xref: /openbmc/linux/arch/x86/kvm/reverse_cpuid.h (revision aaa746ad)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_REVERSE_CPUID_H
3 #define ARCH_X86_KVM_REVERSE_CPUID_H
4 
5 #include <uapi/asm/kvm.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cpufeatures.h>
8 
9 /*
10  * Hardware-defined CPUID leafs that are either scattered by the kernel or are
11  * unknown to the kernel, but need to be directly used by KVM.  Note, these
12  * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
13  */
14 enum kvm_only_cpuid_leafs {
15 	CPUID_12_EAX	 = NCAPINTS,
16 	CPUID_7_1_EDX,
17 	NR_KVM_CPU_CAPS,
18 
19 	NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
20 };
21 
22 /*
23  * Define a KVM-only feature flag.
24  *
25  * For features that are scattered by cpufeatures.h, __feature_translate() also
26  * needs to be updated to translate the kernel-defined feature into the
27  * KVM-defined feature.
28  *
29  * For features that are 100% KVM-only, i.e. not defined by cpufeatures.h,
30  * forego the intermediate KVM_X86_FEATURE and directly define X86_FEATURE_* so
31  * that X86_FEATURE_* can be used in KVM.  No __feature_translate() handling is
32  * needed in this case.
33  */
34 #define KVM_X86_FEATURE(w, f)		((w)*32 + (f))
35 
36 /* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */
37 #define KVM_X86_FEATURE_SGX1		KVM_X86_FEATURE(CPUID_12_EAX, 0)
38 #define KVM_X86_FEATURE_SGX2		KVM_X86_FEATURE(CPUID_12_EAX, 1)
39 #define KVM_X86_FEATURE_SGX_EDECCSSA	KVM_X86_FEATURE(CPUID_12_EAX, 11)
40 
41 /* Intel-defined sub-features, CPUID level 0x00000007:1 (EDX) */
42 #define X86_FEATURE_AVX_VNNI_INT8       KVM_X86_FEATURE(CPUID_7_1_EDX, 4)
43 #define X86_FEATURE_AVX_NE_CONVERT      KVM_X86_FEATURE(CPUID_7_1_EDX, 5)
44 #define X86_FEATURE_PREFETCHITI         KVM_X86_FEATURE(CPUID_7_1_EDX, 14)
45 
46 struct cpuid_reg {
47 	u32 function;
48 	u32 index;
49 	int reg;
50 };
51 
52 static const struct cpuid_reg reverse_cpuid[] = {
53 	[CPUID_1_EDX]         = {         1, 0, CPUID_EDX},
54 	[CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
55 	[CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
56 	[CPUID_1_ECX]         = {         1, 0, CPUID_ECX},
57 	[CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
58 	[CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
59 	[CPUID_7_0_EBX]       = {         7, 0, CPUID_EBX},
60 	[CPUID_D_1_EAX]       = {       0xd, 1, CPUID_EAX},
61 	[CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
62 	[CPUID_6_EAX]         = {         6, 0, CPUID_EAX},
63 	[CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
64 	[CPUID_7_ECX]         = {         7, 0, CPUID_ECX},
65 	[CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
66 	[CPUID_7_EDX]         = {         7, 0, CPUID_EDX},
67 	[CPUID_7_1_EAX]       = {         7, 1, CPUID_EAX},
68 	[CPUID_12_EAX]        = {0x00000012, 0, CPUID_EAX},
69 	[CPUID_8000_001F_EAX] = {0x8000001f, 0, CPUID_EAX},
70 	[CPUID_7_1_EDX]       = {         7, 1, CPUID_EDX},
71 };
72 
73 /*
74  * Reverse CPUID and its derivatives can only be used for hardware-defined
75  * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
76  * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
77  * is nonsensical as the bit number/mask is an arbitrary software-defined value
78  * and can't be used by KVM to query/control guest capabilities.  And obviously
79  * the leaf being queried must have an entry in the lookup table.
80  */
81 static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
82 {
83 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
84 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
85 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
86 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
87 	BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
88 	BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
89 }
90 
91 /*
92  * Translate feature bits that are scattered in the kernel's cpufeatures word
93  * into KVM feature words that align with hardware's definitions.
94  */
95 static __always_inline u32 __feature_translate(int x86_feature)
96 {
97 	if (x86_feature == X86_FEATURE_SGX1)
98 		return KVM_X86_FEATURE_SGX1;
99 	else if (x86_feature == X86_FEATURE_SGX2)
100 		return KVM_X86_FEATURE_SGX2;
101 	else if (x86_feature == X86_FEATURE_SGX_EDECCSSA)
102 		return KVM_X86_FEATURE_SGX_EDECCSSA;
103 
104 	return x86_feature;
105 }
106 
107 static __always_inline u32 __feature_leaf(int x86_feature)
108 {
109 	return __feature_translate(x86_feature) / 32;
110 }
111 
112 /*
113  * Retrieve the bit mask from an X86_FEATURE_* definition.  Features contain
114  * the hardware defined bit number (stored in bits 4:0) and a software defined
115  * "word" (stored in bits 31:5).  The word is used to index into arrays of
116  * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
117  */
118 static __always_inline u32 __feature_bit(int x86_feature)
119 {
120 	x86_feature = __feature_translate(x86_feature);
121 
122 	reverse_cpuid_check(x86_feature / 32);
123 	return 1 << (x86_feature & 31);
124 }
125 
126 #define feature_bit(name)  __feature_bit(X86_FEATURE_##name)
127 
128 static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
129 {
130 	unsigned int x86_leaf = __feature_leaf(x86_feature);
131 
132 	reverse_cpuid_check(x86_leaf);
133 	return reverse_cpuid[x86_leaf];
134 }
135 
136 static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
137 						  u32 reg)
138 {
139 	switch (reg) {
140 	case CPUID_EAX:
141 		return &entry->eax;
142 	case CPUID_EBX:
143 		return &entry->ebx;
144 	case CPUID_ECX:
145 		return &entry->ecx;
146 	case CPUID_EDX:
147 		return &entry->edx;
148 	default:
149 		BUILD_BUG();
150 		return NULL;
151 	}
152 }
153 
154 static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
155 						unsigned int x86_feature)
156 {
157 	const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
158 
159 	return __cpuid_entry_get_reg(entry, cpuid.reg);
160 }
161 
162 static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
163 					   unsigned int x86_feature)
164 {
165 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
166 
167 	return *reg & __feature_bit(x86_feature);
168 }
169 
170 static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
171 					    unsigned int x86_feature)
172 {
173 	return cpuid_entry_get(entry, x86_feature);
174 }
175 
176 static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
177 					      unsigned int x86_feature)
178 {
179 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
180 
181 	*reg &= ~__feature_bit(x86_feature);
182 }
183 
184 static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
185 					    unsigned int x86_feature)
186 {
187 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
188 
189 	*reg |= __feature_bit(x86_feature);
190 }
191 
192 static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
193 					       unsigned int x86_feature,
194 					       bool set)
195 {
196 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
197 
198 	/*
199 	 * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
200 	 * compiler into using CMOV instead of Jcc when possible.
201 	 */
202 	if (set)
203 		*reg |= __feature_bit(x86_feature);
204 	else
205 		*reg &= ~__feature_bit(x86_feature);
206 }
207 
208 #endif /* ARCH_X86_KVM_REVERSE_CPUID_H */
209