xref: /openbmc/linux/arch/x86/kvm/reverse_cpuid.h (revision 88a6f899)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_REVERSE_CPUID_H
3 #define ARCH_X86_KVM_REVERSE_CPUID_H
4 
5 #include <uapi/asm/kvm.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cpufeatures.h>
8 
9 /*
10  * Hardware-defined CPUID leafs that are either scattered by the kernel or are
11  * unknown to the kernel, but need to be directly used by KVM.  Note, these
12  * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
13  */
14 enum kvm_only_cpuid_leafs {
15 	CPUID_12_EAX	 = NCAPINTS,
16 	CPUID_7_1_EDX,
17 	CPUID_8000_0007_EDX,
18 	CPUID_8000_0022_EAX,
19 	NR_KVM_CPU_CAPS,
20 
21 	NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
22 };
23 
24 /*
25  * Define a KVM-only feature flag.
26  *
27  * For features that are scattered by cpufeatures.h, __feature_translate() also
28  * needs to be updated to translate the kernel-defined feature into the
29  * KVM-defined feature.
30  *
31  * For features that are 100% KVM-only, i.e. not defined by cpufeatures.h,
32  * forego the intermediate KVM_X86_FEATURE and directly define X86_FEATURE_* so
33  * that X86_FEATURE_* can be used in KVM.  No __feature_translate() handling is
34  * needed in this case.
35  */
36 #define KVM_X86_FEATURE(w, f)		((w)*32 + (f))
37 
38 /* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */
39 #define KVM_X86_FEATURE_SGX1		KVM_X86_FEATURE(CPUID_12_EAX, 0)
40 #define KVM_X86_FEATURE_SGX2		KVM_X86_FEATURE(CPUID_12_EAX, 1)
41 #define KVM_X86_FEATURE_SGX_EDECCSSA	KVM_X86_FEATURE(CPUID_12_EAX, 11)
42 
43 /* Intel-defined sub-features, CPUID level 0x00000007:1 (EDX) */
44 #define X86_FEATURE_AVX_VNNI_INT8       KVM_X86_FEATURE(CPUID_7_1_EDX, 4)
45 #define X86_FEATURE_AVX_NE_CONVERT      KVM_X86_FEATURE(CPUID_7_1_EDX, 5)
46 #define X86_FEATURE_PREFETCHITI         KVM_X86_FEATURE(CPUID_7_1_EDX, 14)
47 
48 /* CPUID level 0x80000007 (EDX). */
49 #define KVM_X86_FEATURE_CONSTANT_TSC	KVM_X86_FEATURE(CPUID_8000_0007_EDX, 8)
50 
51 /* CPUID level 0x80000022 (EAX) */
52 #define KVM_X86_FEATURE_PERFMON_V2	KVM_X86_FEATURE(CPUID_8000_0022_EAX, 0)
53 
54 struct cpuid_reg {
55 	u32 function;
56 	u32 index;
57 	int reg;
58 };
59 
60 static const struct cpuid_reg reverse_cpuid[] = {
61 	[CPUID_1_EDX]         = {         1, 0, CPUID_EDX},
62 	[CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
63 	[CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
64 	[CPUID_1_ECX]         = {         1, 0, CPUID_ECX},
65 	[CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
66 	[CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
67 	[CPUID_7_0_EBX]       = {         7, 0, CPUID_EBX},
68 	[CPUID_D_1_EAX]       = {       0xd, 1, CPUID_EAX},
69 	[CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
70 	[CPUID_6_EAX]         = {         6, 0, CPUID_EAX},
71 	[CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
72 	[CPUID_7_ECX]         = {         7, 0, CPUID_ECX},
73 	[CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
74 	[CPUID_7_EDX]         = {         7, 0, CPUID_EDX},
75 	[CPUID_7_1_EAX]       = {         7, 1, CPUID_EAX},
76 	[CPUID_12_EAX]        = {0x00000012, 0, CPUID_EAX},
77 	[CPUID_8000_001F_EAX] = {0x8000001f, 0, CPUID_EAX},
78 	[CPUID_7_1_EDX]       = {         7, 1, CPUID_EDX},
79 	[CPUID_8000_0007_EDX] = {0x80000007, 0, CPUID_EDX},
80 	[CPUID_8000_0021_EAX] = {0x80000021, 0, CPUID_EAX},
81 	[CPUID_8000_0022_EAX] = {0x80000022, 0, CPUID_EAX},
82 };
83 
84 /*
85  * Reverse CPUID and its derivatives can only be used for hardware-defined
86  * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
87  * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
88  * is nonsensical as the bit number/mask is an arbitrary software-defined value
89  * and can't be used by KVM to query/control guest capabilities.  And obviously
90  * the leaf being queried must have an entry in the lookup table.
91  */
92 static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
93 {
94 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
95 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
96 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
97 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
98 	BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
99 	BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
100 }
101 
102 /*
103  * Translate feature bits that are scattered in the kernel's cpufeatures word
104  * into KVM feature words that align with hardware's definitions.
105  */
106 static __always_inline u32 __feature_translate(int x86_feature)
107 {
108 	if (x86_feature == X86_FEATURE_SGX1)
109 		return KVM_X86_FEATURE_SGX1;
110 	else if (x86_feature == X86_FEATURE_SGX2)
111 		return KVM_X86_FEATURE_SGX2;
112 	else if (x86_feature == X86_FEATURE_SGX_EDECCSSA)
113 		return KVM_X86_FEATURE_SGX_EDECCSSA;
114 	else if (x86_feature == X86_FEATURE_CONSTANT_TSC)
115 		return KVM_X86_FEATURE_CONSTANT_TSC;
116 	else if (x86_feature == X86_FEATURE_PERFMON_V2)
117 		return KVM_X86_FEATURE_PERFMON_V2;
118 
119 	return x86_feature;
120 }
121 
122 static __always_inline u32 __feature_leaf(int x86_feature)
123 {
124 	return __feature_translate(x86_feature) / 32;
125 }
126 
127 /*
128  * Retrieve the bit mask from an X86_FEATURE_* definition.  Features contain
129  * the hardware defined bit number (stored in bits 4:0) and a software defined
130  * "word" (stored in bits 31:5).  The word is used to index into arrays of
131  * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
132  */
133 static __always_inline u32 __feature_bit(int x86_feature)
134 {
135 	x86_feature = __feature_translate(x86_feature);
136 
137 	reverse_cpuid_check(x86_feature / 32);
138 	return 1 << (x86_feature & 31);
139 }
140 
141 #define feature_bit(name)  __feature_bit(X86_FEATURE_##name)
142 
143 static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
144 {
145 	unsigned int x86_leaf = __feature_leaf(x86_feature);
146 
147 	reverse_cpuid_check(x86_leaf);
148 	return reverse_cpuid[x86_leaf];
149 }
150 
151 static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
152 						  u32 reg)
153 {
154 	switch (reg) {
155 	case CPUID_EAX:
156 		return &entry->eax;
157 	case CPUID_EBX:
158 		return &entry->ebx;
159 	case CPUID_ECX:
160 		return &entry->ecx;
161 	case CPUID_EDX:
162 		return &entry->edx;
163 	default:
164 		BUILD_BUG();
165 		return NULL;
166 	}
167 }
168 
169 static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
170 						unsigned int x86_feature)
171 {
172 	const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
173 
174 	return __cpuid_entry_get_reg(entry, cpuid.reg);
175 }
176 
177 static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
178 					   unsigned int x86_feature)
179 {
180 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
181 
182 	return *reg & __feature_bit(x86_feature);
183 }
184 
185 static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
186 					    unsigned int x86_feature)
187 {
188 	return cpuid_entry_get(entry, x86_feature);
189 }
190 
191 static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
192 					      unsigned int x86_feature)
193 {
194 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
195 
196 	*reg &= ~__feature_bit(x86_feature);
197 }
198 
199 static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
200 					    unsigned int x86_feature)
201 {
202 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
203 
204 	*reg |= __feature_bit(x86_feature);
205 }
206 
207 static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
208 					       unsigned int x86_feature,
209 					       bool set)
210 {
211 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
212 
213 	/*
214 	 * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
215 	 * compiler into using CMOV instead of Jcc when possible.
216 	 */
217 	if (set)
218 		*reg |= __feature_bit(x86_feature);
219 	else
220 		*reg &= ~__feature_bit(x86_feature);
221 }
222 
223 #endif /* ARCH_X86_KVM_REVERSE_CPUID_H */
224