BITS			24
35 #define AVIC_VM_ID_NR			(1 << AVIC_VM_ID_BITS)
36 #define AVIC_VM_ID_MASK			((1 << AVIC_VM_ID_BITS) - 1)
37 
38 #define AVIC_GATAG(x, y)		(((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
39 						(y & AVIC_VCPU_ID_MASK))
40 #define AVIC_GATAG_TO_VMID(x)		((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
41 #define AVIC_GATAG_TO_VCPUID(x)		(x & AVIC_VCPU_ID_MASK)
42 
43 /* Note:
44  * This hash table is used to map VM_ID to a struct kvm_svm,
45  * when handling AMD IOMMU GALOG notification to schedule in
46  * a particular vCPU.
47  */
48 #define SVM_VM_DATA_HASH_BITS	8
49 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
50 static u32 next_vm_id = 0;
51 static bool next_vm_id_wrapped = 0;
52 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
53 
54 /*
55  * This is a wrapper of struct amd_iommu_ir_data.
56  */
57 struct amd_svm_iommu_ir {
58 	struct list_head node;	/* Used by SVM for per-vcpu ir_list */
59 	void *data;		/* Storing pointer to struct amd_ir_data */
60 };
61 
62 
63 /* Note:
64  * This function is called from IOMMU driver to notify
65  * SVM to schedule in a particular vCPU of a particular VM.
66  */
67 int avic_ga_log_notifier(u32 ga_tag)
68 {
69 	unsigned long flags;
70 	struct kvm_svm *kvm_svm;
71 	struct kvm_vcpu *vcpu = NULL;
72 	u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
73 	u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
74 
75 	pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
76 	trace_kvm_avic_ga_log(vm_id, vcpu_id);
77 
78 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
79 	hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
80 		if (kvm_svm->avic_vm_id != vm_id)
81 			continue;
82 		vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
83 		break;
84 	}
85 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
86 
87 	/* Note:
88 	 * At this point, the IOMMU should have already set the pending
89 	 * bit in the vAPIC backing page. So, we just need to schedule
90 	 * in the vcpu.
91 	 */
92 	if (vcpu)
93 		kvm_vcpu_wake_up(vcpu);
94 
95 	return 0;
96 }
97 
98 void avic_vm_destroy(struct kvm *kvm)
99 {
100 	unsigned long flags;
101 	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
102 
103 	if (!enable_apicv)
104 		return;
105 
106 	if (kvm_svm->avic_logical_id_table_page)
107 		__free_page(kvm_svm->avic_logical_id_table_page);
108 	if (kvm_svm->avic_physical_id_table_page)
109 		__free_page(kvm_svm->avic_physical_id_table_page);
110 
111 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
112 	hash_del(&kvm_svm->hnode);
113 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
114 }
115 
116 int avic_vm_init(struct kvm *kvm)
117 {
118 	unsigned long flags;
119 	int err = -ENOMEM;
120 	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
121 	struct kvm_svm *k2;
122 	struct page *p_page;
123 	struct page *l_page;
124 	u32 vm_id;
125 
126 	if (!enable_apicv)
127 		return 0;
128 
129 	/* Allocating physical APIC ID table (4KB) */
130 	p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
131 	if (!p_page)
132 		goto free_avic;
133 
134 	kvm_svm->avic_physical_id_table_page = p_page;
135 
136 	/* Allocating logical APIC ID table (4KB) */
137 	l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
138 	if (!l_page)
139 		goto free_avic;
140 
141 	kvm_svm->avic_logical_id_table_page = l_page;
142 
143 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
144  again:
145 	vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
146 	if (vm_id == 0) { /* id is 1-based, zero is not okay */
147 		next_vm_id_wrapped = 1;
148 		goto again;
149 	}
150 	/* Is it still in use? Only possible if wrapped at least once */
151 	if (next_vm_id_wrapped) {
152 		hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
153 			if (k2->avic_vm_id == vm_id)
154 				goto again;
155 		}
156 	}
157 	kvm_svm->avic_vm_id = vm_id;
158 	hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
159 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
160 
161 	return 0;
162 
163 free_avic:
164 	avic_vm_destroy(kvm);
165 	return err;
166 }
167 
168 void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb)
169 {
170 	struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
171 	phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
172 	phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
173 	phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
174 
175 	vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
176 	vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
177 	vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
178 	vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
179 	vmcb->control.avic_vapic_bar = APIC_DEFAULT_PHYS_BASE & VMCB_AVIC_APIC_BAR_MASK;
180 
181 	if (kvm_apicv_activated(svm->vcpu.kvm))
182 		vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
183 	else
184 		vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
185 }
186 
187 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
188 				       unsigned int index)
189 {
190 	u64 *avic_physical_id_table;
191 	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
192 
193 	if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
194 		return NULL;
195 
196 	avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
197 
198 	return &avic_physical_id_table[index];
199 }
200 
201 /*
202  * Note:
203  * AVIC hardware walks the nested page table to check permissions,
204  * but does not use the SPA address specified in the leaf page
205  * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
206  * field of the VMCB. Therefore, we set up the
207  * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
208  */
209 static int avic_alloc_access_page(struct kvm *kvm)
210 {
211 	void __user *ret;
212 	int r = 0;
213 
214 	mutex_lock(&kvm->slots_lock);
215 
216 	if (kvm->arch.apic_access_memslot_enabled)
217 		goto out;
218 
219 	ret = __x86_set_memory_region(kvm,
220 				      APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
221 				      APIC_DEFAULT_PHYS_BASE,
222 				      PAGE_SIZE);
223 	if (IS_ERR(ret)) {
224 		r = PTR_ERR(ret);
225 		goto out;
226 	}
227 
228 	kvm->arch.apic_access_memslot_enabled = true;
229 out:
230 	mutex_unlock(&kvm->slots_lock);
231 	return r;
232 }
233 
234 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
235 {
236 	u64 *entry, new_entry;
237 	int id = vcpu->vcpu_id;
238 	struct vcpu_svm *svm = to_svm(vcpu);
239 
240 	if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
241 		return -EINVAL;
242 
243 	if (!vcpu->arch.apic->regs)
244 		return -EINVAL;
245 
246 	if (kvm_apicv_activated(vcpu->kvm)) {
247 		int ret;
248 
249 		ret = avic_alloc_access_page(vcpu->kvm);
250 		if (ret)
251 			return ret;
252 	}
253 
254 	svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs);
255 
256 	/* Setting AVIC backing page address in the phy APIC ID table */
257 	entry = avic_get_physical_id_entry(vcpu, id);
258 	if (!entry)
259 		return -EINVAL;
260 
261 	new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
262 			      AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
263 			      AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
264 	WRITE_ONCE(*entry, new_entry);
265 
266 	svm->avic_physical_id_cache = entry;
267 
268 	return 0;
269 }
270 
271 void avic_ring_doorbell(struct kvm_vcpu *vcpu)
272 {
273 	/*
274 	 * Note, the vCPU could get migrated to a different pCPU at any point,
275 	 * which could result in signalling the wrong/previous pCPU.  But if
276 	 * that happens the vCPU is guaranteed to do a VMRUN (after being
277 	 * migrated) and thus will process pending interrupts, i.e. a doorbell
278 	 * is not needed (and the spurious one is harmless).
279 	 */
280 	int cpu = READ_ONCE(vcpu->cpu);
281 
282 	if (cpu != get_cpu())
283 		wrmsrl(MSR_AMD64_SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpu));
284 	put_cpu();
285 }
286 
287 /*
288  * A fast-path version of avic_kick_target_vcpus(), which attempts to match
289  * destination APIC ID to vCPU without looping through all vCPUs.
290  */
291 static int avic_kick_target_vcpus_fast(struct kvm *kvm, struct kvm_lapic *source,
292 				       u32 icrl, u32 icrh, u32 index)
293 {
294 	u32 l1_physical_id, dest;
295 	struct kvm_vcpu *target_vcpu;
296 	int dest_mode = icrl & APIC_DEST_MASK;
297 	int shorthand = icrl & APIC_SHORT_MASK;
298 	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
299 
300 	if (shorthand != APIC_DEST_NOSHORT)
301 		return -EINVAL;
302 
303 	if (apic_x2apic_mode(source))
304 		dest = icrh;
305 	else
306 		dest = GET_APIC_DEST_FIELD(icrh);
307 
308 	if (dest_mode == APIC_DEST_PHYSICAL) {
309 		/* broadcast destination, use slow path */
310 		if (apic_x2apic_mode(source) && dest == X2APIC_BROADCAST)
311 			return -EINVAL;
312 		if (!apic_x2apic_mode(source) && dest == APIC_BROADCAST)
313 			return -EINVAL;
314 
315 		l1_physical_id = dest;
316 
317 		if (WARN_ON_ONCE(l1_physical_id != index))
318 			return -EINVAL;
319 
320 	} else {
321 		u32 bitmap, cluster;
322 		int logid_index;
323 
324 		if (apic_x2apic_mode(source)) {
325 			/* 16 bit dest mask, 16 bit cluster id */
326 			bitmap = dest & 0xFFFF0000;
327 			cluster = (dest >> 16) << 4;
328 		} else if (kvm_lapic_get_reg(source, APIC_DFR) == APIC_DFR_FLAT) {
329 			/* 8 bit dest mask*/
330 			bitmap = dest;
331 			cluster = 0;
332 		} else {
333 			/* 4 bit desk mask, 4 bit cluster id */
334 			bitmap = dest & 0xF;
335 			cluster = (dest >> 4) << 2;
336 		}
337 
338 		if (unlikely(!bitmap))
339 			/* guest bug: nobody to send the logical interrupt to */
340 			return 0;
341 
342 		if (!is_power_of_2(bitmap))
343 			/* multiple logical destinations, use slow path */
344 			return -EINVAL;
345 
346 		logid_index = cluster + __ffs(bitmap);
347 
348 		if (apic_x2apic_mode(source)) {
349 			l1_physical_id = logid_index;
350 		} else {
351 			u32 *avic_logical_id_table =
352 				page_address(kvm_svm->avic_logical_id_table_page);
353 
354 			u32 logid_entry = avic_logical_id_table[logid_index];
355 
356 			if (WARN_ON_ONCE(index != logid_index))
357 				return -EINVAL;
358 
359 			/* guest bug: non existing/reserved logical destination */
360 			if (unlikely(!(logid_entry & AVIC_LOGICAL_ID_ENTRY_VALID_MASK)))
361 				return 0;
362 
363 			l1_physical_id = logid_entry &
364 					 AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
365 		}
366 	}
367 
368 	target_vcpu = kvm_get_vcpu_by_id(kvm, l1_physical_id);
369 	if (unlikely(!target_vcpu))
370 		/* guest bug: non existing vCPU is a target of this IPI*/
371 		return 0;
372 
373 	target_vcpu->arch.apic->irr_pending = true;
374 	svm_complete_interrupt_delivery(target_vcpu,
375 					icrl & APIC_MODE_MASK,
376 					icrl & APIC_INT_LEVELTRIG,
377 					icrl & APIC_VECTOR_MASK);
378 	return 0;
379 }
380 
381 static void avic_kick_target_vcpus(struct kvm *kvm, struct kvm_lapic *source,
382 				   u32 icrl, u32 icrh, u32 index)
383 {
384 	unsigned long i;
385 	struct kvm_vcpu *vcpu;
386 
387 	if (!avic_kick_target_vcpus_fast(kvm, source, icrl, icrh, index))
388 		return;
389 
390 	trace_kvm_avic_kick_vcpu_slowpath(icrh, icrl, index);
391 
392 	/*
393 	 * Wake any target vCPUs that are blocking, i.e. waiting for a wake
394 	 * event.  There's no need to signal doorbells, as hardware has handled
395 	 * vCPUs that were in guest at the time of the IPI, and vCPUs that have
396 	 * since entered the guest will have processed pending IRQs at VMRUN.
397 	 */
398 	kvm_for_each_vcpu(i, vcpu, kvm) {
399 		if (kvm_apic_match_dest(vcpu, source, icrl & APIC_SHORT_MASK,
400 					GET_APIC_DEST_FIELD(icrh),
401 					icrl & APIC_DEST_MASK)) {
402 			vcpu->arch.apic->irr_pending = true;
403 			svm_complete_interrupt_delivery(vcpu,
404 							icrl & APIC_MODE_MASK,
405 							icrl & APIC_INT_LEVELTRIG,
406 							icrl & APIC_VECTOR_MASK);
407 		}
408 	}
409 }
410 
411 int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu)
412 {
413 	struct vcpu_svm *svm = to_svm(vcpu);
414 	u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
415 	u32 icrl = svm->vmcb->control.exit_info_1;
416 	u32 id = svm->vmcb->control.exit_info_2 >> 32;
417 	u32 index = svm->vmcb->control.exit_info_2 & 0x1FF;
418 	struct kvm_lapic *apic = vcpu->arch.apic;
419 
420 	trace_kvm_avic_incomplete_ipi(vcpu->vcpu_id, icrh, icrl, id, index);
421 
422 	switch (id) {
423 	case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
424 		/*
425 		 * Emulate IPIs that are not handled by AVIC hardware, which
426 		 * only virtualizes Fixed, Edge-Triggered INTRs.  The exit is
427 		 * a trap, e.g. ICR holds the correct value and RIP has been
428 		 * advanced, KVM is responsible only for emulating the IPI.
429 		 * Sadly, hardware may sometimes leave the BUSY flag set, in
430 		 * which case KVM needs to emulate the ICR write as well in
431 		 * order to clear the BUSY flag.
432 		 */
433 		if (icrl & APIC_ICR_BUSY)
434 			kvm_apic_write_nodecode(vcpu, APIC_ICR);
435 		else
436 			kvm_apic_send_ipi(apic, icrl, icrh);
437 		break;
438 	case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING:
439 		/*
440 		 * At this point, we expect that the AVIC HW has already
441 		 * set the appropriate IRR bits on the valid target
442 		 * vcpus. So, we just need to kick the appropriate vcpu.
443 		 */
444 		avic_kick_target_vcpus(vcpu->kvm, apic, icrl, icrh, index);
445 		break;
446 	case AVIC_IPI_FAILURE_INVALID_TARGET:
447 		break;
448 	case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
449 		WARN_ONCE(1, "Invalid backing page\n");
450 		break;
451 	default:
452 		pr_err("Unknown IPI interception\n");
453 	}
454 
455 	return 1;
456 }
457 
458 unsigned long avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu *vcpu)
459 {
460 	if (is_guest_mode(vcpu))
461 		return APICV_INHIBIT_REASON_NESTED;
462 	return 0;
463 }
464 
465 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
466 {
467 	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
468 	int index;
469 	u32 *logical_apic_id_table;
470 	int dlid = GET_APIC_LOGICAL_ID(ldr);
471 
472 	if (!dlid)
473 		return NULL;
474 
475 	if (flat) { /* flat */
476 		index = ffs(dlid) - 1;
477 		if (index > 7)
478 			return NULL;
479 	} else { /* cluster */
480 		int cluster = (dlid & 0xf0) >> 4;
481 		int apic = ffs(dlid & 0x0f) - 1;
482 
483 		if ((apic < 0) || (apic > 7) ||
484 		    (cluster >= 0xf))
485 			return NULL;
486 		index = (cluster << 2) + apic;
487 	}
488 
489 	logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
490 
491 	return &logical_apic_id_table[index];
492 }
493 
494 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
495 {
496 	bool flat;
497 	u32 *entry, new_entry;
498 
499 	flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
500 	entry = avic_get_logical_id_entry(vcpu, ldr, flat);
501 	if (!entry)
502 		return -EINVAL;
503 
504 	new_entry = READ_ONCE(*entry);
505 	new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
506 	new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
507 	new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
508 	WRITE_ONCE(*entry, new_entry);
509 
510 	return 0;
511 }
512 
513 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
514 {
515 	struct vcpu_svm *svm = to_svm(vcpu);
516 	bool flat = svm->dfr_reg == APIC_DFR_FLAT;
517 	u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
518 
519 	if (entry)
520 		clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
521 }
522 
523 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
524 {
525 	int ret = 0;
526 	struct vcpu_svm *svm = to_svm(vcpu);
527 	u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
528 	u32 id = kvm_xapic_id(vcpu->arch.apic);
529 
530 	if (ldr == svm->ldr_reg)
531 		return 0;
532 
533 	avic_invalidate_logical_id_entry(vcpu);
534 
535 	if (ldr)
536 		ret = avic_ldr_write(vcpu, id, ldr);
537 
538 	if (!ret)
539 		svm->ldr_reg = ldr;
540 
541 	return ret;
542 }
543 
544 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
545 {
546 	struct vcpu_svm *svm = to_svm(vcpu);
547 	u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
548 
549 	if (svm->dfr_reg == dfr)
550 		return;
551 
552 	avic_invalidate_logical_id_entry(vcpu);
553 	svm->dfr_reg = dfr;
554 }
555 
556 static int avic_unaccel_trap_write(struct kvm_vcpu *vcpu)
557 {
558 	u32 offset = to_svm(vcpu)->vmcb->control.exit_info_1 &
559 				AVIC_UNACCEL_ACCESS_OFFSET_MASK;
560 
561 	switch (offset) {
562 	case APIC_LDR:
563 		if (avic_handle_ldr_update(vcpu))
564 			return 0;
565 		break;
566 	case APIC_DFR:
567 		avic_handle_dfr_update(vcpu);
568 		break;
569 	default:
570 		break;
571 	}
572 
573 	kvm_apic_write_nodecode(vcpu, offset);
574 	return 1;
575 }
576 
577 static bool is_avic_unaccelerated_access_trap(u32 offset)
578 {
579 	bool ret = false;
580 
581 	switch (offset) {
582 	case APIC_ID:
583 	case APIC_EOI:
584 	case APIC_RRR:
585 	case APIC_LDR:
586 	case APIC_DFR:
587 	case APIC_SPIV:
588 	case APIC_ESR:
589 	case APIC_ICR:
590 	case APIC_LVTT:
591 	case APIC_LVTTHMR:
592 	case APIC_LVTPC:
593 	case APIC_LVT0:
594 	case APIC_LVT1:
595 	case APIC_LVTERR:
596 	case APIC_TMICT:
597 	case APIC_TDCR:
598 		ret = true;
599 		break;
600 	default:
601 		break;
602 	}
603 	return ret;
604 }
605 
606 int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu)
607 {
608 	struct vcpu_svm *svm = to_svm(vcpu);
609 	int ret = 0;
610 	u32 offset = svm->vmcb->control.exit_info_1 &
611 		     AVIC_UNACCEL_ACCESS_OFFSET_MASK;
612 	u32 vector = svm->vmcb->control.exit_info_2 &
613 		     AVIC_UNACCEL_ACCESS_VECTOR_MASK;
614 	bool write = (svm->vmcb->control.exit_info_1 >> 32) &
615 		     AVIC_UNACCEL_ACCESS_WRITE_MASK;
616 	bool trap = is_avic_unaccelerated_access_trap(offset);
617 
618 	trace_kvm_avic_unaccelerated_access(vcpu->vcpu_id, offset,
619 					    trap, write, vector);
620 	if (trap) {
621 		/* Handling Trap */
622 		WARN_ONCE(!write, "svm: Handling trap read.\n");
623 		ret = avic_unaccel_trap_write(vcpu);
624 	} else {
625 		/* Handling Fault */
626 		ret = kvm_emulate_instruction(vcpu, 0);
627 	}
628 
629 	return ret;
630 }
631 
632 int avic_init_vcpu(struct vcpu_svm *svm)
633 {
634 	int ret;
635 	struct kvm_vcpu *vcpu = &svm->vcpu;
636 
637 	if (!enable_apicv || !irqchip_in_kernel(vcpu->kvm))
638 		return 0;
639 
640 	ret = avic_init_backing_page(vcpu);
641 	if (ret)
642 		return ret;
643 
644 	INIT_LIST_HEAD(&svm->ir_list);
645 	spin_lock_init(&svm->ir_list_lock);
646 	svm->dfr_reg = APIC_DFR_FLAT;
647 
648 	return ret;
649 }
650 
651 void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu)
652 {
653 	avic_handle_dfr_update(vcpu);
654 	avic_handle_ldr_update(vcpu);
655 }
656 
657 static int avic_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
658 {
659 	int ret = 0;
660 	unsigned long flags;
661 	struct amd_svm_iommu_ir *ir;
662 	struct vcpu_svm *svm = to_svm(vcpu);
663 
664 	if (!kvm_arch_has_assigned_device(vcpu->kvm))
665 		return 0;
666 
667 	/*
668 	 * Here, we go through the per-vcpu ir_list to update all existing
669 	 * interrupt remapping table entry targeting this vcpu.
670 	 */
671 	spin_lock_irqsave(&svm->ir_list_lock, flags);
672 
673 	if (list_empty(&svm->ir_list))
674 		goto out;
675 
676 	list_for_each_entry(ir, &svm->ir_list, node) {
677 		if (activate)
678 			ret = amd_iommu_activate_guest_mode(ir->data);
679 		else
680 			ret = amd_iommu_deactivate_guest_mode(ir->data);
681 		if (ret)
682 			break;
683 	}
684 out:
685 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
686 	return ret;
687 }
688 
689 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
690 {
691 	unsigned long flags;
692 	struct amd_svm_iommu_ir *cur;
693 
694 	spin_lock_irqsave(&svm->ir_list_lock, flags);
695 	list_for_each_entry(cur, &svm->ir_list, node) {
696 		if (cur->data != pi->ir_data)
697 			continue;
698 		list_del(&cur->node);
699 		kfree(cur);
700 		break;
701 	}
702 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
703 }
704 
705 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
706 {
707 	int ret = 0;
708 	unsigned long flags;
709 	struct amd_svm_iommu_ir *ir;
710 
711 	/**
712 	 * In some cases, the existing irte is updated and re-set,
713 	 * so we need to check here if it's already been * added
714 	 * to the ir_list.
715 	 */
716 	if (pi->ir_data && (pi->prev_ga_tag != 0)) {
717 		struct kvm *kvm = svm->vcpu.kvm;
718 		u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
719 		struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
720 		struct vcpu_svm *prev_svm;
721 
722 		if (!prev_vcpu) {
723 			ret = -EINVAL;
724 			goto out;
725 		}
726 
727 		prev_svm = to_svm(prev_vcpu);
728 		svm_ir_list_del(prev_svm, pi);
729 	}
730 
731 	/**
732 	 * Allocating new amd_iommu_pi_data, which will get
733 	 * add to the per-vcpu ir_list.
734 	 */
735 	ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
736 	if (!ir) {
737 		ret = -ENOMEM;
738 		goto out;
739 	}
740 	ir->data = pi->ir_data;
741 
742 	spin_lock_irqsave(&svm->ir_list_lock, flags);
743 	list_add(&ir->node, &svm->ir_list);
744 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
745 out:
746 	return ret;
747 }
748 
749 /*
750  * Note:
751  * The HW cannot support posting multicast/broadcast
752  * interrupts to a vCPU. So, we still use legacy interrupt
753  * remapping for these kind of interrupts.
754  *
755  * For lowest-priority interrupts, we only support
756  * those with single CPU as the destination, e.g. user
757  * configures the interrupts via /proc/irq or uses
758  * irqbalance to make the interrupts single-CPU.
759  */
760 static int
761 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
762 		 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
763 {
764 	struct kvm_lapic_irq irq;
765 	struct kvm_vcpu *vcpu = NULL;
766 
767 	kvm_set_msi_irq(kvm, e, &irq);
768 
769 	if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
770 	    !kvm_irq_is_postable(&irq)) {
771 		pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
772 			 __func__, irq.vector);
773 		return -1;
774 	}
775 
776 	pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
777 		 irq.vector);
778 	*svm = to_svm(vcpu);
779 	vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
780 	vcpu_info->vector = irq.vector;
781 
782 	return 0;
783 }
784 
785 /*
786  * avic_pi_update_irte - set IRTE for Posted-Interrupts
787  *
788  * @kvm: kvm
789  * @host_irq: host irq of the interrupt
790  * @guest_irq: gsi of the interrupt
791  * @set: set or unset PI
792  * returns 0 on success, < 0 on failure
793  */
794 int avic_pi_update_irte(struct kvm *kvm, unsigned int host_irq,
795 			uint32_t guest_irq, bool set)
796 {
797 	struct kvm_kernel_irq_routing_entry *e;
798 	struct kvm_irq_routing_table *irq_rt;
799 	int idx, ret = 0;
800 
801 	if (!kvm_arch_has_assigned_device(kvm) ||
802 	    !irq_remapping_cap(IRQ_POSTING_CAP))
803 		return 0;
804 
805 	pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
806 		 __func__, host_irq, guest_irq, set);
807 
808 	idx = srcu_read_lock(&kvm->irq_srcu);
809 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
810 
811 	if (guest_irq >= irq_rt->nr_rt_entries ||
812 		hlist_empty(&irq_rt->map[guest_irq])) {
813 		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
814 			     guest_irq, irq_rt->nr_rt_entries);
815 		goto out;
816 	}
817 
818 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
819 		struct vcpu_data vcpu_info;
820 		struct vcpu_svm *svm = NULL;
821 
822 		if (e->type != KVM_IRQ_ROUTING_MSI)
823 			continue;
824 
825 		/**
826 		 * Here, we setup with legacy mode in the following cases:
827 		 * 1. When cannot target interrupt to a specific vcpu.
828 		 * 2. Unsetting posted interrupt.
829 		 * 3. APIC virtualization is disabled for the vcpu.
830 		 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
831 		 */
832 		if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
833 		    kvm_vcpu_apicv_active(&svm->vcpu)) {
834 			struct amd_iommu_pi_data pi;
835 
836 			/* Try to enable guest_mode in IRTE */
837 			pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
838 					    AVIC_HPA_MASK);
839 			pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
840 						     svm->vcpu.vcpu_id);
841 			pi.is_guest_mode = true;
842 			pi.vcpu_data = &vcpu_info;
843 			ret = irq_set_vcpu_affinity(host_irq, &pi);
844 
845 			/**
846 			 * Here, we successfully setting up vcpu affinity in
847 			 * IOMMU guest mode. Now, we need to store the posted
848 			 * interrupt information in a per-vcpu ir_list so that
849 			 * we can reference to them directly when we update vcpu
850 			 * scheduling information in IOMMU irte.
851 			 */
852 			if (!ret && pi.is_guest_mode)
853 				svm_ir_list_add(svm, &pi);
854 		} else {
855 			/* Use legacy mode in IRTE */
856 			struct amd_iommu_pi_data pi;
857 
858 			/**
859 			 * Here, pi is used to:
860 			 * - Tell IOMMU to use legacy mode for this interrupt.
861 			 * - Retrieve ga_tag of prior interrupt remapping data.
862 			 */
863 			pi.prev_ga_tag = 0;
864 			pi.is_guest_mode = false;
865 			ret = irq_set_vcpu_affinity(host_irq, &pi);
866 
867 			/**
868 			 * Check if the posted interrupt was previously
869 			 * setup with the guest_mode by checking if the ga_tag
870 			 * was cached. If so, we need to clean up the per-vcpu
871 			 * ir_list.
872 			 */
873 			if (!ret && pi.prev_ga_tag) {
874 				int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
875 				struct kvm_vcpu *vcpu;
876 
877 				vcpu = kvm_get_vcpu_by_id(kvm, id);
878 				if (vcpu)
879 					svm_ir_list_del(to_svm(vcpu), &pi);
880 			}
881 		}
882 
883 		if (!ret && svm) {
884 			trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
885 						 e->gsi, vcpu_info.vector,
886 						 vcpu_info.pi_desc_addr, set);
887 		}
888 
889 		if (ret < 0) {
890 			pr_err("%s: failed to update PI IRTE\n", __func__);
891 			goto out;
892 		}
893 	}
894 
895 	ret = 0;
896 out:
897 	srcu_read_unlock(&kvm->irq_srcu, idx);
898 	return ret;
899 }
900 
901 bool avic_check_apicv_inhibit_reasons(enum kvm_apicv_inhibit reason)
902 {
903 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
904 			  BIT(APICV_INHIBIT_REASON_ABSENT) |
905 			  BIT(APICV_INHIBIT_REASON_HYPERV) |
906 			  BIT(APICV_INHIBIT_REASON_NESTED) |
907 			  BIT(APICV_INHIBIT_REASON_IRQWIN) |
908 			  BIT(APICV_INHIBIT_REASON_PIT_REINJ) |
909 			  BIT(APICV_INHIBIT_REASON_X2APIC) |
910 			  BIT(APICV_INHIBIT_REASON_BLOCKIRQ) |
911 			  BIT(APICV_INHIBIT_REASON_SEV)      |
912 			  BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) |
913 			  BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
914 
915 	return supported & BIT(reason);
916 }
917 
918 
919 static inline int
920 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
921 {
922 	int ret = 0;
923 	unsigned long flags;
924 	struct amd_svm_iommu_ir *ir;
925 	struct vcpu_svm *svm = to_svm(vcpu);
926 
927 	if (!kvm_arch_has_assigned_device(vcpu->kvm))
928 		return 0;
929 
930 	/*
931 	 * Here, we go through the per-vcpu ir_list to update all existing
932 	 * interrupt remapping table entry targeting this vcpu.
933 	 */
934 	spin_lock_irqsave(&svm->ir_list_lock, flags);
935 
936 	if (list_empty(&svm->ir_list))
937 		goto out;
938 
939 	list_for_each_entry(ir, &svm->ir_list, node) {
940 		ret = amd_iommu_update_ga(cpu, r, ir->data);
941 		if (ret)
942 			break;
943 	}
944 out:
945 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
946 	return ret;
947 }
948 
949 void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
950 {
951 	u64 entry;
952 	int h_physical_id = kvm_cpu_get_apicid(cpu);
953 	struct vcpu_svm *svm = to_svm(vcpu);
954 
955 	lockdep_assert_preemption_disabled();
956 
957 	if (WARN_ON(h_physical_id & ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
958 		return;
959 
960 	/*
961 	 * No need to update anything if the vCPU is blocking, i.e. if the vCPU
962 	 * is being scheduled in after being preempted.  The CPU entries in the
963 	 * Physical APIC table and IRTE are consumed iff IsRun{ning} is '1'.
964 	 * If the vCPU was migrated, its new CPU value will be stuffed when the
965 	 * vCPU unblocks.
966 	 */
967 	if (kvm_vcpu_is_blocking(vcpu))
968 		return;
969 
970 	entry = READ_ONCE(*(svm->avic_physical_id_cache));
971 	WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
972 
973 	entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
974 	entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
975 	entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
976 
977 	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
978 	avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, true);
979 }
980 
981 void avic_vcpu_put(struct kvm_vcpu *vcpu)
982 {
983 	u64 entry;
984 	struct vcpu_svm *svm = to_svm(vcpu);
985 
986 	lockdep_assert_preemption_disabled();
987 
988 	entry = READ_ONCE(*(svm->avic_physical_id_cache));
989 
990 	/* Nothing to do if IsRunning == '0' due to vCPU blocking. */
991 	if (!(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK))
992 		return;
993 
994 	avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
995 
996 	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
997 	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
998 }
999 
1000 
1001 void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
1002 {
1003 	struct vcpu_svm *svm = to_svm(vcpu);
1004 	struct vmcb *vmcb = svm->vmcb01.ptr;
1005 	bool activated = kvm_vcpu_apicv_active(vcpu);
1006 
1007 	if (!enable_apicv)
1008 		return;
1009 
1010 	if (activated) {
1011 		/**
1012 		 * During AVIC temporary deactivation, guest could update
1013 		 * APIC ID, DFR and LDR registers, which would not be trapped
1014 		 * by avic_unaccelerated_access_interception(). In this case,
1015 		 * we need to check and update the AVIC logical APIC ID table
1016 		 * accordingly before re-activating.
1017 		 */
1018 		avic_apicv_post_state_restore(vcpu);
1019 		vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1020 	} else {
1021 		vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
1022 	}
1023 	vmcb_mark_dirty(vmcb, VMCB_AVIC);
1024 
1025 	if (activated)
1026 		avic_vcpu_load(vcpu, vcpu->cpu);
1027 	else
1028 		avic_vcpu_put(vcpu);
1029 
1030 	avic_set_pi_irte_mode(vcpu, activated);
1031 }
1032 
1033 void avic_vcpu_blocking(struct kvm_vcpu *vcpu)
1034 {
1035 	if (!kvm_vcpu_apicv_active(vcpu))
1036 		return;
1037 
1038        /*
1039         * Unload the AVIC when the vCPU is about to block, _before_
1040         * the vCPU actually blocks.
1041         *
1042         * Any IRQs that arrive before IsRunning=0 will not cause an
1043         * incomplete IPI vmexit on the source, therefore vIRR will also
1044         * be checked by kvm_vcpu_check_block() before blocking.  The
1045         * memory barrier implicit in set_current_state orders writing
1046         * IsRunning=0 before reading the vIRR.  The processor needs a
1047         * matching memory barrier on interrupt delivery between writing
1048         * IRR and reading IsRunning; the lack of this barrier might be
1049         * the cause of errata #1235).
1050         */
1051 	avic_vcpu_put(vcpu);
1052 }
1053 
1054 void avic_vcpu_unblocking(struct kvm_vcpu *vcpu)
1055 {
1056 	if (!kvm_vcpu_apicv_active(vcpu))
1057 		return;
1058 
1059 	avic_vcpu_load(vcpu, vcpu->cpu);
1060 }
1061