1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM support 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Yaniv Kamay <yaniv@qumranet.com> 12 * Avi Kivity <avi@qumranet.com> 13 */ 14 15 #define pr_fmt(fmt) "SVM: " fmt 16 17 #include <linux/kvm_types.h> 18 #include <linux/hashtable.h> 19 #include <linux/amd-iommu.h> 20 #include <linux/kvm_host.h> 21 22 #include <asm/irq_remapping.h> 23 24 #include "trace.h" 25 #include "lapic.h" 26 #include "x86.h" 27 #include "irq.h" 28 #include "svm.h" 29 30 #define SVM_AVIC_DOORBELL 0xc001011b 31 32 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF) 33 34 /* 35 * 0xff is broadcast, so the max index allowed for physical APIC ID 36 * table is 0xfe. APIC IDs above 0xff are reserved. 37 */ 38 #define AVIC_MAX_PHYSICAL_ID_COUNT 255 39 40 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1 41 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0 42 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF 43 44 /* AVIC GATAG is encoded using VM and VCPU IDs */ 45 #define AVIC_VCPU_ID_BITS 8 46 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1) 47 48 #define AVIC_VM_ID_BITS 24 49 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS) 50 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1) 51 52 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \ 53 (y & AVIC_VCPU_ID_MASK)) 54 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK) 55 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK) 56 57 /* Note: 58 * This hash table is used to map VM_ID to a struct kvm_svm, 59 * when handling AMD IOMMU GALOG notification to schedule in 60 * a particular vCPU. 61 */ 62 #define SVM_VM_DATA_HASH_BITS 8 63 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS); 64 static u32 next_vm_id = 0; 65 static bool next_vm_id_wrapped = 0; 66 static DEFINE_SPINLOCK(svm_vm_data_hash_lock); 67 68 /* 69 * This is a wrapper of struct amd_iommu_ir_data. 70 */ 71 struct amd_svm_iommu_ir { 72 struct list_head node; /* Used by SVM for per-vcpu ir_list */ 73 void *data; /* Storing pointer to struct amd_ir_data */ 74 }; 75 76 enum avic_ipi_failure_cause { 77 AVIC_IPI_FAILURE_INVALID_INT_TYPE, 78 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING, 79 AVIC_IPI_FAILURE_INVALID_TARGET, 80 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE, 81 }; 82 83 /* Note: 84 * This function is called from IOMMU driver to notify 85 * SVM to schedule in a particular vCPU of a particular VM. 86 */ 87 int avic_ga_log_notifier(u32 ga_tag) 88 { 89 unsigned long flags; 90 struct kvm_svm *kvm_svm; 91 struct kvm_vcpu *vcpu = NULL; 92 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag); 93 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag); 94 95 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id); 96 trace_kvm_avic_ga_log(vm_id, vcpu_id); 97 98 spin_lock_irqsave(&svm_vm_data_hash_lock, flags); 99 hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) { 100 if (kvm_svm->avic_vm_id != vm_id) 101 continue; 102 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id); 103 break; 104 } 105 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); 106 107 /* Note: 108 * At this point, the IOMMU should have already set the pending 109 * bit in the vAPIC backing page. So, we just need to schedule 110 * in the vcpu. 111 */ 112 if (vcpu) 113 kvm_vcpu_wake_up(vcpu); 114 115 return 0; 116 } 117 118 void avic_vm_destroy(struct kvm *kvm) 119 { 120 unsigned long flags; 121 struct kvm_svm *kvm_svm = to_kvm_svm(kvm); 122 123 if (!enable_apicv) 124 return; 125 126 if (kvm_svm->avic_logical_id_table_page) 127 __free_page(kvm_svm->avic_logical_id_table_page); 128 if (kvm_svm->avic_physical_id_table_page) 129 __free_page(kvm_svm->avic_physical_id_table_page); 130 131 spin_lock_irqsave(&svm_vm_data_hash_lock, flags); 132 hash_del(&kvm_svm->hnode); 133 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); 134 } 135 136 int avic_vm_init(struct kvm *kvm) 137 { 138 unsigned long flags; 139 int err = -ENOMEM; 140 struct kvm_svm *kvm_svm = to_kvm_svm(kvm); 141 struct kvm_svm *k2; 142 struct page *p_page; 143 struct page *l_page; 144 u32 vm_id; 145 146 if (!enable_apicv) 147 return 0; 148 149 /* Allocating physical APIC ID table (4KB) */ 150 p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 151 if (!p_page) 152 goto free_avic; 153 154 kvm_svm->avic_physical_id_table_page = p_page; 155 156 /* Allocating logical APIC ID table (4KB) */ 157 l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 158 if (!l_page) 159 goto free_avic; 160 161 kvm_svm->avic_logical_id_table_page = l_page; 162 163 spin_lock_irqsave(&svm_vm_data_hash_lock, flags); 164 again: 165 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK; 166 if (vm_id == 0) { /* id is 1-based, zero is not okay */ 167 next_vm_id_wrapped = 1; 168 goto again; 169 } 170 /* Is it still in use? Only possible if wrapped at least once */ 171 if (next_vm_id_wrapped) { 172 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) { 173 if (k2->avic_vm_id == vm_id) 174 goto again; 175 } 176 } 177 kvm_svm->avic_vm_id = vm_id; 178 hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id); 179 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); 180 181 return 0; 182 183 free_avic: 184 avic_vm_destroy(kvm); 185 return err; 186 } 187 188 void avic_init_vmcb(struct vcpu_svm *svm) 189 { 190 struct vmcb *vmcb = svm->vmcb; 191 struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm); 192 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page)); 193 phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page)); 194 phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page)); 195 196 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK; 197 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK; 198 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK; 199 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT; 200 if (kvm_apicv_activated(svm->vcpu.kvm)) 201 vmcb->control.int_ctl |= AVIC_ENABLE_MASK; 202 else 203 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK; 204 } 205 206 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu, 207 unsigned int index) 208 { 209 u64 *avic_physical_id_table; 210 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm); 211 212 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT) 213 return NULL; 214 215 avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page); 216 217 return &avic_physical_id_table[index]; 218 } 219 220 /* 221 * Note: 222 * AVIC hardware walks the nested page table to check permissions, 223 * but does not use the SPA address specified in the leaf page 224 * table entry since it uses address in the AVIC_BACKING_PAGE pointer 225 * field of the VMCB. Therefore, we set up the 226 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here. 227 */ 228 static int avic_update_access_page(struct kvm *kvm, bool activate) 229 { 230 void __user *ret; 231 int r = 0; 232 233 mutex_lock(&kvm->slots_lock); 234 /* 235 * During kvm_destroy_vm(), kvm_pit_set_reinject() could trigger 236 * APICv mode change, which update APIC_ACCESS_PAGE_PRIVATE_MEMSLOT 237 * memory region. So, we need to ensure that kvm->mm == current->mm. 238 */ 239 if ((kvm->arch.apic_access_memslot_enabled == activate) || 240 (kvm->mm != current->mm)) 241 goto out; 242 243 ret = __x86_set_memory_region(kvm, 244 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 245 APIC_DEFAULT_PHYS_BASE, 246 activate ? PAGE_SIZE : 0); 247 if (IS_ERR(ret)) { 248 r = PTR_ERR(ret); 249 goto out; 250 } 251 252 kvm->arch.apic_access_memslot_enabled = activate; 253 out: 254 mutex_unlock(&kvm->slots_lock); 255 return r; 256 } 257 258 static int avic_init_backing_page(struct kvm_vcpu *vcpu) 259 { 260 u64 *entry, new_entry; 261 int id = vcpu->vcpu_id; 262 struct vcpu_svm *svm = to_svm(vcpu); 263 264 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT) 265 return -EINVAL; 266 267 if (!vcpu->arch.apic->regs) 268 return -EINVAL; 269 270 if (kvm_apicv_activated(vcpu->kvm)) { 271 int ret; 272 273 ret = avic_update_access_page(vcpu->kvm, true); 274 if (ret) 275 return ret; 276 } 277 278 svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs); 279 280 /* Setting AVIC backing page address in the phy APIC ID table */ 281 entry = avic_get_physical_id_entry(vcpu, id); 282 if (!entry) 283 return -EINVAL; 284 285 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) & 286 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) | 287 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK); 288 WRITE_ONCE(*entry, new_entry); 289 290 svm->avic_physical_id_cache = entry; 291 292 return 0; 293 } 294 295 static void avic_kick_target_vcpus(struct kvm *kvm, struct kvm_lapic *source, 296 u32 icrl, u32 icrh) 297 { 298 struct kvm_vcpu *vcpu; 299 int i; 300 301 kvm_for_each_vcpu(i, vcpu, kvm) { 302 bool m = kvm_apic_match_dest(vcpu, source, 303 icrl & APIC_SHORT_MASK, 304 GET_APIC_DEST_FIELD(icrh), 305 icrl & APIC_DEST_MASK); 306 307 if (m && !avic_vcpu_is_running(vcpu)) 308 kvm_vcpu_wake_up(vcpu); 309 } 310 } 311 312 int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu) 313 { 314 struct vcpu_svm *svm = to_svm(vcpu); 315 u32 icrh = svm->vmcb->control.exit_info_1 >> 32; 316 u32 icrl = svm->vmcb->control.exit_info_1; 317 u32 id = svm->vmcb->control.exit_info_2 >> 32; 318 u32 index = svm->vmcb->control.exit_info_2 & 0xFF; 319 struct kvm_lapic *apic = vcpu->arch.apic; 320 321 trace_kvm_avic_incomplete_ipi(vcpu->vcpu_id, icrh, icrl, id, index); 322 323 switch (id) { 324 case AVIC_IPI_FAILURE_INVALID_INT_TYPE: 325 /* 326 * AVIC hardware handles the generation of 327 * IPIs when the specified Message Type is Fixed 328 * (also known as fixed delivery mode) and 329 * the Trigger Mode is edge-triggered. The hardware 330 * also supports self and broadcast delivery modes 331 * specified via the Destination Shorthand(DSH) 332 * field of the ICRL. Logical and physical APIC ID 333 * formats are supported. All other IPI types cause 334 * a #VMEXIT, which needs to emulated. 335 */ 336 kvm_lapic_reg_write(apic, APIC_ICR2, icrh); 337 kvm_lapic_reg_write(apic, APIC_ICR, icrl); 338 break; 339 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: 340 /* 341 * At this point, we expect that the AVIC HW has already 342 * set the appropriate IRR bits on the valid target 343 * vcpus. So, we just need to kick the appropriate vcpu. 344 */ 345 avic_kick_target_vcpus(vcpu->kvm, apic, icrl, icrh); 346 break; 347 case AVIC_IPI_FAILURE_INVALID_TARGET: 348 WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n", 349 index, vcpu->vcpu_id, icrh, icrl); 350 break; 351 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE: 352 WARN_ONCE(1, "Invalid backing page\n"); 353 break; 354 default: 355 pr_err("Unknown IPI interception\n"); 356 } 357 358 return 1; 359 } 360 361 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat) 362 { 363 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm); 364 int index; 365 u32 *logical_apic_id_table; 366 int dlid = GET_APIC_LOGICAL_ID(ldr); 367 368 if (!dlid) 369 return NULL; 370 371 if (flat) { /* flat */ 372 index = ffs(dlid) - 1; 373 if (index > 7) 374 return NULL; 375 } else { /* cluster */ 376 int cluster = (dlid & 0xf0) >> 4; 377 int apic = ffs(dlid & 0x0f) - 1; 378 379 if ((apic < 0) || (apic > 7) || 380 (cluster >= 0xf)) 381 return NULL; 382 index = (cluster << 2) + apic; 383 } 384 385 logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page); 386 387 return &logical_apic_id_table[index]; 388 } 389 390 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr) 391 { 392 bool flat; 393 u32 *entry, new_entry; 394 395 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT; 396 entry = avic_get_logical_id_entry(vcpu, ldr, flat); 397 if (!entry) 398 return -EINVAL; 399 400 new_entry = READ_ONCE(*entry); 401 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK; 402 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK); 403 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK; 404 WRITE_ONCE(*entry, new_entry); 405 406 return 0; 407 } 408 409 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu) 410 { 411 struct vcpu_svm *svm = to_svm(vcpu); 412 bool flat = svm->dfr_reg == APIC_DFR_FLAT; 413 u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat); 414 415 if (entry) 416 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry); 417 } 418 419 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu) 420 { 421 int ret = 0; 422 struct vcpu_svm *svm = to_svm(vcpu); 423 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR); 424 u32 id = kvm_xapic_id(vcpu->arch.apic); 425 426 if (ldr == svm->ldr_reg) 427 return 0; 428 429 avic_invalidate_logical_id_entry(vcpu); 430 431 if (ldr) 432 ret = avic_ldr_write(vcpu, id, ldr); 433 434 if (!ret) 435 svm->ldr_reg = ldr; 436 437 return ret; 438 } 439 440 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu) 441 { 442 u64 *old, *new; 443 struct vcpu_svm *svm = to_svm(vcpu); 444 u32 id = kvm_xapic_id(vcpu->arch.apic); 445 446 if (vcpu->vcpu_id == id) 447 return 0; 448 449 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id); 450 new = avic_get_physical_id_entry(vcpu, id); 451 if (!new || !old) 452 return 1; 453 454 /* We need to move physical_id_entry to new offset */ 455 *new = *old; 456 *old = 0ULL; 457 to_svm(vcpu)->avic_physical_id_cache = new; 458 459 /* 460 * Also update the guest physical APIC ID in the logical 461 * APIC ID table entry if already setup the LDR. 462 */ 463 if (svm->ldr_reg) 464 avic_handle_ldr_update(vcpu); 465 466 return 0; 467 } 468 469 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu) 470 { 471 struct vcpu_svm *svm = to_svm(vcpu); 472 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR); 473 474 if (svm->dfr_reg == dfr) 475 return; 476 477 avic_invalidate_logical_id_entry(vcpu); 478 svm->dfr_reg = dfr; 479 } 480 481 static int avic_unaccel_trap_write(struct vcpu_svm *svm) 482 { 483 struct kvm_lapic *apic = svm->vcpu.arch.apic; 484 u32 offset = svm->vmcb->control.exit_info_1 & 485 AVIC_UNACCEL_ACCESS_OFFSET_MASK; 486 487 switch (offset) { 488 case APIC_ID: 489 if (avic_handle_apic_id_update(&svm->vcpu)) 490 return 0; 491 break; 492 case APIC_LDR: 493 if (avic_handle_ldr_update(&svm->vcpu)) 494 return 0; 495 break; 496 case APIC_DFR: 497 avic_handle_dfr_update(&svm->vcpu); 498 break; 499 default: 500 break; 501 } 502 503 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset)); 504 505 return 1; 506 } 507 508 static bool is_avic_unaccelerated_access_trap(u32 offset) 509 { 510 bool ret = false; 511 512 switch (offset) { 513 case APIC_ID: 514 case APIC_EOI: 515 case APIC_RRR: 516 case APIC_LDR: 517 case APIC_DFR: 518 case APIC_SPIV: 519 case APIC_ESR: 520 case APIC_ICR: 521 case APIC_LVTT: 522 case APIC_LVTTHMR: 523 case APIC_LVTPC: 524 case APIC_LVT0: 525 case APIC_LVT1: 526 case APIC_LVTERR: 527 case APIC_TMICT: 528 case APIC_TDCR: 529 ret = true; 530 break; 531 default: 532 break; 533 } 534 return ret; 535 } 536 537 int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu) 538 { 539 struct vcpu_svm *svm = to_svm(vcpu); 540 int ret = 0; 541 u32 offset = svm->vmcb->control.exit_info_1 & 542 AVIC_UNACCEL_ACCESS_OFFSET_MASK; 543 u32 vector = svm->vmcb->control.exit_info_2 & 544 AVIC_UNACCEL_ACCESS_VECTOR_MASK; 545 bool write = (svm->vmcb->control.exit_info_1 >> 32) & 546 AVIC_UNACCEL_ACCESS_WRITE_MASK; 547 bool trap = is_avic_unaccelerated_access_trap(offset); 548 549 trace_kvm_avic_unaccelerated_access(vcpu->vcpu_id, offset, 550 trap, write, vector); 551 if (trap) { 552 /* Handling Trap */ 553 WARN_ONCE(!write, "svm: Handling trap read.\n"); 554 ret = avic_unaccel_trap_write(svm); 555 } else { 556 /* Handling Fault */ 557 ret = kvm_emulate_instruction(vcpu, 0); 558 } 559 560 return ret; 561 } 562 563 int avic_init_vcpu(struct vcpu_svm *svm) 564 { 565 int ret; 566 struct kvm_vcpu *vcpu = &svm->vcpu; 567 568 if (!enable_apicv || !irqchip_in_kernel(vcpu->kvm)) 569 return 0; 570 571 ret = avic_init_backing_page(vcpu); 572 if (ret) 573 return ret; 574 575 INIT_LIST_HEAD(&svm->ir_list); 576 spin_lock_init(&svm->ir_list_lock); 577 svm->dfr_reg = APIC_DFR_FLAT; 578 579 return ret; 580 } 581 582 void avic_post_state_restore(struct kvm_vcpu *vcpu) 583 { 584 if (avic_handle_apic_id_update(vcpu) != 0) 585 return; 586 avic_handle_dfr_update(vcpu); 587 avic_handle_ldr_update(vcpu); 588 } 589 590 void svm_toggle_avic_for_irq_window(struct kvm_vcpu *vcpu, bool activate) 591 { 592 if (!enable_apicv || !lapic_in_kernel(vcpu)) 593 return; 594 595 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 596 kvm_request_apicv_update(vcpu->kvm, activate, 597 APICV_INHIBIT_REASON_IRQWIN); 598 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 599 } 600 601 void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 602 { 603 return; 604 } 605 606 void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 607 { 608 } 609 610 void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) 611 { 612 } 613 614 static int svm_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate) 615 { 616 int ret = 0; 617 unsigned long flags; 618 struct amd_svm_iommu_ir *ir; 619 struct vcpu_svm *svm = to_svm(vcpu); 620 621 if (!kvm_arch_has_assigned_device(vcpu->kvm)) 622 return 0; 623 624 /* 625 * Here, we go through the per-vcpu ir_list to update all existing 626 * interrupt remapping table entry targeting this vcpu. 627 */ 628 spin_lock_irqsave(&svm->ir_list_lock, flags); 629 630 if (list_empty(&svm->ir_list)) 631 goto out; 632 633 list_for_each_entry(ir, &svm->ir_list, node) { 634 if (activate) 635 ret = amd_iommu_activate_guest_mode(ir->data); 636 else 637 ret = amd_iommu_deactivate_guest_mode(ir->data); 638 if (ret) 639 break; 640 } 641 out: 642 spin_unlock_irqrestore(&svm->ir_list_lock, flags); 643 return ret; 644 } 645 646 void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 647 { 648 struct vcpu_svm *svm = to_svm(vcpu); 649 struct vmcb *vmcb = svm->vmcb; 650 bool activated = kvm_vcpu_apicv_active(vcpu); 651 652 if (!enable_apicv) 653 return; 654 655 if (activated) { 656 /** 657 * During AVIC temporary deactivation, guest could update 658 * APIC ID, DFR and LDR registers, which would not be trapped 659 * by avic_unaccelerated_access_interception(). In this case, 660 * we need to check and update the AVIC logical APIC ID table 661 * accordingly before re-activating. 662 */ 663 avic_post_state_restore(vcpu); 664 vmcb->control.int_ctl |= AVIC_ENABLE_MASK; 665 } else { 666 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK; 667 } 668 vmcb_mark_dirty(vmcb, VMCB_AVIC); 669 670 svm_set_pi_irte_mode(vcpu, activated); 671 } 672 673 void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 674 { 675 return; 676 } 677 678 int svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec) 679 { 680 if (!vcpu->arch.apicv_active) 681 return -1; 682 683 kvm_lapic_set_irr(vec, vcpu->arch.apic); 684 smp_mb__after_atomic(); 685 686 if (avic_vcpu_is_running(vcpu)) { 687 int cpuid = vcpu->cpu; 688 689 if (cpuid != get_cpu()) 690 wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid)); 691 put_cpu(); 692 } else 693 kvm_vcpu_wake_up(vcpu); 694 695 return 0; 696 } 697 698 bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu) 699 { 700 return false; 701 } 702 703 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi) 704 { 705 unsigned long flags; 706 struct amd_svm_iommu_ir *cur; 707 708 spin_lock_irqsave(&svm->ir_list_lock, flags); 709 list_for_each_entry(cur, &svm->ir_list, node) { 710 if (cur->data != pi->ir_data) 711 continue; 712 list_del(&cur->node); 713 kfree(cur); 714 break; 715 } 716 spin_unlock_irqrestore(&svm->ir_list_lock, flags); 717 } 718 719 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi) 720 { 721 int ret = 0; 722 unsigned long flags; 723 struct amd_svm_iommu_ir *ir; 724 725 /** 726 * In some cases, the existing irte is updated and re-set, 727 * so we need to check here if it's already been * added 728 * to the ir_list. 729 */ 730 if (pi->ir_data && (pi->prev_ga_tag != 0)) { 731 struct kvm *kvm = svm->vcpu.kvm; 732 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag); 733 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 734 struct vcpu_svm *prev_svm; 735 736 if (!prev_vcpu) { 737 ret = -EINVAL; 738 goto out; 739 } 740 741 prev_svm = to_svm(prev_vcpu); 742 svm_ir_list_del(prev_svm, pi); 743 } 744 745 /** 746 * Allocating new amd_iommu_pi_data, which will get 747 * add to the per-vcpu ir_list. 748 */ 749 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT); 750 if (!ir) { 751 ret = -ENOMEM; 752 goto out; 753 } 754 ir->data = pi->ir_data; 755 756 spin_lock_irqsave(&svm->ir_list_lock, flags); 757 list_add(&ir->node, &svm->ir_list); 758 spin_unlock_irqrestore(&svm->ir_list_lock, flags); 759 out: 760 return ret; 761 } 762 763 /* 764 * Note: 765 * The HW cannot support posting multicast/broadcast 766 * interrupts to a vCPU. So, we still use legacy interrupt 767 * remapping for these kind of interrupts. 768 * 769 * For lowest-priority interrupts, we only support 770 * those with single CPU as the destination, e.g. user 771 * configures the interrupts via /proc/irq or uses 772 * irqbalance to make the interrupts single-CPU. 773 */ 774 static int 775 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 776 struct vcpu_data *vcpu_info, struct vcpu_svm **svm) 777 { 778 struct kvm_lapic_irq irq; 779 struct kvm_vcpu *vcpu = NULL; 780 781 kvm_set_msi_irq(kvm, e, &irq); 782 783 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) || 784 !kvm_irq_is_postable(&irq)) { 785 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n", 786 __func__, irq.vector); 787 return -1; 788 } 789 790 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__, 791 irq.vector); 792 *svm = to_svm(vcpu); 793 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page)); 794 vcpu_info->vector = irq.vector; 795 796 return 0; 797 } 798 799 /* 800 * svm_update_pi_irte - set IRTE for Posted-Interrupts 801 * 802 * @kvm: kvm 803 * @host_irq: host irq of the interrupt 804 * @guest_irq: gsi of the interrupt 805 * @set: set or unset PI 806 * returns 0 on success, < 0 on failure 807 */ 808 int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq, 809 uint32_t guest_irq, bool set) 810 { 811 struct kvm_kernel_irq_routing_entry *e; 812 struct kvm_irq_routing_table *irq_rt; 813 int idx, ret = -EINVAL; 814 815 if (!kvm_arch_has_assigned_device(kvm) || 816 !irq_remapping_cap(IRQ_POSTING_CAP)) 817 return 0; 818 819 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n", 820 __func__, host_irq, guest_irq, set); 821 822 idx = srcu_read_lock(&kvm->irq_srcu); 823 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); 824 WARN_ON(guest_irq >= irq_rt->nr_rt_entries); 825 826 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { 827 struct vcpu_data vcpu_info; 828 struct vcpu_svm *svm = NULL; 829 830 if (e->type != KVM_IRQ_ROUTING_MSI) 831 continue; 832 833 /** 834 * Here, we setup with legacy mode in the following cases: 835 * 1. When cannot target interrupt to a specific vcpu. 836 * 2. Unsetting posted interrupt. 837 * 3. APIC virtualization is disabled for the vcpu. 838 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc) 839 */ 840 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set && 841 kvm_vcpu_apicv_active(&svm->vcpu)) { 842 struct amd_iommu_pi_data pi; 843 844 /* Try to enable guest_mode in IRTE */ 845 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) & 846 AVIC_HPA_MASK); 847 pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id, 848 svm->vcpu.vcpu_id); 849 pi.is_guest_mode = true; 850 pi.vcpu_data = &vcpu_info; 851 ret = irq_set_vcpu_affinity(host_irq, &pi); 852 853 /** 854 * Here, we successfully setting up vcpu affinity in 855 * IOMMU guest mode. Now, we need to store the posted 856 * interrupt information in a per-vcpu ir_list so that 857 * we can reference to them directly when we update vcpu 858 * scheduling information in IOMMU irte. 859 */ 860 if (!ret && pi.is_guest_mode) 861 svm_ir_list_add(svm, &pi); 862 } else { 863 /* Use legacy mode in IRTE */ 864 struct amd_iommu_pi_data pi; 865 866 /** 867 * Here, pi is used to: 868 * - Tell IOMMU to use legacy mode for this interrupt. 869 * - Retrieve ga_tag of prior interrupt remapping data. 870 */ 871 pi.prev_ga_tag = 0; 872 pi.is_guest_mode = false; 873 ret = irq_set_vcpu_affinity(host_irq, &pi); 874 875 /** 876 * Check if the posted interrupt was previously 877 * setup with the guest_mode by checking if the ga_tag 878 * was cached. If so, we need to clean up the per-vcpu 879 * ir_list. 880 */ 881 if (!ret && pi.prev_ga_tag) { 882 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag); 883 struct kvm_vcpu *vcpu; 884 885 vcpu = kvm_get_vcpu_by_id(kvm, id); 886 if (vcpu) 887 svm_ir_list_del(to_svm(vcpu), &pi); 888 } 889 } 890 891 if (!ret && svm) { 892 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id, 893 e->gsi, vcpu_info.vector, 894 vcpu_info.pi_desc_addr, set); 895 } 896 897 if (ret < 0) { 898 pr_err("%s: failed to update PI IRTE\n", __func__); 899 goto out; 900 } 901 } 902 903 ret = 0; 904 out: 905 srcu_read_unlock(&kvm->irq_srcu, idx); 906 return ret; 907 } 908 909 bool svm_check_apicv_inhibit_reasons(ulong bit) 910 { 911 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) | 912 BIT(APICV_INHIBIT_REASON_HYPERV) | 913 BIT(APICV_INHIBIT_REASON_NESTED) | 914 BIT(APICV_INHIBIT_REASON_IRQWIN) | 915 BIT(APICV_INHIBIT_REASON_PIT_REINJ) | 916 BIT(APICV_INHIBIT_REASON_X2APIC); 917 918 return supported & BIT(bit); 919 } 920 921 void svm_pre_update_apicv_exec_ctrl(struct kvm *kvm, bool activate) 922 { 923 avic_update_access_page(kvm, activate); 924 } 925 926 static inline int 927 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r) 928 { 929 int ret = 0; 930 unsigned long flags; 931 struct amd_svm_iommu_ir *ir; 932 struct vcpu_svm *svm = to_svm(vcpu); 933 934 if (!kvm_arch_has_assigned_device(vcpu->kvm)) 935 return 0; 936 937 /* 938 * Here, we go through the per-vcpu ir_list to update all existing 939 * interrupt remapping table entry targeting this vcpu. 940 */ 941 spin_lock_irqsave(&svm->ir_list_lock, flags); 942 943 if (list_empty(&svm->ir_list)) 944 goto out; 945 946 list_for_each_entry(ir, &svm->ir_list, node) { 947 ret = amd_iommu_update_ga(cpu, r, ir->data); 948 if (ret) 949 break; 950 } 951 out: 952 spin_unlock_irqrestore(&svm->ir_list_lock, flags); 953 return ret; 954 } 955 956 void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 957 { 958 u64 entry; 959 /* ID = 0xff (broadcast), ID > 0xff (reserved) */ 960 int h_physical_id = kvm_cpu_get_apicid(cpu); 961 struct vcpu_svm *svm = to_svm(vcpu); 962 963 if (!kvm_vcpu_apicv_active(vcpu)) 964 return; 965 966 /* 967 * Since the host physical APIC id is 8 bits, 968 * we can support host APIC ID upto 255. 969 */ 970 if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK)) 971 return; 972 973 entry = READ_ONCE(*(svm->avic_physical_id_cache)); 974 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK); 975 976 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK; 977 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK); 978 979 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; 980 if (svm->avic_is_running) 981 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; 982 983 WRITE_ONCE(*(svm->avic_physical_id_cache), entry); 984 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, 985 svm->avic_is_running); 986 } 987 988 void avic_vcpu_put(struct kvm_vcpu *vcpu) 989 { 990 u64 entry; 991 struct vcpu_svm *svm = to_svm(vcpu); 992 993 if (!kvm_vcpu_apicv_active(vcpu)) 994 return; 995 996 entry = READ_ONCE(*(svm->avic_physical_id_cache)); 997 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK) 998 avic_update_iommu_vcpu_affinity(vcpu, -1, 0); 999 1000 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; 1001 WRITE_ONCE(*(svm->avic_physical_id_cache), entry); 1002 } 1003 1004 /* 1005 * This function is called during VCPU halt/unhalt. 1006 */ 1007 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run) 1008 { 1009 struct vcpu_svm *svm = to_svm(vcpu); 1010 1011 svm->avic_is_running = is_run; 1012 if (is_run) 1013 avic_vcpu_load(vcpu, vcpu->cpu); 1014 else 1015 avic_vcpu_put(vcpu); 1016 } 1017 1018 void svm_vcpu_blocking(struct kvm_vcpu *vcpu) 1019 { 1020 avic_set_running(vcpu, false); 1021 } 1022 1023 void svm_vcpu_unblocking(struct kvm_vcpu *vcpu) 1024 { 1025 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 1026 kvm_vcpu_update_apicv(vcpu); 1027 avic_set_running(vcpu, true); 1028 } 1029