1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef ARCH_X86_KVM_REVERSE_CPUID_H 3 #define ARCH_X86_KVM_REVERSE_CPUID_H 4 5 #include <uapi/asm/kvm.h> 6 #include <asm/cpufeature.h> 7 #include <asm/cpufeatures.h> 8 9 /* 10 * Hardware-defined CPUID leafs that are scattered in the kernel, but need to 11 * be directly used by KVM. Note, these word values conflict with the kernel's 12 * "bug" caps, but KVM doesn't use those. 13 */ 14 enum kvm_only_cpuid_leafs { 15 CPUID_12_EAX = NCAPINTS, 16 NR_KVM_CPU_CAPS, 17 18 NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS, 19 }; 20 21 #define KVM_X86_FEATURE(w, f) ((w)*32 + (f)) 22 23 /* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */ 24 #define KVM_X86_FEATURE_SGX1 KVM_X86_FEATURE(CPUID_12_EAX, 0) 25 #define KVM_X86_FEATURE_SGX2 KVM_X86_FEATURE(CPUID_12_EAX, 1) 26 27 struct cpuid_reg { 28 u32 function; 29 u32 index; 30 int reg; 31 }; 32 33 static const struct cpuid_reg reverse_cpuid[] = { 34 [CPUID_1_EDX] = { 1, 0, CPUID_EDX}, 35 [CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX}, 36 [CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX}, 37 [CPUID_1_ECX] = { 1, 0, CPUID_ECX}, 38 [CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX}, 39 [CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX}, 40 [CPUID_7_0_EBX] = { 7, 0, CPUID_EBX}, 41 [CPUID_D_1_EAX] = { 0xd, 1, CPUID_EAX}, 42 [CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX}, 43 [CPUID_6_EAX] = { 6, 0, CPUID_EAX}, 44 [CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX}, 45 [CPUID_7_ECX] = { 7, 0, CPUID_ECX}, 46 [CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX}, 47 [CPUID_7_EDX] = { 7, 0, CPUID_EDX}, 48 [CPUID_7_1_EAX] = { 7, 1, CPUID_EAX}, 49 [CPUID_12_EAX] = {0x00000012, 0, CPUID_EAX}, 50 [CPUID_8000_001F_EAX] = {0x8000001f, 0, CPUID_EAX}, 51 }; 52 53 /* 54 * Reverse CPUID and its derivatives can only be used for hardware-defined 55 * feature words, i.e. words whose bits directly correspond to a CPUID leaf. 56 * Retrieving a feature bit or masking guest CPUID from a Linux-defined word 57 * is nonsensical as the bit number/mask is an arbitrary software-defined value 58 * and can't be used by KVM to query/control guest capabilities. And obviously 59 * the leaf being queried must have an entry in the lookup table. 60 */ 61 static __always_inline void reverse_cpuid_check(unsigned int x86_leaf) 62 { 63 BUILD_BUG_ON(x86_leaf == CPUID_LNX_1); 64 BUILD_BUG_ON(x86_leaf == CPUID_LNX_2); 65 BUILD_BUG_ON(x86_leaf == CPUID_LNX_3); 66 BUILD_BUG_ON(x86_leaf == CPUID_LNX_4); 67 BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid)); 68 BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0); 69 } 70 71 /* 72 * Translate feature bits that are scattered in the kernel's cpufeatures word 73 * into KVM feature words that align with hardware's definitions. 74 */ 75 static __always_inline u32 __feature_translate(int x86_feature) 76 { 77 if (x86_feature == X86_FEATURE_SGX1) 78 return KVM_X86_FEATURE_SGX1; 79 else if (x86_feature == X86_FEATURE_SGX2) 80 return KVM_X86_FEATURE_SGX2; 81 82 return x86_feature; 83 } 84 85 static __always_inline u32 __feature_leaf(int x86_feature) 86 { 87 return __feature_translate(x86_feature) / 32; 88 } 89 90 /* 91 * Retrieve the bit mask from an X86_FEATURE_* definition. Features contain 92 * the hardware defined bit number (stored in bits 4:0) and a software defined 93 * "word" (stored in bits 31:5). The word is used to index into arrays of 94 * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has(). 95 */ 96 static __always_inline u32 __feature_bit(int x86_feature) 97 { 98 x86_feature = __feature_translate(x86_feature); 99 100 reverse_cpuid_check(x86_feature / 32); 101 return 1 << (x86_feature & 31); 102 } 103 104 #define feature_bit(name) __feature_bit(X86_FEATURE_##name) 105 106 static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature) 107 { 108 unsigned int x86_leaf = __feature_leaf(x86_feature); 109 110 reverse_cpuid_check(x86_leaf); 111 return reverse_cpuid[x86_leaf]; 112 } 113 114 static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, 115 u32 reg) 116 { 117 switch (reg) { 118 case CPUID_EAX: 119 return &entry->eax; 120 case CPUID_EBX: 121 return &entry->ebx; 122 case CPUID_ECX: 123 return &entry->ecx; 124 case CPUID_EDX: 125 return &entry->edx; 126 default: 127 BUILD_BUG(); 128 return NULL; 129 } 130 } 131 132 static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, 133 unsigned int x86_feature) 134 { 135 const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature); 136 137 return __cpuid_entry_get_reg(entry, cpuid.reg); 138 } 139 140 static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry, 141 unsigned int x86_feature) 142 { 143 u32 *reg = cpuid_entry_get_reg(entry, x86_feature); 144 145 return *reg & __feature_bit(x86_feature); 146 } 147 148 static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry, 149 unsigned int x86_feature) 150 { 151 return cpuid_entry_get(entry, x86_feature); 152 } 153 154 static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry, 155 unsigned int x86_feature) 156 { 157 u32 *reg = cpuid_entry_get_reg(entry, x86_feature); 158 159 *reg &= ~__feature_bit(x86_feature); 160 } 161 162 static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry, 163 unsigned int x86_feature) 164 { 165 u32 *reg = cpuid_entry_get_reg(entry, x86_feature); 166 167 *reg |= __feature_bit(x86_feature); 168 } 169 170 static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry, 171 unsigned int x86_feature, 172 bool set) 173 { 174 u32 *reg = cpuid_entry_get_reg(entry, x86_feature); 175 176 /* 177 * Open coded instead of using cpuid_entry_{clear,set}() to coerce the 178 * compiler into using CMOV instead of Jcc when possible. 179 */ 180 if (set) 181 *reg |= __feature_bit(x86_feature); 182 else 183 *reg &= ~__feature_bit(x86_feature); 184 } 185 186 #endif /* ARCH_X86_KVM_REVERSE_CPUID_H */ 187