1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * AMD SVM support 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Yaniv Kamay <yaniv@qumranet.com> 12 * Avi Kivity <avi@qumranet.com> 13 */ 14 15 #define pr_fmt(fmt) "SVM: " fmt 16 17 #include <linux/kvm_types.h> 18 #include <linux/hashtable.h> 19 #include <linux/amd-iommu.h> 20 #include <linux/kvm_host.h> 21 22 #include <asm/irq_remapping.h> 23 24 #include "trace.h" 25 #include "lapic.h" 26 #include "x86.h" 27 #include "irq.h" 28 #include "svm.h" 29 30 /* AVIC GATAG is encoded using VM and VCPU IDs */ 31 #define AVIC_VCPU_ID_BITS 8 32 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1) 33 34 #define AVIC_VM_ID_BITS 24 35 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS) 36 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1) 37 38 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \ 39 (y & AVIC_VCPU_ID_MASK)) 40 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK) 41 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK) 42 43 /* Note: 44 * This hash table is used to map VM_ID to a struct kvm_svm, 45 * when handling AMD IOMMU GALOG notification to schedule in 46 * a particular vCPU. 47 */ 48 #define SVM_VM_DATA_HASH_BITS 8 49 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS); 50 static u32 next_vm_id = 0; 51 static bool next_vm_id_wrapped = 0; 52 static DEFINE_SPINLOCK(svm_vm_data_hash_lock); 53 54 /* 55 * This is a wrapper of struct amd_iommu_ir_data. 56 */ 57 struct amd_svm_iommu_ir { 58 struct list_head node; /* Used by SVM for per-vcpu ir_list */ 59 void *data; /* Storing pointer to struct amd_ir_data */ 60 }; 61 62 63 /* Note: 64 * This function is called from IOMMU driver to notify 65 * SVM to schedule in a particular vCPU of a particular VM. 66 */ 67 int avic_ga_log_notifier(u32 ga_tag) 68 { 69 unsigned long flags; 70 struct kvm_svm *kvm_svm; 71 struct kvm_vcpu *vcpu = NULL; 72 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag); 73 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag); 74 75 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id); 76 trace_kvm_avic_ga_log(vm_id, vcpu_id); 77 78 spin_lock_irqsave(&svm_vm_data_hash_lock, flags); 79 hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) { 80 if (kvm_svm->avic_vm_id != vm_id) 81 continue; 82 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id); 83 break; 84 } 85 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); 86 87 /* Note: 88 * At this point, the IOMMU should have already set the pending 89 * bit in the vAPIC backing page. So, we just need to schedule 90 * in the vcpu. 91 */ 92 if (vcpu) 93 kvm_vcpu_wake_up(vcpu); 94 95 return 0; 96 } 97 98 void avic_vm_destroy(struct kvm *kvm) 99 { 100 unsigned long flags; 101 struct kvm_svm *kvm_svm = to_kvm_svm(kvm); 102 103 if (!enable_apicv) 104 return; 105 106 if (kvm_svm->avic_logical_id_table_page) 107 __free_page(kvm_svm->avic_logical_id_table_page); 108 if (kvm_svm->avic_physical_id_table_page) 109 __free_page(kvm_svm->avic_physical_id_table_page); 110 111 spin_lock_irqsave(&svm_vm_data_hash_lock, flags); 112 hash_del(&kvm_svm->hnode); 113 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); 114 } 115 116 int avic_vm_init(struct kvm *kvm) 117 { 118 unsigned long flags; 119 int err = -ENOMEM; 120 struct kvm_svm *kvm_svm = to_kvm_svm(kvm); 121 struct kvm_svm *k2; 122 struct page *p_page; 123 struct page *l_page; 124 u32 vm_id; 125 126 if (!enable_apicv) 127 return 0; 128 129 /* Allocating physical APIC ID table (4KB) */ 130 p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 131 if (!p_page) 132 goto free_avic; 133 134 kvm_svm->avic_physical_id_table_page = p_page; 135 136 /* Allocating logical APIC ID table (4KB) */ 137 l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 138 if (!l_page) 139 goto free_avic; 140 141 kvm_svm->avic_logical_id_table_page = l_page; 142 143 spin_lock_irqsave(&svm_vm_data_hash_lock, flags); 144 again: 145 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK; 146 if (vm_id == 0) { /* id is 1-based, zero is not okay */ 147 next_vm_id_wrapped = 1; 148 goto again; 149 } 150 /* Is it still in use? Only possible if wrapped at least once */ 151 if (next_vm_id_wrapped) { 152 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) { 153 if (k2->avic_vm_id == vm_id) 154 goto again; 155 } 156 } 157 kvm_svm->avic_vm_id = vm_id; 158 hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id); 159 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); 160 161 return 0; 162 163 free_avic: 164 avic_vm_destroy(kvm); 165 return err; 166 } 167 168 void avic_init_vmcb(struct vcpu_svm *svm) 169 { 170 struct vmcb *vmcb = svm->vmcb; 171 struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm); 172 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page)); 173 phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page)); 174 phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page)); 175 176 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK; 177 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK; 178 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK; 179 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT; 180 vmcb->control.avic_vapic_bar = APIC_DEFAULT_PHYS_BASE & VMCB_AVIC_APIC_BAR_MASK; 181 182 if (kvm_apicv_activated(svm->vcpu.kvm)) 183 vmcb->control.int_ctl |= AVIC_ENABLE_MASK; 184 else 185 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK; 186 } 187 188 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu, 189 unsigned int index) 190 { 191 u64 *avic_physical_id_table; 192 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm); 193 194 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT) 195 return NULL; 196 197 avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page); 198 199 return &avic_physical_id_table[index]; 200 } 201 202 /* 203 * Note: 204 * AVIC hardware walks the nested page table to check permissions, 205 * but does not use the SPA address specified in the leaf page 206 * table entry since it uses address in the AVIC_BACKING_PAGE pointer 207 * field of the VMCB. Therefore, we set up the 208 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here. 209 */ 210 static int avic_alloc_access_page(struct kvm *kvm) 211 { 212 void __user *ret; 213 int r = 0; 214 215 mutex_lock(&kvm->slots_lock); 216 217 if (kvm->arch.apic_access_memslot_enabled) 218 goto out; 219 220 ret = __x86_set_memory_region(kvm, 221 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 222 APIC_DEFAULT_PHYS_BASE, 223 PAGE_SIZE); 224 if (IS_ERR(ret)) { 225 r = PTR_ERR(ret); 226 goto out; 227 } 228 229 kvm->arch.apic_access_memslot_enabled = true; 230 out: 231 mutex_unlock(&kvm->slots_lock); 232 return r; 233 } 234 235 static int avic_init_backing_page(struct kvm_vcpu *vcpu) 236 { 237 u64 *entry, new_entry; 238 int id = vcpu->vcpu_id; 239 struct vcpu_svm *svm = to_svm(vcpu); 240 241 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT) 242 return -EINVAL; 243 244 if (!vcpu->arch.apic->regs) 245 return -EINVAL; 246 247 if (kvm_apicv_activated(vcpu->kvm)) { 248 int ret; 249 250 ret = avic_alloc_access_page(vcpu->kvm); 251 if (ret) 252 return ret; 253 } 254 255 svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs); 256 257 /* Setting AVIC backing page address in the phy APIC ID table */ 258 entry = avic_get_physical_id_entry(vcpu, id); 259 if (!entry) 260 return -EINVAL; 261 262 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) & 263 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) | 264 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK); 265 WRITE_ONCE(*entry, new_entry); 266 267 svm->avic_physical_id_cache = entry; 268 269 return 0; 270 } 271 272 void avic_ring_doorbell(struct kvm_vcpu *vcpu) 273 { 274 /* 275 * Note, the vCPU could get migrated to a different pCPU at any point, 276 * which could result in signalling the wrong/previous pCPU. But if 277 * that happens the vCPU is guaranteed to do a VMRUN (after being 278 * migrated) and thus will process pending interrupts, i.e. a doorbell 279 * is not needed (and the spurious one is harmless). 280 */ 281 int cpu = READ_ONCE(vcpu->cpu); 282 283 if (cpu != get_cpu()) 284 wrmsrl(MSR_AMD64_SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpu)); 285 put_cpu(); 286 } 287 288 static void avic_kick_target_vcpus(struct kvm *kvm, struct kvm_lapic *source, 289 u32 icrl, u32 icrh) 290 { 291 struct kvm_vcpu *vcpu; 292 unsigned long i; 293 294 /* 295 * Wake any target vCPUs that are blocking, i.e. waiting for a wake 296 * event. There's no need to signal doorbells, as hardware has handled 297 * vCPUs that were in guest at the time of the IPI, and vCPUs that have 298 * since entered the guest will have processed pending IRQs at VMRUN. 299 */ 300 kvm_for_each_vcpu(i, vcpu, kvm) { 301 if (kvm_apic_match_dest(vcpu, source, icrl & APIC_SHORT_MASK, 302 GET_APIC_DEST_FIELD(icrh), 303 icrl & APIC_DEST_MASK)) { 304 vcpu->arch.apic->irr_pending = true; 305 svm_complete_interrupt_delivery(vcpu, 306 icrl & APIC_MODE_MASK, 307 icrl & APIC_INT_LEVELTRIG, 308 icrl & APIC_VECTOR_MASK); 309 } 310 } 311 } 312 313 int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu) 314 { 315 struct vcpu_svm *svm = to_svm(vcpu); 316 u32 icrh = svm->vmcb->control.exit_info_1 >> 32; 317 u32 icrl = svm->vmcb->control.exit_info_1; 318 u32 id = svm->vmcb->control.exit_info_2 >> 32; 319 u32 index = svm->vmcb->control.exit_info_2 & 0xFF; 320 struct kvm_lapic *apic = vcpu->arch.apic; 321 322 trace_kvm_avic_incomplete_ipi(vcpu->vcpu_id, icrh, icrl, id, index); 323 324 switch (id) { 325 case AVIC_IPI_FAILURE_INVALID_INT_TYPE: 326 /* 327 * Emulate IPIs that are not handled by AVIC hardware, which 328 * only virtualizes Fixed, Edge-Triggered INTRs. The exit is 329 * a trap, e.g. ICR holds the correct value and RIP has been 330 * advanced, KVM is responsible only for emulating the IPI. 331 * Sadly, hardware may sometimes leave the BUSY flag set, in 332 * which case KVM needs to emulate the ICR write as well in 333 * order to clear the BUSY flag. 334 */ 335 if (icrl & APIC_ICR_BUSY) 336 kvm_apic_write_nodecode(vcpu, APIC_ICR); 337 else 338 kvm_apic_send_ipi(apic, icrl, icrh); 339 break; 340 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: 341 /* 342 * At this point, we expect that the AVIC HW has already 343 * set the appropriate IRR bits on the valid target 344 * vcpus. So, we just need to kick the appropriate vcpu. 345 */ 346 avic_kick_target_vcpus(vcpu->kvm, apic, icrl, icrh); 347 break; 348 case AVIC_IPI_FAILURE_INVALID_TARGET: 349 break; 350 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE: 351 WARN_ONCE(1, "Invalid backing page\n"); 352 break; 353 default: 354 pr_err("Unknown IPI interception\n"); 355 } 356 357 return 1; 358 } 359 360 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat) 361 { 362 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm); 363 int index; 364 u32 *logical_apic_id_table; 365 int dlid = GET_APIC_LOGICAL_ID(ldr); 366 367 if (!dlid) 368 return NULL; 369 370 if (flat) { /* flat */ 371 index = ffs(dlid) - 1; 372 if (index > 7) 373 return NULL; 374 } else { /* cluster */ 375 int cluster = (dlid & 0xf0) >> 4; 376 int apic = ffs(dlid & 0x0f) - 1; 377 378 if ((apic < 0) || (apic > 7) || 379 (cluster >= 0xf)) 380 return NULL; 381 index = (cluster << 2) + apic; 382 } 383 384 logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page); 385 386 return &logical_apic_id_table[index]; 387 } 388 389 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr) 390 { 391 bool flat; 392 u32 *entry, new_entry; 393 394 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT; 395 entry = avic_get_logical_id_entry(vcpu, ldr, flat); 396 if (!entry) 397 return -EINVAL; 398 399 new_entry = READ_ONCE(*entry); 400 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK; 401 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK); 402 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK; 403 WRITE_ONCE(*entry, new_entry); 404 405 return 0; 406 } 407 408 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu) 409 { 410 struct vcpu_svm *svm = to_svm(vcpu); 411 bool flat = svm->dfr_reg == APIC_DFR_FLAT; 412 u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat); 413 414 if (entry) 415 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry); 416 } 417 418 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu) 419 { 420 int ret = 0; 421 struct vcpu_svm *svm = to_svm(vcpu); 422 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR); 423 u32 id = kvm_xapic_id(vcpu->arch.apic); 424 425 if (ldr == svm->ldr_reg) 426 return 0; 427 428 avic_invalidate_logical_id_entry(vcpu); 429 430 if (ldr) 431 ret = avic_ldr_write(vcpu, id, ldr); 432 433 if (!ret) 434 svm->ldr_reg = ldr; 435 436 return ret; 437 } 438 439 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu) 440 { 441 u64 *old, *new; 442 struct vcpu_svm *svm = to_svm(vcpu); 443 u32 id = kvm_xapic_id(vcpu->arch.apic); 444 445 if (vcpu->vcpu_id == id) 446 return 0; 447 448 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id); 449 new = avic_get_physical_id_entry(vcpu, id); 450 if (!new || !old) 451 return 1; 452 453 /* We need to move physical_id_entry to new offset */ 454 *new = *old; 455 *old = 0ULL; 456 to_svm(vcpu)->avic_physical_id_cache = new; 457 458 /* 459 * Also update the guest physical APIC ID in the logical 460 * APIC ID table entry if already setup the LDR. 461 */ 462 if (svm->ldr_reg) 463 avic_handle_ldr_update(vcpu); 464 465 return 0; 466 } 467 468 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu) 469 { 470 struct vcpu_svm *svm = to_svm(vcpu); 471 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR); 472 473 if (svm->dfr_reg == dfr) 474 return; 475 476 avic_invalidate_logical_id_entry(vcpu); 477 svm->dfr_reg = dfr; 478 } 479 480 static int avic_unaccel_trap_write(struct kvm_vcpu *vcpu) 481 { 482 u32 offset = to_svm(vcpu)->vmcb->control.exit_info_1 & 483 AVIC_UNACCEL_ACCESS_OFFSET_MASK; 484 485 switch (offset) { 486 case APIC_ID: 487 if (avic_handle_apic_id_update(vcpu)) 488 return 0; 489 break; 490 case APIC_LDR: 491 if (avic_handle_ldr_update(vcpu)) 492 return 0; 493 break; 494 case APIC_DFR: 495 avic_handle_dfr_update(vcpu); 496 break; 497 default: 498 break; 499 } 500 501 kvm_apic_write_nodecode(vcpu, offset); 502 return 1; 503 } 504 505 static bool is_avic_unaccelerated_access_trap(u32 offset) 506 { 507 bool ret = false; 508 509 switch (offset) { 510 case APIC_ID: 511 case APIC_EOI: 512 case APIC_RRR: 513 case APIC_LDR: 514 case APIC_DFR: 515 case APIC_SPIV: 516 case APIC_ESR: 517 case APIC_ICR: 518 case APIC_LVTT: 519 case APIC_LVTTHMR: 520 case APIC_LVTPC: 521 case APIC_LVT0: 522 case APIC_LVT1: 523 case APIC_LVTERR: 524 case APIC_TMICT: 525 case APIC_TDCR: 526 ret = true; 527 break; 528 default: 529 break; 530 } 531 return ret; 532 } 533 534 int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu) 535 { 536 struct vcpu_svm *svm = to_svm(vcpu); 537 int ret = 0; 538 u32 offset = svm->vmcb->control.exit_info_1 & 539 AVIC_UNACCEL_ACCESS_OFFSET_MASK; 540 u32 vector = svm->vmcb->control.exit_info_2 & 541 AVIC_UNACCEL_ACCESS_VECTOR_MASK; 542 bool write = (svm->vmcb->control.exit_info_1 >> 32) & 543 AVIC_UNACCEL_ACCESS_WRITE_MASK; 544 bool trap = is_avic_unaccelerated_access_trap(offset); 545 546 trace_kvm_avic_unaccelerated_access(vcpu->vcpu_id, offset, 547 trap, write, vector); 548 if (trap) { 549 /* Handling Trap */ 550 WARN_ONCE(!write, "svm: Handling trap read.\n"); 551 ret = avic_unaccel_trap_write(vcpu); 552 } else { 553 /* Handling Fault */ 554 ret = kvm_emulate_instruction(vcpu, 0); 555 } 556 557 return ret; 558 } 559 560 int avic_init_vcpu(struct vcpu_svm *svm) 561 { 562 int ret; 563 struct kvm_vcpu *vcpu = &svm->vcpu; 564 565 if (!enable_apicv || !irqchip_in_kernel(vcpu->kvm)) 566 return 0; 567 568 ret = avic_init_backing_page(vcpu); 569 if (ret) 570 return ret; 571 572 INIT_LIST_HEAD(&svm->ir_list); 573 spin_lock_init(&svm->ir_list_lock); 574 svm->dfr_reg = APIC_DFR_FLAT; 575 576 return ret; 577 } 578 579 void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu) 580 { 581 if (avic_handle_apic_id_update(vcpu) != 0) 582 return; 583 avic_handle_dfr_update(vcpu); 584 avic_handle_ldr_update(vcpu); 585 } 586 587 static int avic_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate) 588 { 589 int ret = 0; 590 unsigned long flags; 591 struct amd_svm_iommu_ir *ir; 592 struct vcpu_svm *svm = to_svm(vcpu); 593 594 if (!kvm_arch_has_assigned_device(vcpu->kvm)) 595 return 0; 596 597 /* 598 * Here, we go through the per-vcpu ir_list to update all existing 599 * interrupt remapping table entry targeting this vcpu. 600 */ 601 spin_lock_irqsave(&svm->ir_list_lock, flags); 602 603 if (list_empty(&svm->ir_list)) 604 goto out; 605 606 list_for_each_entry(ir, &svm->ir_list, node) { 607 if (activate) 608 ret = amd_iommu_activate_guest_mode(ir->data); 609 else 610 ret = amd_iommu_deactivate_guest_mode(ir->data); 611 if (ret) 612 break; 613 } 614 out: 615 spin_unlock_irqrestore(&svm->ir_list_lock, flags); 616 return ret; 617 } 618 619 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi) 620 { 621 unsigned long flags; 622 struct amd_svm_iommu_ir *cur; 623 624 spin_lock_irqsave(&svm->ir_list_lock, flags); 625 list_for_each_entry(cur, &svm->ir_list, node) { 626 if (cur->data != pi->ir_data) 627 continue; 628 list_del(&cur->node); 629 kfree(cur); 630 break; 631 } 632 spin_unlock_irqrestore(&svm->ir_list_lock, flags); 633 } 634 635 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi) 636 { 637 int ret = 0; 638 unsigned long flags; 639 struct amd_svm_iommu_ir *ir; 640 641 /** 642 * In some cases, the existing irte is updated and re-set, 643 * so we need to check here if it's already been * added 644 * to the ir_list. 645 */ 646 if (pi->ir_data && (pi->prev_ga_tag != 0)) { 647 struct kvm *kvm = svm->vcpu.kvm; 648 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag); 649 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); 650 struct vcpu_svm *prev_svm; 651 652 if (!prev_vcpu) { 653 ret = -EINVAL; 654 goto out; 655 } 656 657 prev_svm = to_svm(prev_vcpu); 658 svm_ir_list_del(prev_svm, pi); 659 } 660 661 /** 662 * Allocating new amd_iommu_pi_data, which will get 663 * add to the per-vcpu ir_list. 664 */ 665 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT); 666 if (!ir) { 667 ret = -ENOMEM; 668 goto out; 669 } 670 ir->data = pi->ir_data; 671 672 spin_lock_irqsave(&svm->ir_list_lock, flags); 673 list_add(&ir->node, &svm->ir_list); 674 spin_unlock_irqrestore(&svm->ir_list_lock, flags); 675 out: 676 return ret; 677 } 678 679 /* 680 * Note: 681 * The HW cannot support posting multicast/broadcast 682 * interrupts to a vCPU. So, we still use legacy interrupt 683 * remapping for these kind of interrupts. 684 * 685 * For lowest-priority interrupts, we only support 686 * those with single CPU as the destination, e.g. user 687 * configures the interrupts via /proc/irq or uses 688 * irqbalance to make the interrupts single-CPU. 689 */ 690 static int 691 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, 692 struct vcpu_data *vcpu_info, struct vcpu_svm **svm) 693 { 694 struct kvm_lapic_irq irq; 695 struct kvm_vcpu *vcpu = NULL; 696 697 kvm_set_msi_irq(kvm, e, &irq); 698 699 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) || 700 !kvm_irq_is_postable(&irq)) { 701 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n", 702 __func__, irq.vector); 703 return -1; 704 } 705 706 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__, 707 irq.vector); 708 *svm = to_svm(vcpu); 709 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page)); 710 vcpu_info->vector = irq.vector; 711 712 return 0; 713 } 714 715 /* 716 * avic_pi_update_irte - set IRTE for Posted-Interrupts 717 * 718 * @kvm: kvm 719 * @host_irq: host irq of the interrupt 720 * @guest_irq: gsi of the interrupt 721 * @set: set or unset PI 722 * returns 0 on success, < 0 on failure 723 */ 724 int avic_pi_update_irte(struct kvm *kvm, unsigned int host_irq, 725 uint32_t guest_irq, bool set) 726 { 727 struct kvm_kernel_irq_routing_entry *e; 728 struct kvm_irq_routing_table *irq_rt; 729 int idx, ret = 0; 730 731 if (!kvm_arch_has_assigned_device(kvm) || 732 !irq_remapping_cap(IRQ_POSTING_CAP)) 733 return 0; 734 735 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n", 736 __func__, host_irq, guest_irq, set); 737 738 idx = srcu_read_lock(&kvm->irq_srcu); 739 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); 740 741 if (guest_irq >= irq_rt->nr_rt_entries || 742 hlist_empty(&irq_rt->map[guest_irq])) { 743 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n", 744 guest_irq, irq_rt->nr_rt_entries); 745 goto out; 746 } 747 748 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { 749 struct vcpu_data vcpu_info; 750 struct vcpu_svm *svm = NULL; 751 752 if (e->type != KVM_IRQ_ROUTING_MSI) 753 continue; 754 755 /** 756 * Here, we setup with legacy mode in the following cases: 757 * 1. When cannot target interrupt to a specific vcpu. 758 * 2. Unsetting posted interrupt. 759 * 3. APIC virtualization is disabled for the vcpu. 760 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc) 761 */ 762 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set && 763 kvm_vcpu_apicv_active(&svm->vcpu)) { 764 struct amd_iommu_pi_data pi; 765 766 /* Try to enable guest_mode in IRTE */ 767 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) & 768 AVIC_HPA_MASK); 769 pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id, 770 svm->vcpu.vcpu_id); 771 pi.is_guest_mode = true; 772 pi.vcpu_data = &vcpu_info; 773 ret = irq_set_vcpu_affinity(host_irq, &pi); 774 775 /** 776 * Here, we successfully setting up vcpu affinity in 777 * IOMMU guest mode. Now, we need to store the posted 778 * interrupt information in a per-vcpu ir_list so that 779 * we can reference to them directly when we update vcpu 780 * scheduling information in IOMMU irte. 781 */ 782 if (!ret && pi.is_guest_mode) 783 svm_ir_list_add(svm, &pi); 784 } else { 785 /* Use legacy mode in IRTE */ 786 struct amd_iommu_pi_data pi; 787 788 /** 789 * Here, pi is used to: 790 * - Tell IOMMU to use legacy mode for this interrupt. 791 * - Retrieve ga_tag of prior interrupt remapping data. 792 */ 793 pi.prev_ga_tag = 0; 794 pi.is_guest_mode = false; 795 ret = irq_set_vcpu_affinity(host_irq, &pi); 796 797 /** 798 * Check if the posted interrupt was previously 799 * setup with the guest_mode by checking if the ga_tag 800 * was cached. If so, we need to clean up the per-vcpu 801 * ir_list. 802 */ 803 if (!ret && pi.prev_ga_tag) { 804 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag); 805 struct kvm_vcpu *vcpu; 806 807 vcpu = kvm_get_vcpu_by_id(kvm, id); 808 if (vcpu) 809 svm_ir_list_del(to_svm(vcpu), &pi); 810 } 811 } 812 813 if (!ret && svm) { 814 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id, 815 e->gsi, vcpu_info.vector, 816 vcpu_info.pi_desc_addr, set); 817 } 818 819 if (ret < 0) { 820 pr_err("%s: failed to update PI IRTE\n", __func__); 821 goto out; 822 } 823 } 824 825 ret = 0; 826 out: 827 srcu_read_unlock(&kvm->irq_srcu, idx); 828 return ret; 829 } 830 831 bool avic_check_apicv_inhibit_reasons(enum kvm_apicv_inhibit reason) 832 { 833 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) | 834 BIT(APICV_INHIBIT_REASON_ABSENT) | 835 BIT(APICV_INHIBIT_REASON_HYPERV) | 836 BIT(APICV_INHIBIT_REASON_NESTED) | 837 BIT(APICV_INHIBIT_REASON_IRQWIN) | 838 BIT(APICV_INHIBIT_REASON_PIT_REINJ) | 839 BIT(APICV_INHIBIT_REASON_X2APIC) | 840 BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | 841 BIT(APICV_INHIBIT_REASON_SEV); 842 843 return supported & BIT(reason); 844 } 845 846 847 static inline int 848 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r) 849 { 850 int ret = 0; 851 unsigned long flags; 852 struct amd_svm_iommu_ir *ir; 853 struct vcpu_svm *svm = to_svm(vcpu); 854 855 if (!kvm_arch_has_assigned_device(vcpu->kvm)) 856 return 0; 857 858 /* 859 * Here, we go through the per-vcpu ir_list to update all existing 860 * interrupt remapping table entry targeting this vcpu. 861 */ 862 spin_lock_irqsave(&svm->ir_list_lock, flags); 863 864 if (list_empty(&svm->ir_list)) 865 goto out; 866 867 list_for_each_entry(ir, &svm->ir_list, node) { 868 ret = amd_iommu_update_ga(cpu, r, ir->data); 869 if (ret) 870 break; 871 } 872 out: 873 spin_unlock_irqrestore(&svm->ir_list_lock, flags); 874 return ret; 875 } 876 877 void __avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 878 { 879 u64 entry; 880 int h_physical_id = kvm_cpu_get_apicid(cpu); 881 struct vcpu_svm *svm = to_svm(vcpu); 882 883 lockdep_assert_preemption_disabled(); 884 885 if (WARN_ON(h_physical_id & ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK)) 886 return; 887 888 /* 889 * No need to update anything if the vCPU is blocking, i.e. if the vCPU 890 * is being scheduled in after being preempted. The CPU entries in the 891 * Physical APIC table and IRTE are consumed iff IsRun{ning} is '1'. 892 * If the vCPU was migrated, its new CPU value will be stuffed when the 893 * vCPU unblocks. 894 */ 895 if (kvm_vcpu_is_blocking(vcpu)) 896 return; 897 898 entry = READ_ONCE(*(svm->avic_physical_id_cache)); 899 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK); 900 901 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK; 902 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK); 903 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; 904 905 WRITE_ONCE(*(svm->avic_physical_id_cache), entry); 906 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, true); 907 } 908 909 void __avic_vcpu_put(struct kvm_vcpu *vcpu) 910 { 911 u64 entry; 912 struct vcpu_svm *svm = to_svm(vcpu); 913 914 lockdep_assert_preemption_disabled(); 915 916 entry = READ_ONCE(*(svm->avic_physical_id_cache)); 917 918 /* Nothing to do if IsRunning == '0' due to vCPU blocking. */ 919 if (!(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)) 920 return; 921 922 avic_update_iommu_vcpu_affinity(vcpu, -1, 0); 923 924 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; 925 WRITE_ONCE(*(svm->avic_physical_id_cache), entry); 926 } 927 928 static void avic_vcpu_load(struct kvm_vcpu *vcpu) 929 { 930 int cpu = get_cpu(); 931 932 WARN_ON(cpu != vcpu->cpu); 933 934 __avic_vcpu_load(vcpu, cpu); 935 936 put_cpu(); 937 } 938 939 static void avic_vcpu_put(struct kvm_vcpu *vcpu) 940 { 941 preempt_disable(); 942 943 __avic_vcpu_put(vcpu); 944 945 preempt_enable(); 946 } 947 948 void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 949 { 950 struct vcpu_svm *svm = to_svm(vcpu); 951 struct vmcb *vmcb = svm->vmcb01.ptr; 952 bool activated = kvm_vcpu_apicv_active(vcpu); 953 954 if (!enable_apicv) 955 return; 956 957 if (activated) { 958 /** 959 * During AVIC temporary deactivation, guest could update 960 * APIC ID, DFR and LDR registers, which would not be trapped 961 * by avic_unaccelerated_access_interception(). In this case, 962 * we need to check and update the AVIC logical APIC ID table 963 * accordingly before re-activating. 964 */ 965 avic_apicv_post_state_restore(vcpu); 966 vmcb->control.int_ctl |= AVIC_ENABLE_MASK; 967 } else { 968 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK; 969 } 970 vmcb_mark_dirty(vmcb, VMCB_AVIC); 971 972 if (activated) 973 avic_vcpu_load(vcpu); 974 else 975 avic_vcpu_put(vcpu); 976 977 avic_set_pi_irte_mode(vcpu, activated); 978 } 979 980 void avic_vcpu_blocking(struct kvm_vcpu *vcpu) 981 { 982 if (!kvm_vcpu_apicv_active(vcpu)) 983 return; 984 985 /* 986 * Unload the AVIC when the vCPU is about to block, _before_ 987 * the vCPU actually blocks. 988 * 989 * Any IRQs that arrive before IsRunning=0 will not cause an 990 * incomplete IPI vmexit on the source, therefore vIRR will also 991 * be checked by kvm_vcpu_check_block() before blocking. The 992 * memory barrier implicit in set_current_state orders writing 993 * IsRunning=0 before reading the vIRR. The processor needs a 994 * matching memory barrier on interrupt delivery between writing 995 * IRR and reading IsRunning; the lack of this barrier might be 996 * the cause of errata #1235). 997 */ 998 avic_vcpu_put(vcpu); 999 } 1000 1001 void avic_vcpu_unblocking(struct kvm_vcpu *vcpu) 1002 { 1003 if (!kvm_vcpu_apicv_active(vcpu)) 1004 return; 1005 1006 avic_vcpu_load(vcpu); 1007 } 1008