xref: /openbmc/linux/arch/x86/kvm/svm/avic.c (revision a325f174)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * AMD SVM support
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *   Avi Kivity   <avi@qumranet.com>
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/kvm_types.h>
18 #include <linux/hashtable.h>
19 #include <linux/amd-iommu.h>
20 #include <linux/kvm_host.h>
21 
22 #include <asm/irq_remapping.h>
23 
24 #include "trace.h"
25 #include "lapic.h"
26 #include "x86.h"
27 #include "irq.h"
28 #include "svm.h"
29 
30 /*
31  * Encode the arbitrary VM ID and the vCPU's default APIC ID, i.e the vCPU ID,
32  * into the GATag so that KVM can retrieve the correct vCPU from a GALog entry
33  * if an interrupt can't be delivered, e.g. because the vCPU isn't running.
34  *
35  * For the vCPU ID, use however many bits are currently allowed for the max
36  * guest physical APIC ID (limited by the size of the physical ID table), and
37  * use whatever bits remain to assign arbitrary AVIC IDs to VMs.  Note, the
38  * size of the GATag is defined by hardware (32 bits), but is an opaque value
39  * as far as hardware is concerned.
40  */
41 #define AVIC_VCPU_ID_MASK		AVIC_PHYSICAL_MAX_INDEX_MASK
42 
43 #define AVIC_VM_ID_SHIFT		HWEIGHT32(AVIC_PHYSICAL_MAX_INDEX_MASK)
44 #define AVIC_VM_ID_MASK			(GENMASK(31, AVIC_VM_ID_SHIFT) >> AVIC_VM_ID_SHIFT)
45 
46 #define AVIC_GATAG_TO_VMID(x)		((x >> AVIC_VM_ID_SHIFT) & AVIC_VM_ID_MASK)
47 #define AVIC_GATAG_TO_VCPUID(x)		(x & AVIC_VCPU_ID_MASK)
48 
49 #define __AVIC_GATAG(vm_id, vcpu_id)	((((vm_id) & AVIC_VM_ID_MASK) << AVIC_VM_ID_SHIFT) | \
50 					 ((vcpu_id) & AVIC_VCPU_ID_MASK))
51 #define AVIC_GATAG(vm_id, vcpu_id)					\
52 ({									\
53 	u32 ga_tag = __AVIC_GATAG(vm_id, vcpu_id);			\
54 									\
55 	WARN_ON_ONCE(AVIC_GATAG_TO_VCPUID(ga_tag) != (vcpu_id));	\
56 	WARN_ON_ONCE(AVIC_GATAG_TO_VMID(ga_tag) != (vm_id));		\
57 	ga_tag;								\
58 })
59 
60 static_assert(__AVIC_GATAG(AVIC_VM_ID_MASK, AVIC_VCPU_ID_MASK) == -1u);
61 
62 static bool force_avic;
63 module_param_unsafe(force_avic, bool, 0444);
64 
65 /* Note:
66  * This hash table is used to map VM_ID to a struct kvm_svm,
67  * when handling AMD IOMMU GALOG notification to schedule in
68  * a particular vCPU.
69  */
70 #define SVM_VM_DATA_HASH_BITS	8
71 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
72 static u32 next_vm_id = 0;
73 static bool next_vm_id_wrapped = 0;
74 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
75 bool x2avic_enabled;
76 
77 /*
78  * This is a wrapper of struct amd_iommu_ir_data.
79  */
80 struct amd_svm_iommu_ir {
81 	struct list_head node;	/* Used by SVM for per-vcpu ir_list */
82 	void *data;		/* Storing pointer to struct amd_ir_data */
83 };
84 
85 static void avic_activate_vmcb(struct vcpu_svm *svm)
86 {
87 	struct vmcb *vmcb = svm->vmcb01.ptr;
88 
89 	vmcb->control.int_ctl &= ~(AVIC_ENABLE_MASK | X2APIC_MODE_MASK);
90 	vmcb->control.avic_physical_id &= ~AVIC_PHYSICAL_MAX_INDEX_MASK;
91 
92 	vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
93 
94 	/*
95 	 * Note: KVM supports hybrid-AVIC mode, where KVM emulates x2APIC MSR
96 	 * accesses, while interrupt injection to a running vCPU can be
97 	 * achieved using AVIC doorbell.  KVM disables the APIC access page
98 	 * (deletes the memslot) if any vCPU has x2APIC enabled, thus enabling
99 	 * AVIC in hybrid mode activates only the doorbell mechanism.
100 	 */
101 	if (x2avic_enabled && apic_x2apic_mode(svm->vcpu.arch.apic)) {
102 		vmcb->control.int_ctl |= X2APIC_MODE_MASK;
103 		vmcb->control.avic_physical_id |= X2AVIC_MAX_PHYSICAL_ID;
104 		/* Disabling MSR intercept for x2APIC registers */
105 		svm_set_x2apic_msr_interception(svm, false);
106 	} else {
107 		/*
108 		 * Flush the TLB, the guest may have inserted a non-APIC
109 		 * mapping into the TLB while AVIC was disabled.
110 		 */
111 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, &svm->vcpu);
112 
113 		/* For xAVIC and hybrid-xAVIC modes */
114 		vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID;
115 		/* Enabling MSR intercept for x2APIC registers */
116 		svm_set_x2apic_msr_interception(svm, true);
117 	}
118 }
119 
120 static void avic_deactivate_vmcb(struct vcpu_svm *svm)
121 {
122 	struct vmcb *vmcb = svm->vmcb01.ptr;
123 
124 	vmcb->control.int_ctl &= ~(AVIC_ENABLE_MASK | X2APIC_MODE_MASK);
125 	vmcb->control.avic_physical_id &= ~AVIC_PHYSICAL_MAX_INDEX_MASK;
126 
127 	/*
128 	 * If running nested and the guest uses its own MSR bitmap, there
129 	 * is no need to update L0's msr bitmap
130 	 */
131 	if (is_guest_mode(&svm->vcpu) &&
132 	    vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT))
133 		return;
134 
135 	/* Enabling MSR intercept for x2APIC registers */
136 	svm_set_x2apic_msr_interception(svm, true);
137 }
138 
139 /* Note:
140  * This function is called from IOMMU driver to notify
141  * SVM to schedule in a particular vCPU of a particular VM.
142  */
143 int avic_ga_log_notifier(u32 ga_tag)
144 {
145 	unsigned long flags;
146 	struct kvm_svm *kvm_svm;
147 	struct kvm_vcpu *vcpu = NULL;
148 	u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
149 	u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
150 
151 	pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
152 	trace_kvm_avic_ga_log(vm_id, vcpu_id);
153 
154 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
155 	hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
156 		if (kvm_svm->avic_vm_id != vm_id)
157 			continue;
158 		vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
159 		break;
160 	}
161 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
162 
163 	/* Note:
164 	 * At this point, the IOMMU should have already set the pending
165 	 * bit in the vAPIC backing page. So, we just need to schedule
166 	 * in the vcpu.
167 	 */
168 	if (vcpu)
169 		kvm_vcpu_wake_up(vcpu);
170 
171 	return 0;
172 }
173 
174 void avic_vm_destroy(struct kvm *kvm)
175 {
176 	unsigned long flags;
177 	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
178 
179 	if (!enable_apicv)
180 		return;
181 
182 	if (kvm_svm->avic_logical_id_table_page)
183 		__free_page(kvm_svm->avic_logical_id_table_page);
184 	if (kvm_svm->avic_physical_id_table_page)
185 		__free_page(kvm_svm->avic_physical_id_table_page);
186 
187 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
188 	hash_del(&kvm_svm->hnode);
189 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
190 }
191 
192 int avic_vm_init(struct kvm *kvm)
193 {
194 	unsigned long flags;
195 	int err = -ENOMEM;
196 	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
197 	struct kvm_svm *k2;
198 	struct page *p_page;
199 	struct page *l_page;
200 	u32 vm_id;
201 
202 	if (!enable_apicv)
203 		return 0;
204 
205 	/* Allocating physical APIC ID table (4KB) */
206 	p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
207 	if (!p_page)
208 		goto free_avic;
209 
210 	kvm_svm->avic_physical_id_table_page = p_page;
211 
212 	/* Allocating logical APIC ID table (4KB) */
213 	l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
214 	if (!l_page)
215 		goto free_avic;
216 
217 	kvm_svm->avic_logical_id_table_page = l_page;
218 
219 	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
220  again:
221 	vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
222 	if (vm_id == 0) { /* id is 1-based, zero is not okay */
223 		next_vm_id_wrapped = 1;
224 		goto again;
225 	}
226 	/* Is it still in use? Only possible if wrapped at least once */
227 	if (next_vm_id_wrapped) {
228 		hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
229 			if (k2->avic_vm_id == vm_id)
230 				goto again;
231 		}
232 	}
233 	kvm_svm->avic_vm_id = vm_id;
234 	hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
235 	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
236 
237 	return 0;
238 
239 free_avic:
240 	avic_vm_destroy(kvm);
241 	return err;
242 }
243 
244 void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb)
245 {
246 	struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
247 	phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
248 	phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
249 	phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
250 
251 	vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
252 	vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
253 	vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
254 	vmcb->control.avic_vapic_bar = APIC_DEFAULT_PHYS_BASE & VMCB_AVIC_APIC_BAR_MASK;
255 
256 	if (kvm_apicv_activated(svm->vcpu.kvm))
257 		avic_activate_vmcb(svm);
258 	else
259 		avic_deactivate_vmcb(svm);
260 }
261 
262 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
263 				       unsigned int index)
264 {
265 	u64 *avic_physical_id_table;
266 	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
267 
268 	if ((!x2avic_enabled && index > AVIC_MAX_PHYSICAL_ID) ||
269 	    (index > X2AVIC_MAX_PHYSICAL_ID))
270 		return NULL;
271 
272 	avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
273 
274 	return &avic_physical_id_table[index];
275 }
276 
277 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
278 {
279 	u64 *entry, new_entry;
280 	int id = vcpu->vcpu_id;
281 	struct vcpu_svm *svm = to_svm(vcpu);
282 
283 	if ((!x2avic_enabled && id > AVIC_MAX_PHYSICAL_ID) ||
284 	    (id > X2AVIC_MAX_PHYSICAL_ID))
285 		return -EINVAL;
286 
287 	if (!vcpu->arch.apic->regs)
288 		return -EINVAL;
289 
290 	if (kvm_apicv_activated(vcpu->kvm)) {
291 		int ret;
292 
293 		/*
294 		 * Note, AVIC hardware walks the nested page table to check
295 		 * permissions, but does not use the SPA address specified in
296 		 * the leaf SPTE since it uses address in the AVIC_BACKING_PAGE
297 		 * pointer field of the VMCB.
298 		 */
299 		ret = kvm_alloc_apic_access_page(vcpu->kvm);
300 		if (ret)
301 			return ret;
302 	}
303 
304 	svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs);
305 
306 	/* Setting AVIC backing page address in the phy APIC ID table */
307 	entry = avic_get_physical_id_entry(vcpu, id);
308 	if (!entry)
309 		return -EINVAL;
310 
311 	new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
312 			      AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
313 			      AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
314 	WRITE_ONCE(*entry, new_entry);
315 
316 	svm->avic_physical_id_cache = entry;
317 
318 	return 0;
319 }
320 
321 void avic_ring_doorbell(struct kvm_vcpu *vcpu)
322 {
323 	/*
324 	 * Note, the vCPU could get migrated to a different pCPU at any point,
325 	 * which could result in signalling the wrong/previous pCPU.  But if
326 	 * that happens the vCPU is guaranteed to do a VMRUN (after being
327 	 * migrated) and thus will process pending interrupts, i.e. a doorbell
328 	 * is not needed (and the spurious one is harmless).
329 	 */
330 	int cpu = READ_ONCE(vcpu->cpu);
331 
332 	if (cpu != get_cpu()) {
333 		wrmsrl(MSR_AMD64_SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpu));
334 		trace_kvm_avic_doorbell(vcpu->vcpu_id, kvm_cpu_get_apicid(cpu));
335 	}
336 	put_cpu();
337 }
338 
339 
340 static void avic_kick_vcpu(struct kvm_vcpu *vcpu, u32 icrl)
341 {
342 	vcpu->arch.apic->irr_pending = true;
343 	svm_complete_interrupt_delivery(vcpu,
344 					icrl & APIC_MODE_MASK,
345 					icrl & APIC_INT_LEVELTRIG,
346 					icrl & APIC_VECTOR_MASK);
347 }
348 
349 static void avic_kick_vcpu_by_physical_id(struct kvm *kvm, u32 physical_id,
350 					  u32 icrl)
351 {
352 	/*
353 	 * KVM inhibits AVIC if any vCPU ID diverges from the vCPUs APIC ID,
354 	 * i.e. APIC ID == vCPU ID.
355 	 */
356 	struct kvm_vcpu *target_vcpu = kvm_get_vcpu_by_id(kvm, physical_id);
357 
358 	/* Once again, nothing to do if the target vCPU doesn't exist. */
359 	if (unlikely(!target_vcpu))
360 		return;
361 
362 	avic_kick_vcpu(target_vcpu, icrl);
363 }
364 
365 static void avic_kick_vcpu_by_logical_id(struct kvm *kvm, u32 *avic_logical_id_table,
366 					 u32 logid_index, u32 icrl)
367 {
368 	u32 physical_id;
369 
370 	if (avic_logical_id_table) {
371 		u32 logid_entry = avic_logical_id_table[logid_index];
372 
373 		/* Nothing to do if the logical destination is invalid. */
374 		if (unlikely(!(logid_entry & AVIC_LOGICAL_ID_ENTRY_VALID_MASK)))
375 			return;
376 
377 		physical_id = logid_entry &
378 			      AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
379 	} else {
380 		/*
381 		 * For x2APIC, the logical APIC ID is a read-only value that is
382 		 * derived from the x2APIC ID, thus the x2APIC ID can be found
383 		 * by reversing the calculation (stored in logid_index).  Note,
384 		 * bits 31:20 of the x2APIC ID aren't propagated to the logical
385 		 * ID, but KVM limits the x2APIC ID limited to KVM_MAX_VCPU_IDS.
386 		 */
387 		physical_id = logid_index;
388 	}
389 
390 	avic_kick_vcpu_by_physical_id(kvm, physical_id, icrl);
391 }
392 
393 /*
394  * A fast-path version of avic_kick_target_vcpus(), which attempts to match
395  * destination APIC ID to vCPU without looping through all vCPUs.
396  */
397 static int avic_kick_target_vcpus_fast(struct kvm *kvm, struct kvm_lapic *source,
398 				       u32 icrl, u32 icrh, u32 index)
399 {
400 	int dest_mode = icrl & APIC_DEST_MASK;
401 	int shorthand = icrl & APIC_SHORT_MASK;
402 	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
403 	u32 dest;
404 
405 	if (shorthand != APIC_DEST_NOSHORT)
406 		return -EINVAL;
407 
408 	if (apic_x2apic_mode(source))
409 		dest = icrh;
410 	else
411 		dest = GET_XAPIC_DEST_FIELD(icrh);
412 
413 	if (dest_mode == APIC_DEST_PHYSICAL) {
414 		/* broadcast destination, use slow path */
415 		if (apic_x2apic_mode(source) && dest == X2APIC_BROADCAST)
416 			return -EINVAL;
417 		if (!apic_x2apic_mode(source) && dest == APIC_BROADCAST)
418 			return -EINVAL;
419 
420 		if (WARN_ON_ONCE(dest != index))
421 			return -EINVAL;
422 
423 		avic_kick_vcpu_by_physical_id(kvm, dest, icrl);
424 	} else {
425 		u32 *avic_logical_id_table;
426 		unsigned long bitmap, i;
427 		u32 cluster;
428 
429 		if (apic_x2apic_mode(source)) {
430 			/* 16 bit dest mask, 16 bit cluster id */
431 			bitmap = dest & 0xFFFF;
432 			cluster = (dest >> 16) << 4;
433 		} else if (kvm_lapic_get_reg(source, APIC_DFR) == APIC_DFR_FLAT) {
434 			/* 8 bit dest mask*/
435 			bitmap = dest;
436 			cluster = 0;
437 		} else {
438 			/* 4 bit desk mask, 4 bit cluster id */
439 			bitmap = dest & 0xF;
440 			cluster = (dest >> 4) << 2;
441 		}
442 
443 		/* Nothing to do if there are no destinations in the cluster. */
444 		if (unlikely(!bitmap))
445 			return 0;
446 
447 		if (apic_x2apic_mode(source))
448 			avic_logical_id_table = NULL;
449 		else
450 			avic_logical_id_table = page_address(kvm_svm->avic_logical_id_table_page);
451 
452 		/*
453 		 * AVIC is inhibited if vCPUs aren't mapped 1:1 with logical
454 		 * IDs, thus each bit in the destination is guaranteed to map
455 		 * to at most one vCPU.
456 		 */
457 		for_each_set_bit(i, &bitmap, 16)
458 			avic_kick_vcpu_by_logical_id(kvm, avic_logical_id_table,
459 						     cluster + i, icrl);
460 	}
461 
462 	return 0;
463 }
464 
465 static void avic_kick_target_vcpus(struct kvm *kvm, struct kvm_lapic *source,
466 				   u32 icrl, u32 icrh, u32 index)
467 {
468 	u32 dest = apic_x2apic_mode(source) ? icrh : GET_XAPIC_DEST_FIELD(icrh);
469 	unsigned long i;
470 	struct kvm_vcpu *vcpu;
471 
472 	if (!avic_kick_target_vcpus_fast(kvm, source, icrl, icrh, index))
473 		return;
474 
475 	trace_kvm_avic_kick_vcpu_slowpath(icrh, icrl, index);
476 
477 	/*
478 	 * Wake any target vCPUs that are blocking, i.e. waiting for a wake
479 	 * event.  There's no need to signal doorbells, as hardware has handled
480 	 * vCPUs that were in guest at the time of the IPI, and vCPUs that have
481 	 * since entered the guest will have processed pending IRQs at VMRUN.
482 	 */
483 	kvm_for_each_vcpu(i, vcpu, kvm) {
484 		if (kvm_apic_match_dest(vcpu, source, icrl & APIC_SHORT_MASK,
485 					dest, icrl & APIC_DEST_MASK))
486 			avic_kick_vcpu(vcpu, icrl);
487 	}
488 }
489 
490 int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu)
491 {
492 	struct vcpu_svm *svm = to_svm(vcpu);
493 	u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
494 	u32 icrl = svm->vmcb->control.exit_info_1;
495 	u32 id = svm->vmcb->control.exit_info_2 >> 32;
496 	u32 index = svm->vmcb->control.exit_info_2 & 0x1FF;
497 	struct kvm_lapic *apic = vcpu->arch.apic;
498 
499 	trace_kvm_avic_incomplete_ipi(vcpu->vcpu_id, icrh, icrl, id, index);
500 
501 	switch (id) {
502 	case AVIC_IPI_FAILURE_INVALID_TARGET:
503 	case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
504 		/*
505 		 * Emulate IPIs that are not handled by AVIC hardware, which
506 		 * only virtualizes Fixed, Edge-Triggered INTRs, and falls over
507 		 * if _any_ targets are invalid, e.g. if the logical mode mask
508 		 * is a superset of running vCPUs.
509 		 *
510 		 * The exit is a trap, e.g. ICR holds the correct value and RIP
511 		 * has been advanced, KVM is responsible only for emulating the
512 		 * IPI.  Sadly, hardware may sometimes leave the BUSY flag set,
513 		 * in which case KVM needs to emulate the ICR write as well in
514 		 * order to clear the BUSY flag.
515 		 */
516 		if (icrl & APIC_ICR_BUSY)
517 			kvm_apic_write_nodecode(vcpu, APIC_ICR);
518 		else
519 			kvm_apic_send_ipi(apic, icrl, icrh);
520 		break;
521 	case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING:
522 		/*
523 		 * At this point, we expect that the AVIC HW has already
524 		 * set the appropriate IRR bits on the valid target
525 		 * vcpus. So, we just need to kick the appropriate vcpu.
526 		 */
527 		avic_kick_target_vcpus(vcpu->kvm, apic, icrl, icrh, index);
528 		break;
529 	case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
530 		WARN_ONCE(1, "Invalid backing page\n");
531 		break;
532 	default:
533 		pr_err("Unknown IPI interception\n");
534 	}
535 
536 	return 1;
537 }
538 
539 unsigned long avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu *vcpu)
540 {
541 	if (is_guest_mode(vcpu))
542 		return APICV_INHIBIT_REASON_NESTED;
543 	return 0;
544 }
545 
546 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
547 {
548 	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
549 	u32 *logical_apic_id_table;
550 	u32 cluster, index;
551 
552 	ldr = GET_APIC_LOGICAL_ID(ldr);
553 
554 	if (flat) {
555 		cluster = 0;
556 	} else {
557 		cluster = (ldr >> 4);
558 		if (cluster >= 0xf)
559 			return NULL;
560 		ldr &= 0xf;
561 	}
562 	if (!ldr || !is_power_of_2(ldr))
563 		return NULL;
564 
565 	index = __ffs(ldr);
566 	if (WARN_ON_ONCE(index > 7))
567 		return NULL;
568 	index += (cluster << 2);
569 
570 	logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
571 
572 	return &logical_apic_id_table[index];
573 }
574 
575 static void avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
576 {
577 	bool flat;
578 	u32 *entry, new_entry;
579 
580 	flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
581 	entry = avic_get_logical_id_entry(vcpu, ldr, flat);
582 	if (!entry)
583 		return;
584 
585 	new_entry = READ_ONCE(*entry);
586 	new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
587 	new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
588 	new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
589 	WRITE_ONCE(*entry, new_entry);
590 }
591 
592 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
593 {
594 	struct vcpu_svm *svm = to_svm(vcpu);
595 	bool flat = svm->dfr_reg == APIC_DFR_FLAT;
596 	u32 *entry;
597 
598 	/* Note: x2AVIC does not use logical APIC ID table */
599 	if (apic_x2apic_mode(vcpu->arch.apic))
600 		return;
601 
602 	entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
603 	if (entry)
604 		clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
605 }
606 
607 static void avic_handle_ldr_update(struct kvm_vcpu *vcpu)
608 {
609 	struct vcpu_svm *svm = to_svm(vcpu);
610 	u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
611 	u32 id = kvm_xapic_id(vcpu->arch.apic);
612 
613 	/* AVIC does not support LDR update for x2APIC */
614 	if (apic_x2apic_mode(vcpu->arch.apic))
615 		return;
616 
617 	if (ldr == svm->ldr_reg)
618 		return;
619 
620 	avic_invalidate_logical_id_entry(vcpu);
621 
622 	svm->ldr_reg = ldr;
623 	avic_ldr_write(vcpu, id, ldr);
624 }
625 
626 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
627 {
628 	struct vcpu_svm *svm = to_svm(vcpu);
629 	u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
630 
631 	if (svm->dfr_reg == dfr)
632 		return;
633 
634 	avic_invalidate_logical_id_entry(vcpu);
635 	svm->dfr_reg = dfr;
636 }
637 
638 static int avic_unaccel_trap_write(struct kvm_vcpu *vcpu)
639 {
640 	u32 offset = to_svm(vcpu)->vmcb->control.exit_info_1 &
641 				AVIC_UNACCEL_ACCESS_OFFSET_MASK;
642 
643 	switch (offset) {
644 	case APIC_LDR:
645 		avic_handle_ldr_update(vcpu);
646 		break;
647 	case APIC_DFR:
648 		avic_handle_dfr_update(vcpu);
649 		break;
650 	case APIC_RRR:
651 		/* Ignore writes to Read Remote Data, it's read-only. */
652 		return 1;
653 	default:
654 		break;
655 	}
656 
657 	kvm_apic_write_nodecode(vcpu, offset);
658 	return 1;
659 }
660 
661 static bool is_avic_unaccelerated_access_trap(u32 offset)
662 {
663 	bool ret = false;
664 
665 	switch (offset) {
666 	case APIC_ID:
667 	case APIC_EOI:
668 	case APIC_RRR:
669 	case APIC_LDR:
670 	case APIC_DFR:
671 	case APIC_SPIV:
672 	case APIC_ESR:
673 	case APIC_ICR:
674 	case APIC_LVTT:
675 	case APIC_LVTTHMR:
676 	case APIC_LVTPC:
677 	case APIC_LVT0:
678 	case APIC_LVT1:
679 	case APIC_LVTERR:
680 	case APIC_TMICT:
681 	case APIC_TDCR:
682 		ret = true;
683 		break;
684 	default:
685 		break;
686 	}
687 	return ret;
688 }
689 
690 int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu)
691 {
692 	struct vcpu_svm *svm = to_svm(vcpu);
693 	int ret = 0;
694 	u32 offset = svm->vmcb->control.exit_info_1 &
695 		     AVIC_UNACCEL_ACCESS_OFFSET_MASK;
696 	u32 vector = svm->vmcb->control.exit_info_2 &
697 		     AVIC_UNACCEL_ACCESS_VECTOR_MASK;
698 	bool write = (svm->vmcb->control.exit_info_1 >> 32) &
699 		     AVIC_UNACCEL_ACCESS_WRITE_MASK;
700 	bool trap = is_avic_unaccelerated_access_trap(offset);
701 
702 	trace_kvm_avic_unaccelerated_access(vcpu->vcpu_id, offset,
703 					    trap, write, vector);
704 	if (trap) {
705 		/* Handling Trap */
706 		WARN_ONCE(!write, "svm: Handling trap read.\n");
707 		ret = avic_unaccel_trap_write(vcpu);
708 	} else {
709 		/* Handling Fault */
710 		ret = kvm_emulate_instruction(vcpu, 0);
711 	}
712 
713 	return ret;
714 }
715 
716 int avic_init_vcpu(struct vcpu_svm *svm)
717 {
718 	int ret;
719 	struct kvm_vcpu *vcpu = &svm->vcpu;
720 
721 	if (!enable_apicv || !irqchip_in_kernel(vcpu->kvm))
722 		return 0;
723 
724 	ret = avic_init_backing_page(vcpu);
725 	if (ret)
726 		return ret;
727 
728 	INIT_LIST_HEAD(&svm->ir_list);
729 	spin_lock_init(&svm->ir_list_lock);
730 	svm->dfr_reg = APIC_DFR_FLAT;
731 
732 	return ret;
733 }
734 
735 void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu)
736 {
737 	avic_handle_dfr_update(vcpu);
738 	avic_handle_ldr_update(vcpu);
739 }
740 
741 static int avic_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
742 {
743 	int ret = 0;
744 	unsigned long flags;
745 	struct amd_svm_iommu_ir *ir;
746 	struct vcpu_svm *svm = to_svm(vcpu);
747 
748 	if (!kvm_arch_has_assigned_device(vcpu->kvm))
749 		return 0;
750 
751 	/*
752 	 * Here, we go through the per-vcpu ir_list to update all existing
753 	 * interrupt remapping table entry targeting this vcpu.
754 	 */
755 	spin_lock_irqsave(&svm->ir_list_lock, flags);
756 
757 	if (list_empty(&svm->ir_list))
758 		goto out;
759 
760 	list_for_each_entry(ir, &svm->ir_list, node) {
761 		if (activate)
762 			ret = amd_iommu_activate_guest_mode(ir->data);
763 		else
764 			ret = amd_iommu_deactivate_guest_mode(ir->data);
765 		if (ret)
766 			break;
767 	}
768 out:
769 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
770 	return ret;
771 }
772 
773 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
774 {
775 	unsigned long flags;
776 	struct amd_svm_iommu_ir *cur;
777 
778 	spin_lock_irqsave(&svm->ir_list_lock, flags);
779 	list_for_each_entry(cur, &svm->ir_list, node) {
780 		if (cur->data != pi->ir_data)
781 			continue;
782 		list_del(&cur->node);
783 		kfree(cur);
784 		break;
785 	}
786 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
787 }
788 
789 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
790 {
791 	int ret = 0;
792 	unsigned long flags;
793 	struct amd_svm_iommu_ir *ir;
794 	u64 entry;
795 
796 	/**
797 	 * In some cases, the existing irte is updated and re-set,
798 	 * so we need to check here if it's already been * added
799 	 * to the ir_list.
800 	 */
801 	if (pi->ir_data && (pi->prev_ga_tag != 0)) {
802 		struct kvm *kvm = svm->vcpu.kvm;
803 		u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
804 		struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
805 		struct vcpu_svm *prev_svm;
806 
807 		if (!prev_vcpu) {
808 			ret = -EINVAL;
809 			goto out;
810 		}
811 
812 		prev_svm = to_svm(prev_vcpu);
813 		svm_ir_list_del(prev_svm, pi);
814 	}
815 
816 	/**
817 	 * Allocating new amd_iommu_pi_data, which will get
818 	 * add to the per-vcpu ir_list.
819 	 */
820 	ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
821 	if (!ir) {
822 		ret = -ENOMEM;
823 		goto out;
824 	}
825 	ir->data = pi->ir_data;
826 
827 	spin_lock_irqsave(&svm->ir_list_lock, flags);
828 
829 	/*
830 	 * Update the target pCPU for IOMMU doorbells if the vCPU is running.
831 	 * If the vCPU is NOT running, i.e. is blocking or scheduled out, KVM
832 	 * will update the pCPU info when the vCPU awkened and/or scheduled in.
833 	 * See also avic_vcpu_load().
834 	 */
835 	entry = READ_ONCE(*(svm->avic_physical_id_cache));
836 	if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
837 		amd_iommu_update_ga(entry & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK,
838 				    true, pi->ir_data);
839 
840 	list_add(&ir->node, &svm->ir_list);
841 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
842 out:
843 	return ret;
844 }
845 
846 /*
847  * Note:
848  * The HW cannot support posting multicast/broadcast
849  * interrupts to a vCPU. So, we still use legacy interrupt
850  * remapping for these kind of interrupts.
851  *
852  * For lowest-priority interrupts, we only support
853  * those with single CPU as the destination, e.g. user
854  * configures the interrupts via /proc/irq or uses
855  * irqbalance to make the interrupts single-CPU.
856  */
857 static int
858 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
859 		 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
860 {
861 	struct kvm_lapic_irq irq;
862 	struct kvm_vcpu *vcpu = NULL;
863 
864 	kvm_set_msi_irq(kvm, e, &irq);
865 
866 	if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
867 	    !kvm_irq_is_postable(&irq)) {
868 		pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
869 			 __func__, irq.vector);
870 		return -1;
871 	}
872 
873 	pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
874 		 irq.vector);
875 	*svm = to_svm(vcpu);
876 	vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
877 	vcpu_info->vector = irq.vector;
878 
879 	return 0;
880 }
881 
882 /*
883  * avic_pi_update_irte - set IRTE for Posted-Interrupts
884  *
885  * @kvm: kvm
886  * @host_irq: host irq of the interrupt
887  * @guest_irq: gsi of the interrupt
888  * @set: set or unset PI
889  * returns 0 on success, < 0 on failure
890  */
891 int avic_pi_update_irte(struct kvm *kvm, unsigned int host_irq,
892 			uint32_t guest_irq, bool set)
893 {
894 	struct kvm_kernel_irq_routing_entry *e;
895 	struct kvm_irq_routing_table *irq_rt;
896 	int idx, ret = 0;
897 
898 	if (!kvm_arch_has_assigned_device(kvm) ||
899 	    !irq_remapping_cap(IRQ_POSTING_CAP))
900 		return 0;
901 
902 	pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
903 		 __func__, host_irq, guest_irq, set);
904 
905 	idx = srcu_read_lock(&kvm->irq_srcu);
906 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
907 
908 	if (guest_irq >= irq_rt->nr_rt_entries ||
909 		hlist_empty(&irq_rt->map[guest_irq])) {
910 		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
911 			     guest_irq, irq_rt->nr_rt_entries);
912 		goto out;
913 	}
914 
915 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
916 		struct vcpu_data vcpu_info;
917 		struct vcpu_svm *svm = NULL;
918 
919 		if (e->type != KVM_IRQ_ROUTING_MSI)
920 			continue;
921 
922 		/**
923 		 * Here, we setup with legacy mode in the following cases:
924 		 * 1. When cannot target interrupt to a specific vcpu.
925 		 * 2. Unsetting posted interrupt.
926 		 * 3. APIC virtualization is disabled for the vcpu.
927 		 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
928 		 */
929 		if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
930 		    kvm_vcpu_apicv_active(&svm->vcpu)) {
931 			struct amd_iommu_pi_data pi;
932 
933 			/* Try to enable guest_mode in IRTE */
934 			pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
935 					    AVIC_HPA_MASK);
936 			pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
937 						     svm->vcpu.vcpu_id);
938 			pi.is_guest_mode = true;
939 			pi.vcpu_data = &vcpu_info;
940 			ret = irq_set_vcpu_affinity(host_irq, &pi);
941 
942 			/**
943 			 * Here, we successfully setting up vcpu affinity in
944 			 * IOMMU guest mode. Now, we need to store the posted
945 			 * interrupt information in a per-vcpu ir_list so that
946 			 * we can reference to them directly when we update vcpu
947 			 * scheduling information in IOMMU irte.
948 			 */
949 			if (!ret && pi.is_guest_mode)
950 				svm_ir_list_add(svm, &pi);
951 		} else {
952 			/* Use legacy mode in IRTE */
953 			struct amd_iommu_pi_data pi;
954 
955 			/**
956 			 * Here, pi is used to:
957 			 * - Tell IOMMU to use legacy mode for this interrupt.
958 			 * - Retrieve ga_tag of prior interrupt remapping data.
959 			 */
960 			pi.prev_ga_tag = 0;
961 			pi.is_guest_mode = false;
962 			ret = irq_set_vcpu_affinity(host_irq, &pi);
963 
964 			/**
965 			 * Check if the posted interrupt was previously
966 			 * setup with the guest_mode by checking if the ga_tag
967 			 * was cached. If so, we need to clean up the per-vcpu
968 			 * ir_list.
969 			 */
970 			if (!ret && pi.prev_ga_tag) {
971 				int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
972 				struct kvm_vcpu *vcpu;
973 
974 				vcpu = kvm_get_vcpu_by_id(kvm, id);
975 				if (vcpu)
976 					svm_ir_list_del(to_svm(vcpu), &pi);
977 			}
978 		}
979 
980 		if (!ret && svm) {
981 			trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
982 						 e->gsi, vcpu_info.vector,
983 						 vcpu_info.pi_desc_addr, set);
984 		}
985 
986 		if (ret < 0) {
987 			pr_err("%s: failed to update PI IRTE\n", __func__);
988 			goto out;
989 		}
990 	}
991 
992 	ret = 0;
993 out:
994 	srcu_read_unlock(&kvm->irq_srcu, idx);
995 	return ret;
996 }
997 
998 static inline int
999 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1000 {
1001 	int ret = 0;
1002 	struct amd_svm_iommu_ir *ir;
1003 	struct vcpu_svm *svm = to_svm(vcpu);
1004 
1005 	lockdep_assert_held(&svm->ir_list_lock);
1006 
1007 	if (!kvm_arch_has_assigned_device(vcpu->kvm))
1008 		return 0;
1009 
1010 	/*
1011 	 * Here, we go through the per-vcpu ir_list to update all existing
1012 	 * interrupt remapping table entry targeting this vcpu.
1013 	 */
1014 	if (list_empty(&svm->ir_list))
1015 		return 0;
1016 
1017 	list_for_each_entry(ir, &svm->ir_list, node) {
1018 		ret = amd_iommu_update_ga(cpu, r, ir->data);
1019 		if (ret)
1020 			return ret;
1021 	}
1022 	return 0;
1023 }
1024 
1025 void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1026 {
1027 	u64 entry;
1028 	int h_physical_id = kvm_cpu_get_apicid(cpu);
1029 	struct vcpu_svm *svm = to_svm(vcpu);
1030 	unsigned long flags;
1031 
1032 	lockdep_assert_preemption_disabled();
1033 
1034 	if (WARN_ON(h_physical_id & ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
1035 		return;
1036 
1037 	/*
1038 	 * No need to update anything if the vCPU is blocking, i.e. if the vCPU
1039 	 * is being scheduled in after being preempted.  The CPU entries in the
1040 	 * Physical APIC table and IRTE are consumed iff IsRun{ning} is '1'.
1041 	 * If the vCPU was migrated, its new CPU value will be stuffed when the
1042 	 * vCPU unblocks.
1043 	 */
1044 	if (kvm_vcpu_is_blocking(vcpu))
1045 		return;
1046 
1047 	/*
1048 	 * Grab the per-vCPU interrupt remapping lock even if the VM doesn't
1049 	 * _currently_ have assigned devices, as that can change.  Holding
1050 	 * ir_list_lock ensures that either svm_ir_list_add() will consume
1051 	 * up-to-date entry information, or that this task will wait until
1052 	 * svm_ir_list_add() completes to set the new target pCPU.
1053 	 */
1054 	spin_lock_irqsave(&svm->ir_list_lock, flags);
1055 
1056 	entry = READ_ONCE(*(svm->avic_physical_id_cache));
1057 	WARN_ON_ONCE(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1058 
1059 	entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1060 	entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1061 	entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1062 
1063 	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1064 	avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, true);
1065 
1066 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1067 }
1068 
1069 void avic_vcpu_put(struct kvm_vcpu *vcpu)
1070 {
1071 	u64 entry;
1072 	struct vcpu_svm *svm = to_svm(vcpu);
1073 	unsigned long flags;
1074 
1075 	lockdep_assert_preemption_disabled();
1076 
1077 	/*
1078 	 * Note, reading the Physical ID entry outside of ir_list_lock is safe
1079 	 * as only the pCPU that has loaded (or is loading) the vCPU is allowed
1080 	 * to modify the entry, and preemption is disabled.  I.e. the vCPU
1081 	 * can't be scheduled out and thus avic_vcpu_{put,load}() can't run
1082 	 * recursively.
1083 	 */
1084 	entry = READ_ONCE(*(svm->avic_physical_id_cache));
1085 
1086 	/* Nothing to do if IsRunning == '0' due to vCPU blocking. */
1087 	if (!(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK))
1088 		return;
1089 
1090 	/*
1091 	 * Take and hold the per-vCPU interrupt remapping lock while updating
1092 	 * the Physical ID entry even though the lock doesn't protect against
1093 	 * multiple writers (see above).  Holding ir_list_lock ensures that
1094 	 * either svm_ir_list_add() will consume up-to-date entry information,
1095 	 * or that this task will wait until svm_ir_list_add() completes to
1096 	 * mark the vCPU as not running.
1097 	 */
1098 	spin_lock_irqsave(&svm->ir_list_lock, flags);
1099 
1100 	avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1101 
1102 	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1103 	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1104 
1105 	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1106 
1107 }
1108 
1109 void avic_refresh_virtual_apic_mode(struct kvm_vcpu *vcpu)
1110 {
1111 	struct vcpu_svm *svm = to_svm(vcpu);
1112 	struct vmcb *vmcb = svm->vmcb01.ptr;
1113 
1114 	if (!lapic_in_kernel(vcpu) || !enable_apicv)
1115 		return;
1116 
1117 	if (kvm_vcpu_apicv_active(vcpu)) {
1118 		/**
1119 		 * During AVIC temporary deactivation, guest could update
1120 		 * APIC ID, DFR and LDR registers, which would not be trapped
1121 		 * by avic_unaccelerated_access_interception(). In this case,
1122 		 * we need to check and update the AVIC logical APIC ID table
1123 		 * accordingly before re-activating.
1124 		 */
1125 		avic_apicv_post_state_restore(vcpu);
1126 		avic_activate_vmcb(svm);
1127 	} else {
1128 		avic_deactivate_vmcb(svm);
1129 	}
1130 	vmcb_mark_dirty(vmcb, VMCB_AVIC);
1131 }
1132 
1133 void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
1134 {
1135 	bool activated = kvm_vcpu_apicv_active(vcpu);
1136 
1137 	if (!enable_apicv)
1138 		return;
1139 
1140 	avic_refresh_virtual_apic_mode(vcpu);
1141 
1142 	if (activated)
1143 		avic_vcpu_load(vcpu, vcpu->cpu);
1144 	else
1145 		avic_vcpu_put(vcpu);
1146 
1147 	avic_set_pi_irte_mode(vcpu, activated);
1148 }
1149 
1150 void avic_vcpu_blocking(struct kvm_vcpu *vcpu)
1151 {
1152 	if (!kvm_vcpu_apicv_active(vcpu))
1153 		return;
1154 
1155        /*
1156         * Unload the AVIC when the vCPU is about to block, _before_
1157         * the vCPU actually blocks.
1158         *
1159         * Any IRQs that arrive before IsRunning=0 will not cause an
1160         * incomplete IPI vmexit on the source, therefore vIRR will also
1161         * be checked by kvm_vcpu_check_block() before blocking.  The
1162         * memory barrier implicit in set_current_state orders writing
1163         * IsRunning=0 before reading the vIRR.  The processor needs a
1164         * matching memory barrier on interrupt delivery between writing
1165         * IRR and reading IsRunning; the lack of this barrier might be
1166         * the cause of errata #1235).
1167         */
1168 	avic_vcpu_put(vcpu);
1169 }
1170 
1171 void avic_vcpu_unblocking(struct kvm_vcpu *vcpu)
1172 {
1173 	if (!kvm_vcpu_apicv_active(vcpu))
1174 		return;
1175 
1176 	avic_vcpu_load(vcpu, vcpu->cpu);
1177 }
1178 
1179 /*
1180  * Note:
1181  * - The module param avic enable both xAPIC and x2APIC mode.
1182  * - Hypervisor can support both xAVIC and x2AVIC in the same guest.
1183  * - The mode can be switched at run-time.
1184  */
1185 bool avic_hardware_setup(void)
1186 {
1187 	if (!npt_enabled)
1188 		return false;
1189 
1190 	/* AVIC is a prerequisite for x2AVIC. */
1191 	if (!boot_cpu_has(X86_FEATURE_AVIC) && !force_avic) {
1192 		if (boot_cpu_has(X86_FEATURE_X2AVIC)) {
1193 			pr_warn(FW_BUG "Cannot support x2AVIC due to AVIC is disabled");
1194 			pr_warn(FW_BUG "Try enable AVIC using force_avic option");
1195 		}
1196 		return false;
1197 	}
1198 
1199 	if (boot_cpu_has(X86_FEATURE_AVIC)) {
1200 		pr_info("AVIC enabled\n");
1201 	} else if (force_avic) {
1202 		/*
1203 		 * Some older systems does not advertise AVIC support.
1204 		 * See Revision Guide for specific AMD processor for more detail.
1205 		 */
1206 		pr_warn("AVIC is not supported in CPUID but force enabled");
1207 		pr_warn("Your system might crash and burn");
1208 	}
1209 
1210 	/* AVIC is a prerequisite for x2AVIC. */
1211 	x2avic_enabled = boot_cpu_has(X86_FEATURE_X2AVIC);
1212 	if (x2avic_enabled)
1213 		pr_info("x2AVIC enabled\n");
1214 
1215 	amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1216 
1217 	return true;
1218 }
1219