xref: /openbmc/linux/arch/x86/kvm/reverse_cpuid.h (revision 844f5ed5)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_REVERSE_CPUID_H
3 #define ARCH_X86_KVM_REVERSE_CPUID_H
4 
5 #include <uapi/asm/kvm.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cpufeatures.h>
8 
9 /*
10  * Hardware-defined CPUID leafs that are either scattered by the kernel or are
11  * unknown to the kernel, but need to be directly used by KVM.  Note, these
12  * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
13  */
14 enum kvm_only_cpuid_leafs {
15 	CPUID_12_EAX	 = NCAPINTS,
16 	CPUID_7_1_EDX,
17 	CPUID_8000_0007_EDX,
18 	NR_KVM_CPU_CAPS,
19 
20 	NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
21 };
22 
23 /*
24  * Define a KVM-only feature flag.
25  *
26  * For features that are scattered by cpufeatures.h, __feature_translate() also
27  * needs to be updated to translate the kernel-defined feature into the
28  * KVM-defined feature.
29  *
30  * For features that are 100% KVM-only, i.e. not defined by cpufeatures.h,
31  * forego the intermediate KVM_X86_FEATURE and directly define X86_FEATURE_* so
32  * that X86_FEATURE_* can be used in KVM.  No __feature_translate() handling is
33  * needed in this case.
34  */
35 #define KVM_X86_FEATURE(w, f)		((w)*32 + (f))
36 
37 /* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */
38 #define KVM_X86_FEATURE_SGX1		KVM_X86_FEATURE(CPUID_12_EAX, 0)
39 #define KVM_X86_FEATURE_SGX2		KVM_X86_FEATURE(CPUID_12_EAX, 1)
40 #define KVM_X86_FEATURE_SGX_EDECCSSA	KVM_X86_FEATURE(CPUID_12_EAX, 11)
41 
42 /* Intel-defined sub-features, CPUID level 0x00000007:1 (EDX) */
43 #define X86_FEATURE_AVX_VNNI_INT8       KVM_X86_FEATURE(CPUID_7_1_EDX, 4)
44 #define X86_FEATURE_AVX_NE_CONVERT      KVM_X86_FEATURE(CPUID_7_1_EDX, 5)
45 #define X86_FEATURE_PREFETCHITI         KVM_X86_FEATURE(CPUID_7_1_EDX, 14)
46 
47 /* CPUID level 0x80000007 (EDX). */
48 #define KVM_X86_FEATURE_CONSTANT_TSC	KVM_X86_FEATURE(CPUID_8000_0007_EDX, 8)
49 
50 struct cpuid_reg {
51 	u32 function;
52 	u32 index;
53 	int reg;
54 };
55 
56 static const struct cpuid_reg reverse_cpuid[] = {
57 	[CPUID_1_EDX]         = {         1, 0, CPUID_EDX},
58 	[CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
59 	[CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
60 	[CPUID_1_ECX]         = {         1, 0, CPUID_ECX},
61 	[CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
62 	[CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
63 	[CPUID_7_0_EBX]       = {         7, 0, CPUID_EBX},
64 	[CPUID_D_1_EAX]       = {       0xd, 1, CPUID_EAX},
65 	[CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
66 	[CPUID_6_EAX]         = {         6, 0, CPUID_EAX},
67 	[CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
68 	[CPUID_7_ECX]         = {         7, 0, CPUID_ECX},
69 	[CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
70 	[CPUID_7_EDX]         = {         7, 0, CPUID_EDX},
71 	[CPUID_7_1_EAX]       = {         7, 1, CPUID_EAX},
72 	[CPUID_12_EAX]        = {0x00000012, 0, CPUID_EAX},
73 	[CPUID_8000_001F_EAX] = {0x8000001f, 0, CPUID_EAX},
74 	[CPUID_7_1_EDX]       = {         7, 1, CPUID_EDX},
75 	[CPUID_8000_0007_EDX] = {0x80000007, 0, CPUID_EDX},
76 	[CPUID_8000_0021_EAX] = {0x80000021, 0, CPUID_EAX},
77 };
78 
79 /*
80  * Reverse CPUID and its derivatives can only be used for hardware-defined
81  * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
82  * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
83  * is nonsensical as the bit number/mask is an arbitrary software-defined value
84  * and can't be used by KVM to query/control guest capabilities.  And obviously
85  * the leaf being queried must have an entry in the lookup table.
86  */
87 static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
88 {
89 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
90 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
91 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
92 	BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
93 	BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
94 	BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
95 }
96 
97 /*
98  * Translate feature bits that are scattered in the kernel's cpufeatures word
99  * into KVM feature words that align with hardware's definitions.
100  */
101 static __always_inline u32 __feature_translate(int x86_feature)
102 {
103 	if (x86_feature == X86_FEATURE_SGX1)
104 		return KVM_X86_FEATURE_SGX1;
105 	else if (x86_feature == X86_FEATURE_SGX2)
106 		return KVM_X86_FEATURE_SGX2;
107 	else if (x86_feature == X86_FEATURE_SGX_EDECCSSA)
108 		return KVM_X86_FEATURE_SGX_EDECCSSA;
109 	else if (x86_feature == X86_FEATURE_CONSTANT_TSC)
110 		return KVM_X86_FEATURE_CONSTANT_TSC;
111 
112 	return x86_feature;
113 }
114 
115 static __always_inline u32 __feature_leaf(int x86_feature)
116 {
117 	return __feature_translate(x86_feature) / 32;
118 }
119 
120 /*
121  * Retrieve the bit mask from an X86_FEATURE_* definition.  Features contain
122  * the hardware defined bit number (stored in bits 4:0) and a software defined
123  * "word" (stored in bits 31:5).  The word is used to index into arrays of
124  * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
125  */
126 static __always_inline u32 __feature_bit(int x86_feature)
127 {
128 	x86_feature = __feature_translate(x86_feature);
129 
130 	reverse_cpuid_check(x86_feature / 32);
131 	return 1 << (x86_feature & 31);
132 }
133 
134 #define feature_bit(name)  __feature_bit(X86_FEATURE_##name)
135 
136 static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
137 {
138 	unsigned int x86_leaf = __feature_leaf(x86_feature);
139 
140 	reverse_cpuid_check(x86_leaf);
141 	return reverse_cpuid[x86_leaf];
142 }
143 
144 static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
145 						  u32 reg)
146 {
147 	switch (reg) {
148 	case CPUID_EAX:
149 		return &entry->eax;
150 	case CPUID_EBX:
151 		return &entry->ebx;
152 	case CPUID_ECX:
153 		return &entry->ecx;
154 	case CPUID_EDX:
155 		return &entry->edx;
156 	default:
157 		BUILD_BUG();
158 		return NULL;
159 	}
160 }
161 
162 static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
163 						unsigned int x86_feature)
164 {
165 	const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
166 
167 	return __cpuid_entry_get_reg(entry, cpuid.reg);
168 }
169 
170 static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
171 					   unsigned int x86_feature)
172 {
173 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
174 
175 	return *reg & __feature_bit(x86_feature);
176 }
177 
178 static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
179 					    unsigned int x86_feature)
180 {
181 	return cpuid_entry_get(entry, x86_feature);
182 }
183 
184 static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
185 					      unsigned int x86_feature)
186 {
187 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
188 
189 	*reg &= ~__feature_bit(x86_feature);
190 }
191 
192 static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
193 					    unsigned int x86_feature)
194 {
195 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
196 
197 	*reg |= __feature_bit(x86_feature);
198 }
199 
200 static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
201 					       unsigned int x86_feature,
202 					       bool set)
203 {
204 	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
205 
206 	/*
207 	 * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
208 	 * compiler into using CMOV instead of Jcc when possible.
209 	 */
210 	if (set)
211 		*reg |= __feature_bit(x86_feature);
212 	else
213 		*reg &= ~__feature_bit(x86_feature);
214 }
215 
216 #endif /* ARCH_X86_KVM_REVERSE_CPUID_H */
217