1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM support 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Yaniv Kamay <yaniv@qumranet.com> 12 * Avi Kivity <avi@qumranet.com> 13 */ 14 15 #define pr_fmt(fmt) "SVM: " fmt 16 17 #include <linux/kvm_types.h> 18 #include <linux/hashtable.h> 19 #include <linux/amd-iommu.h> 20 #include <linux/kvm_host.h> 21 22 #include <asm/irq_remapping.h> 23 24 #include "trace.h" 25 #include "lapic.h" 26 #include "x86.h" 27 #include "irq.h" 28 #include "svm.h" 29 30 /* AVIC GATAG is encoded using VM and VCPU IDs */ 31 #define AVIC_VCPU_ID_BITS 8 32 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1) 33 34 #define AVIC_VM_ID_BITS 24 35 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS) 36 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1) 37 38 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \ 39 (y & AVIC_VCPU_ID_MASK)) 40 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK) 41 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK) 42 43 /* Note: 44 * This hash table is used to map VM_ID to a struct kvm_svm, 45 * when handling AMD IOMMU GALOG notification to schedule in 46 * a particular vCPU. 47 */ 48 #define SVM_VM_DATA_HASH_BITS 8 49 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS); 50 static u32 next_vm_id = 0; 51 static bool next_vm_id_wrapped = 0; 52 static DEFINE_SPINLOCK(svm_vm_data_hash_lock); 53 54 /* 55 * This is a wrapper of struct amd_iommu_ir_data. 56 */ 57 struct amd_svm_iommu_ir { 58 struct list_head node; /* Used by SVM for per-vcpu ir_list */ 59 void *data; /* Storing pointer to struct amd_ir_data */ 60 }; 61 62 63 /* Note: 64 * This function is called from IOMMU driver to notify 65 * SVM to schedule in a particular vCPU of a particular VM. 66 */ 67 int avic_ga_log_notifier(u32 ga_tag) 68 { 69 unsigned long flags; 70 struct kvm_svm *kvm_svm; 71 struct kvm_vcpu *vcpu = NULL; 72 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag); 73 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag); 74 75 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id); 76 trace_kvm_avic_ga_log(vm_id, vcpu_id); 77 78 spin_lock_irqsave(&svm_vm_data_hash_lock, flags); 79 hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) { 80 if (kvm_svm->avic_vm_id != vm_id) 81 continue; 82 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id); 83 break; 84 } 85 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); 86 87 /* Note: 88 * At this point, the IOMMU should have already set the pending 89 * bit in the vAPIC backing page. So, we just need to schedule 90 * in the vcpu. 91 */ 92 if (vcpu) 93 kvm_vcpu_wake_up(vcpu); 94 95 return 0; 96 } 97 98 void avic_vm_destroy(struct kvm *kvm) 99 { 100 unsigned long flags; 101 struct kvm_svm *kvm_svm = to_kvm_svm(kvm); 102 103 if (!enable_apicv) 104 return; 105 106 if (kvm_svm->avic_logical_id_table_page) 107 __free_page(kvm_svm->avic_logical_id_table_page); 108 if (kvm_svm->avic_physical_id_table_page) 109 __free_page(kvm_svm->avic_physical_id_table_page); 110 111 spin_lock_irqsave(&svm_vm_data_hash_lock, flags); 112 hash_del(&kvm_svm->hnode); 113 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); 114 } 115 116 int avic_vm_init(struct kvm *kvm) 117 { 118 unsigned long flags; 119 int err = -ENOMEM; 120 struct kvm_svm *kvm_svm = to_kvm_svm(kvm); 121 struct kvm_svm *k2; 122 struct page *p_page; 123 struct page *l_page; 124 u32 vm_id; 125 126 if (!enable_apicv) 127 return 0; 128 129 /* Allocating physical APIC ID table (4KB) */ 130 p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 131 if (!p_page) 132 goto free_avic; 133 134 kvm_svm->avic_physical_id_table_page = p_page; 135 136 /* Allocating logical APIC ID table (4KB) */ 137 l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 138 if (!l_page) 139 goto free_avic; 140 141 kvm_svm->avic_logical_id_table_page = l_page; 142 143 spin_lock_irqsave(&svm_vm_data_hash_lock, flags); 144 again: 145 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK; 146 if (vm_id == 0) { /* id is 1-based, zero is not okay */ 147 next_vm_id_wrapped = 1; 148 goto again; 149 } 150 /* Is it still in use? Only possible if wrapped at least once */ 151 if (next_vm_id_wrapped) { 152 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) { 153 if (k2->avic_vm_id == vm_id) 154 goto again; 155 } 156 } 157 kvm_svm->avic_vm_id = vm_id; 158 hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id); 159 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); 160 161 return 0; 162 163 free_avic: 164 avic_vm_destroy(kvm); 165 return err; 166 } 167 168 void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb) 169 { 170 struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm); 171 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page)); 172 phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page)); 173 phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page)); 174 175 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK; 176 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK; 177 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK; 178 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT; 179 vmcb->control.avic_vapic_bar = APIC_DEFAULT_PHYS_BASE & VMCB_AVIC_APIC_BAR_MASK; 180 181 if (kvm_apicv_activated(svm->vcpu.kvm)) 182 vmcb->control.int_ctl |= AVIC_ENABLE_MASK; 183 else 184 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK; 185 } 186 187 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu, 188 unsigned int index) 189 { 190 u64 *avic_physical_id_table; 191 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm); 192 193 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT) 194 return NULL; 195 196 avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page); 197 198 return &avic_physical_id_table[index]; 199 } 200 201 /* 202 * Note: 203 * AVIC hardware walks the nested page table to check permissions, 204 * but does not use the SPA address specified in the leaf page 205 * table entry since it uses address in the AVIC_BACKING_PAGE pointer 206 * field of the VMCB. Therefore, we set up the 207 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here. 208 */ 209 static int avic_alloc_access_page(struct kvm *kvm) 210 { 211 void __user *ret; 212 int r = 0; 213 214 mutex_lock(&kvm->slots_lock); 215 216 if (kvm->arch.apic_access_memslot_enabled) 217 goto out; 218 219 ret = __x86_set_memory_region(kvm, 220 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 221 APIC_DEFAULT_PHYS_BASE, 222 PAGE_SIZE); 223 if (IS_ERR(ret)) { 224 r = PTR_ERR(ret); 225 goto out; 226 } 227 228 kvm->arch.apic_access_memslot_enabled = true; 229 out: 230 mutex_unlock(&kvm->slots_lock); 231 return r; 232 } 233 234 static int avic_init_backing_page(struct kvm_vcpu *vcpu) 235 { 236 u64 *entry, new_entry; 237 int id = vcpu->vcpu_id; 238 struct vcpu_svm *svm = to_svm(vcpu); 239 240 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT) 241 return -EINVAL; 242 243 if (!vcpu->arch.apic->regs) 244 return -EINVAL; 245 246 if (kvm_apicv_activated(vcpu->kvm)) { 247 int ret; 248 249 ret = avic_alloc_access_page(vcpu->kvm); 250 if (ret) 251 return ret; 252 } 253 254 svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs); 255 256 /* Setting AVIC backing page address in the phy APIC ID table */ 257 entry = avic_get_physical_id_entry(vcpu, id); 258 if (!entry) 259 return -EINVAL; 260 261 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) & 262 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) | 263 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK); 264 WRITE_ONCE(*entry, new_entry); 265 266 svm->avic_physical_id_cache = entry; 267 268 return 0; 269 } 270 271 void avic_ring_doorbell(struct kvm_vcpu *vcpu) 272 { 273 /* 274 * Note, the vCPU could get migrated to a different pCPU at any point, 275 * which could result in signalling the wrong/previous pCPU. But if 276 * that happens the vCPU is guaranteed to do a VMRUN (after being 277 * migrated) and thus will process pending interrupts, i.e. a doorbell 278 * is not needed (and the spurious one is harmless). 279 */ 280 int cpu = READ_ONCE(vcpu->cpu); 281 282 if (cpu != get_cpu()) 283 wrmsrl(MSR_AMD64_SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpu)); 284 put_cpu(); 285 } 286 287 /* 288 * A fast-path version of avic_kick_target_vcpus(), which attempts to match 289 * destination APIC ID to vCPU without looping through all vCPUs. 290 */ 291 static int avic_kick_target_vcpus_fast(struct kvm *kvm, struct kvm_lapic *source, 292 u32 icrl, u32 icrh, u32 index) 293 { 294 u32 l1_physical_id, dest; 295 struct kvm_vcpu *target_vcpu; 296 int dest_mode = icrl & APIC_DEST_MASK; 297 int shorthand = icrl & APIC_SHORT_MASK; 298 struct kvm_svm *kvm_svm = to_kvm_svm(kvm); 299 300 if (shorthand != APIC_DEST_NOSHORT) 301 return -EINVAL; 302 303 if (apic_x2apic_mode(source)) 304 dest = icrh; 305 else 306 dest = GET_APIC_DEST_FIELD(icrh); 307 308 if (dest_mode == APIC_DEST_PHYSICAL) { 309 /* broadcast destination, use slow path */ 310 if (apic_x2apic_mode(source) && dest == X2APIC_BROADCAST) 311 return -EINVAL; 312 if (!apic_x2apic_mode(source) && dest == APIC_BROADCAST) 313 return -EINVAL; 314 315 l1_physical_id = dest; 316 317 if (WARN_ON_ONCE(l1_physical_id != index)) 318 return -EINVAL; 319 320 } else { 321 u32 bitmap, cluster; 322 int logid_index; 323 324 if (apic_x2apic_mode(source)) { 325 /* 16 bit dest mask, 16 bit cluster id */ 326 bitmap = dest & 0xFFFF0000; 327 cluster = (dest >> 16) << 4; 328 } else if (kvm_lapic_get_reg(source, APIC_DFR) == APIC_DFR_FLAT) { 329 /* 8 bit dest mask*/ 330 bitmap = dest; 331 cluster = 0; 332 } else { 333 /* 4 bit desk mask, 4 bit cluster id */ 334 bitmap = dest & 0xF; 335 cluster = (dest >> 4) << 2; 336 } 337 338 if (unlikely(!bitmap)) 339 /* guest bug: nobody to send the logical interrupt to */ 340 return 0; 341 342 if (!is_power_of_2(bitmap)) 343 /* multiple logical destinations, use slow path */ 344 return -EINVAL; 345 346 logid_index = cluster + __ffs(bitmap); 347 348 if (apic_x2apic_mode(source)) { 349 l1_physical_id = logid_index; 350 } else { 351 u32 *avic_logical_id_table = 352 page_address(kvm_svm->avic_logical_id_table_page); 353 354 u32 logid_entry = avic_logical_id_table[logid_index]; 355 356 if (WARN_ON_ONCE(index != logid_index)) 357 return -EINVAL; 358 359 /* guest bug: non existing/reserved logical destination */ 360 if (unlikely(!(logid_entry & AVIC_LOGICAL_ID_ENTRY_VALID_MASK))) 361 return 0; 362 363 l1_physical_id = logid_entry & 364 AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK; 365 } 366 } 367 368 target_vcpu = kvm_get_vcpu_by_id(kvm, l1_physical_id); 369 if (unlikely(!target_vcpu)) 370 /* guest bug: non existing vCPU is a target of this IPI*/ 371 return 0; 372 373 target_vcpu->arch.apic->irr_pending = true; 374 svm_complete_interrupt_delivery(target_vcpu, 375 icrl & APIC_MODE_MASK, 376 icrl & APIC_INT_LEVELTRIG, 377 icrl & APIC_VECTOR_MASK); 378 return 0; 379 } 380 381 static void avic_kick_target_vcpus(struct kvm *kvm, struct kvm_lapic *source, 382 u32 icrl, u32 icrh, u32 index) 383 { 384 unsigned long i; 385 struct kvm_vcpu *vcpu; 386 387 if (!avic_kick_target_vcpus_fast(kvm, source, icrl, icrh, index)) 388 return; 389 390 trace_kvm_avic_kick_vcpu_slowpath(icrh, icrl, index); 391 392 /* 393 * Wake any target vCPUs that are blocking, i.e. waiting for a wake 394 * event. There's no need to signal doorbells, as hardware has handled 395 * vCPUs that were in guest at the time of the IPI, and vCPUs that have 396 * since entered the guest will have processed pending IRQs at VMRUN. 397 */ 398 kvm_for_each_vcpu(i, vcpu, kvm) { 399 if (kvm_apic_match_dest(vcpu, source, icrl & APIC_SHORT_MASK, 400 GET_APIC_DEST_FIELD(icrh), 401 icrl & APIC_DEST_MASK)) { 402 vcpu->arch.apic->irr_pending = true; 403 svm_complete_interrupt_delivery(vcpu, 404 icrl & APIC_MODE_MASK, 405 icrl & APIC_INT_LEVELTRIG, 406 icrl & APIC_VECTOR_MASK); 407 } 408 } 409 } 410 411 int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu) 412 { 413 struct vcpu_svm *svm = to_svm(vcpu); 414 u32 icrh = svm->vmcb->control.exit_info_1 >> 32; 415 u32 icrl = svm->vmcb->control.exit_info_1; 416 u32 id = svm->vmcb->control.exit_info_2 >> 32; 417 u32 index = svm->vmcb->control.exit_info_2 & 0x1FF; 418 struct kvm_lapic *apic = vcpu->arch.apic; 419 420 trace_kvm_avic_incomplete_ipi(vcpu->vcpu_id, icrh, icrl, id, index); 421 422 switch (id) { 423 case AVIC_IPI_FAILURE_INVALID_INT_TYPE: 424 /* 425 * Emulate IPIs that are not handled by AVIC hardware, which 426 * only virtualizes Fixed, Edge-Triggered INTRs. The exit is 427 * a trap, e.g. ICR holds the correct value and RIP has been 428 * advanced, KVM is responsible only for emulating the IPI. 429 * Sadly, hardware may sometimes leave the BUSY flag set, in 430 * which case KVM needs to emulate the ICR write as well in 431 * order to clear the BUSY flag. 432 */ 433 if (icrl & APIC_ICR_BUSY) 434 kvm_apic_write_nodecode(vcpu, APIC_ICR); 435 else 436 kvm_apic_send_ipi(apic, icrl, icrh); 437 break; 438 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: 439 /* 440 * At this point, we expect that the AVIC HW has already 441 * set the appropriate IRR bits on the valid target 442 * vcpus. So, we just need to kick the appropriate vcpu. 443 */ 444 avic_kick_target_vcpus(vcpu->kvm, apic, icrl, icrh, index); 445 break; 446 case AVIC_IPI_FAILURE_INVALID_TARGET: 447 break; 448 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE: 449 WARN_ONCE(1, "Invalid backing page\n"); 450 break; 451 default: 452 pr_err("Unknown IPI interception\n"); 453 } 454 455 return 1; 456 } 457 458 unsigned long avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu *vcpu) 459 { 460 if (is_guest_mode(vcpu)) 461 return APICV_INHIBIT_REASON_NESTED; 462 return 0; 463 } 464 465 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat) 466 { 467 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm); 468 int index; 469 u32 *logical_apic_id_table; 470 int dlid = GET_APIC_LOGICAL_ID(ldr); 471 472 if (!dlid) 473 return NULL; 474 475 if (flat) { /* flat */ 476 index = ffs(dlid) - 1; 477 if (index > 7) 478 return NULL; 479 } else { /* cluster */ 480 int cluster = (dlid & 0xf0) >> 4; 481 int apic = ffs(dlid & 0x0f) - 1; 482 483 if ((apic < 0) || (apic > 7) || 484 (cluster >= 0xf)) 485 return NULL; 486 index = (cluster << 2) + apic; 487 } 488 489 logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page); 490 491 return &logical_apic_id_table[index]; 492 } 493 494 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr) 495 { 496 bool flat; 497 u32 *entry, new_entry; 498 499 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT; 500 entry = avic_get_logical_id_entry(vcpu, ldr, flat); 501 if (!entry) 502 return -EINVAL; 503 504 new_entry = READ_ONCE(*entry); 505 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK; 506 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK); 507 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK; 508 WRITE_ONCE(*entry, new_entry); 509 510 return 0; 511 } 512 513 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu) 514 { 515 struct vcpu_svm *svm = to_svm(vcpu); 516 bool flat = svm->dfr_reg == APIC_DFR_FLAT; 517 u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat); 518 519 if (entry) 520 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry); 521 } 522 523 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu) 524 { 525 int ret = 0; 526 struct vcpu_svm *svm = to_svm(vcpu); 527 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR); 528 u32 id = kvm_xapic_id(vcpu->arch.apic); 529 530 if (ldr == svm->ldr_reg) 531 return 0; 532 533 avic_invalidate_logical_id_entry(vcpu); 534 535 if (ldr) 536 ret = avic_ldr_write(vcpu, id, ldr); 537 538 if (!ret) 539 svm->ldr_reg = ldr; 540 541 return ret; 542 } 543 544 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu) 545 { 546 struct vcpu_svm *svm = to_svm(vcpu); 547 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR); 548 549 if (svm->dfr_reg == dfr) 550 return; 551 552 avic_invalidate_logical_id_entry(vcpu); 553 svm->dfr_reg = dfr; 554 } 555 556 static int avic_unaccel_trap_write(struct kvm_vcpu *vcpu) 557 { 558 u32 offset = to_svm(vcpu)->vmcb->control.exit_info_1 & 559 AVIC_UNACCEL_ACCESS_OFFSET_MASK; 560 561 switch (offset) { 562 case APIC_LDR: 563 if (avic_handle_ldr_update(vcpu)) 564 return 0; 565 break; 566 case APIC_DFR: 567 avic_handle_dfr_update(vcpu); 568 break; 569 default: 570 break; 571 } 572 573 kvm_apic_write_nodecode(vcpu, offset); 574 return 1; 575 } 576 577 static bool is_avic_unaccelerated_access_trap(u32 offset) 578 { 579 bool ret = false; 580 581 switch (offset) { 582 case APIC_ID: 583 case APIC_EOI: 584 case APIC_RRR: 585 case APIC_LDR: 586 case APIC_DFR: 587 case APIC_SPIV: 588 case APIC_ESR: 589 case APIC_ICR: 590 case APIC_LVTT: 591 case APIC_LVTTHMR: 592 case APIC_LVTPC: 593 case APIC_LVT0: 594 case APIC_LVT1: 595 case APIC_LVTERR: 596 case APIC_TMICT: 597 case APIC_TDCR: 598 ret = true; 599 break; 600 default: 601 break; 602 } 603 return ret; 604 } 605 606 int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu) 607 { 608 struct vcpu_svm *svm = to_svm(vcpu); 609 int ret = 0; 610 u32 offset = svm->vmcb->control.exit_info_1 & 611 AVIC_UNACCEL_ACCESS_OFFSET_MASK; 612 u32 vector = svm->vmcb->control.exit_info_2 & 613 AVIC_UNACCEL_ACCESS_VECTOR_MASK; 614 bool write = (svm->vmcb->control.exit_info_1 >> 32) & 615 AVIC_UNACCEL_ACCESS_WRITE_MASK; 616 bool trap = is_avic_unaccelerated_access_trap(offset); 617 618 trace_kvm_avic_unaccelerated_access(vcpu->vcpu_id, offset, 619 trap, write, vector); 620 if (trap) { 621 /* Handling Trap */ 622 WARN_ONCE(!write, "svm: Handling trap read.\n"); 623 ret = avic_unaccel_trap_write(vcpu); 624 } else { 625 /* Handling Fault */ 626 ret = kvm_emulate_instruction(vcpu, 0); 627 } 628 629 return ret; 630 } 631 632 int avic_init_vcpu(struct vcpu_svm *svm) 633 { 634 int ret; 635 struct kvm_vcpu *vcpu = &svm->vcpu; 636 637 if (!enable_apicv || !irqchip_in_kernel(vcpu->kvm)) 638 return 0; 639 640 ret = avic_init_backing_page(vcpu); 641 if (ret) 642 return ret; 643 644 INIT_LIST_HEAD(&svm->ir_list); 645 spin_lock_init(&svm->ir_list_lock); 646 svm->dfr_reg = APIC_DFR_FLAT; 647 648 return ret; 649 } 650 651 void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu) 652 { 653 avic_handle_dfr_update(vcpu); 654 avic_handle_ldr_update(vcpu); 655 } 656 657 static int avic_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate) 658 { 659 int ret = 0; 660 unsigned long flags; 661 struct amd_svm_iommu_ir *ir; 662 struct vcpu_svm *svm = to_svm(vcpu); 663 664 if (!kvm_arch_has_assigned_device(vcpu->kvm)) 665 return 0; 666 667 /* 668 * Here, we go through the per-vcpu ir_list to update all existing 669 * interrupt remapping table entry targeting this vcpu. 670 */ 671 spin_lock_irqsave(&svm->ir_list_lock, flags); 672 673 if (list_empty(&svm->ir_list)) 674 goto out; 675 676 list_for_each_entry(ir, &svm->ir_list, node) { 677 if (activate) 678 ret = amd_iommu_activate_guest_mode(ir->data); 679 else 680 ret = amd_iommu_deactivate_guest_mode(ir->data); 681 if (ret) 682 break; 683 } 684 out: 685 spin_unlock_irqrestore(&svm->ir_list_lock, flags); 686 return ret; 687 } 688 689 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi) 690 { 691 unsigned long flags; 692 struct amd_svm_iommu_ir *cur; 693 694 spin_lock_irqsave(&svm->ir_list_lock, flags); 695 list_for_each_entry(cur, &svm->ir_list, node) { 696 if (cur->data != pi->ir_data) 697 continue; 698 list_del(&cur->node); 699 kfree(cur); 700 break; 701 } 702 spin_unlock_irqrestore(&svm->ir_list_lock, flags); 703 } 704 705 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi) 706 { 707 int ret = 0; 708 unsigned long flags; 709 struct amd_svm_iommu_ir *ir; 710 711 /** 712 * In some cases, the existing irte is updated and re-set, 713 * so we need to check here if it's already been * added 714 * to the ir_list. 715 */ 716 if (pi->ir_data && (pi->prev_ga_tag != 0)) { 717 struct kvm *kvm = svm->vcpu.kvm; 718 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag); 719 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 720 struct vcpu_svm *prev_svm; 721 722 if (!prev_vcpu) { 723 ret = -EINVAL; 724 goto out; 725 } 726 727 prev_svm = to_svm(prev_vcpu); 728 svm_ir_list_del(prev_svm, pi); 729 } 730 731 /** 732 * Allocating new amd_iommu_pi_data, which will get 733 * add to the per-vcpu ir_list. 734 */ 735 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT); 736 if (!ir) { 737 ret = -ENOMEM; 738 goto out; 739 } 740 ir->data = pi->ir_data; 741 742 spin_lock_irqsave(&svm->ir_list_lock, flags); 743 list_add(&ir->node, &svm->ir_list); 744 spin_unlock_irqrestore(&svm->ir_list_lock, flags); 745 out: 746 return ret; 747 } 748 749 /* 750 * Note: 751 * The HW cannot support posting multicast/broadcast 752 * interrupts to a vCPU. So, we still use legacy interrupt 753 * remapping for these kind of interrupts. 754 * 755 * For lowest-priority interrupts, we only support 756 * those with single CPU as the destination, e.g. user 757 * configures the interrupts via /proc/irq or uses 758 * irqbalance to make the interrupts single-CPU. 759 */ 760 static int 761 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 762 struct vcpu_data *vcpu_info, struct vcpu_svm **svm) 763 { 764 struct kvm_lapic_irq irq; 765 struct kvm_vcpu *vcpu = NULL; 766 767 kvm_set_msi_irq(kvm, e, &irq); 768 769 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) || 770 !kvm_irq_is_postable(&irq)) { 771 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n", 772 __func__, irq.vector); 773 return -1; 774 } 775 776 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__, 777 irq.vector); 778 *svm = to_svm(vcpu); 779 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page)); 780 vcpu_info->vector = irq.vector; 781 782 return 0; 783 } 784 785 /* 786 * avic_pi_update_irte - set IRTE for Posted-Interrupts 787 * 788 * @kvm: kvm 789 * @host_irq: host irq of the interrupt 790 * @guest_irq: gsi of the interrupt 791 * @set: set or unset PI 792 * returns 0 on success, < 0 on failure 793 */ 794 int avic_pi_update_irte(struct kvm *kvm, unsigned int host_irq, 795 uint32_t guest_irq, bool set) 796 { 797 struct kvm_kernel_irq_routing_entry *e; 798 struct kvm_irq_routing_table *irq_rt; 799 int idx, ret = 0; 800 801 if (!kvm_arch_has_assigned_device(kvm) || 802 !irq_remapping_cap(IRQ_POSTING_CAP)) 803 return 0; 804 805 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n", 806 __func__, host_irq, guest_irq, set); 807 808 idx = srcu_read_lock(&kvm->irq_srcu); 809 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); 810 811 if (guest_irq >= irq_rt->nr_rt_entries || 812 hlist_empty(&irq_rt->map[guest_irq])) { 813 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n", 814 guest_irq, irq_rt->nr_rt_entries); 815 goto out; 816 } 817 818 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { 819 struct vcpu_data vcpu_info; 820 struct vcpu_svm *svm = NULL; 821 822 if (e->type != KVM_IRQ_ROUTING_MSI) 823 continue; 824 825 /** 826 * Here, we setup with legacy mode in the following cases: 827 * 1. When cannot target interrupt to a specific vcpu. 828 * 2. Unsetting posted interrupt. 829 * 3. APIC virtualization is disabled for the vcpu. 830 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc) 831 */ 832 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set && 833 kvm_vcpu_apicv_active(&svm->vcpu)) { 834 struct amd_iommu_pi_data pi; 835 836 /* Try to enable guest_mode in IRTE */ 837 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) & 838 AVIC_HPA_MASK); 839 pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id, 840 svm->vcpu.vcpu_id); 841 pi.is_guest_mode = true; 842 pi.vcpu_data = &vcpu_info; 843 ret = irq_set_vcpu_affinity(host_irq, &pi); 844 845 /** 846 * Here, we successfully setting up vcpu affinity in 847 * IOMMU guest mode. Now, we need to store the posted 848 * interrupt information in a per-vcpu ir_list so that 849 * we can reference to them directly when we update vcpu 850 * scheduling information in IOMMU irte. 851 */ 852 if (!ret && pi.is_guest_mode) 853 svm_ir_list_add(svm, &pi); 854 } else { 855 /* Use legacy mode in IRTE */ 856 struct amd_iommu_pi_data pi; 857 858 /** 859 * Here, pi is used to: 860 * - Tell IOMMU to use legacy mode for this interrupt. 861 * - Retrieve ga_tag of prior interrupt remapping data. 862 */ 863 pi.prev_ga_tag = 0; 864 pi.is_guest_mode = false; 865 ret = irq_set_vcpu_affinity(host_irq, &pi); 866 867 /** 868 * Check if the posted interrupt was previously 869 * setup with the guest_mode by checking if the ga_tag 870 * was cached. If so, we need to clean up the per-vcpu 871 * ir_list. 872 */ 873 if (!ret && pi.prev_ga_tag) { 874 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag); 875 struct kvm_vcpu *vcpu; 876 877 vcpu = kvm_get_vcpu_by_id(kvm, id); 878 if (vcpu) 879 svm_ir_list_del(to_svm(vcpu), &pi); 880 } 881 } 882 883 if (!ret && svm) { 884 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id, 885 e->gsi, vcpu_info.vector, 886 vcpu_info.pi_desc_addr, set); 887 } 888 889 if (ret < 0) { 890 pr_err("%s: failed to update PI IRTE\n", __func__); 891 goto out; 892 } 893 } 894 895 ret = 0; 896 out: 897 srcu_read_unlock(&kvm->irq_srcu, idx); 898 return ret; 899 } 900 901 bool avic_check_apicv_inhibit_reasons(enum kvm_apicv_inhibit reason) 902 { 903 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) | 904 BIT(APICV_INHIBIT_REASON_ABSENT) | 905 BIT(APICV_INHIBIT_REASON_HYPERV) | 906 BIT(APICV_INHIBIT_REASON_NESTED) | 907 BIT(APICV_INHIBIT_REASON_IRQWIN) | 908 BIT(APICV_INHIBIT_REASON_PIT_REINJ) | 909 BIT(APICV_INHIBIT_REASON_X2APIC) | 910 BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | 911 BIT(APICV_INHIBIT_REASON_SEV) | 912 BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | 913 BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED); 914 915 return supported & BIT(reason); 916 } 917 918 919 static inline int 920 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r) 921 { 922 int ret = 0; 923 unsigned long flags; 924 struct amd_svm_iommu_ir *ir; 925 struct vcpu_svm *svm = to_svm(vcpu); 926 927 if (!kvm_arch_has_assigned_device(vcpu->kvm)) 928 return 0; 929 930 /* 931 * Here, we go through the per-vcpu ir_list to update all existing 932 * interrupt remapping table entry targeting this vcpu. 933 */ 934 spin_lock_irqsave(&svm->ir_list_lock, flags); 935 936 if (list_empty(&svm->ir_list)) 937 goto out; 938 939 list_for_each_entry(ir, &svm->ir_list, node) { 940 ret = amd_iommu_update_ga(cpu, r, ir->data); 941 if (ret) 942 break; 943 } 944 out: 945 spin_unlock_irqrestore(&svm->ir_list_lock, flags); 946 return ret; 947 } 948 949 void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 950 { 951 u64 entry; 952 int h_physical_id = kvm_cpu_get_apicid(cpu); 953 struct vcpu_svm *svm = to_svm(vcpu); 954 955 lockdep_assert_preemption_disabled(); 956 957 if (WARN_ON(h_physical_id & ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK)) 958 return; 959 960 /* 961 * No need to update anything if the vCPU is blocking, i.e. if the vCPU 962 * is being scheduled in after being preempted. The CPU entries in the 963 * Physical APIC table and IRTE are consumed iff IsRun{ning} is '1'. 964 * If the vCPU was migrated, its new CPU value will be stuffed when the 965 * vCPU unblocks. 966 */ 967 if (kvm_vcpu_is_blocking(vcpu)) 968 return; 969 970 entry = READ_ONCE(*(svm->avic_physical_id_cache)); 971 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK); 972 973 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK; 974 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK); 975 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; 976 977 WRITE_ONCE(*(svm->avic_physical_id_cache), entry); 978 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, true); 979 } 980 981 void avic_vcpu_put(struct kvm_vcpu *vcpu) 982 { 983 u64 entry; 984 struct vcpu_svm *svm = to_svm(vcpu); 985 986 lockdep_assert_preemption_disabled(); 987 988 entry = READ_ONCE(*(svm->avic_physical_id_cache)); 989 990 /* Nothing to do if IsRunning == '0' due to vCPU blocking. */ 991 if (!(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)) 992 return; 993 994 avic_update_iommu_vcpu_affinity(vcpu, -1, 0); 995 996 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; 997 WRITE_ONCE(*(svm->avic_physical_id_cache), entry); 998 } 999 1000 1001 void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 1002 { 1003 struct vcpu_svm *svm = to_svm(vcpu); 1004 struct vmcb *vmcb = svm->vmcb01.ptr; 1005 bool activated = kvm_vcpu_apicv_active(vcpu); 1006 1007 if (!enable_apicv) 1008 return; 1009 1010 if (activated) { 1011 /** 1012 * During AVIC temporary deactivation, guest could update 1013 * APIC ID, DFR and LDR registers, which would not be trapped 1014 * by avic_unaccelerated_access_interception(). In this case, 1015 * we need to check and update the AVIC logical APIC ID table 1016 * accordingly before re-activating. 1017 */ 1018 avic_apicv_post_state_restore(vcpu); 1019 vmcb->control.int_ctl |= AVIC_ENABLE_MASK; 1020 } else { 1021 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK; 1022 } 1023 vmcb_mark_dirty(vmcb, VMCB_AVIC); 1024 1025 if (activated) 1026 avic_vcpu_load(vcpu, vcpu->cpu); 1027 else 1028 avic_vcpu_put(vcpu); 1029 1030 avic_set_pi_irte_mode(vcpu, activated); 1031 } 1032 1033 void avic_vcpu_blocking(struct kvm_vcpu *vcpu) 1034 { 1035 if (!kvm_vcpu_apicv_active(vcpu)) 1036 return; 1037 1038 /* 1039 * Unload the AVIC when the vCPU is about to block, _before_ 1040 * the vCPU actually blocks. 1041 * 1042 * Any IRQs that arrive before IsRunning=0 will not cause an 1043 * incomplete IPI vmexit on the source, therefore vIRR will also 1044 * be checked by kvm_vcpu_check_block() before blocking. The 1045 * memory barrier implicit in set_current_state orders writing 1046 * IsRunning=0 before reading the vIRR. The processor needs a 1047 * matching memory barrier on interrupt delivery between writing 1048 * IRR and reading IsRunning; the lack of this barrier might be 1049 * the cause of errata #1235). 1050 */ 1051 avic_vcpu_put(vcpu); 1052 } 1053 1054 void avic_vcpu_unblocking(struct kvm_vcpu *vcpu) 1055 { 1056 if (!kvm_vcpu_apicv_active(vcpu)) 1057 return; 1058 1059 avic_vcpu_load(vcpu, vcpu->cpu); 1060 } 1061