1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef ARCH_X86_KVM_REVERSE_CPUID_H
3 #define ARCH_X86_KVM_REVERSE_CPUID_H
4
5 #include <uapi/asm/kvm.h>
6 #include <asm/cpufeature.h>
7 #include <asm/cpufeatures.h>
8
9 /*
10 * Hardware-defined CPUID leafs that are either scattered by the kernel or are
11 * unknown to the kernel, but need to be directly used by KVM. Note, these
12 * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
13 */
14 enum kvm_only_cpuid_leafs {
15 CPUID_12_EAX = NCAPINTS,
16 CPUID_7_1_EDX,
17 CPUID_8000_0007_EDX,
18 CPUID_8000_0022_EAX,
19 CPUID_7_2_EDX,
20 NR_KVM_CPU_CAPS,
21
22 NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
23 };
24
25 /*
26 * Define a KVM-only feature flag.
27 *
28 * For features that are scattered by cpufeatures.h, __feature_translate() also
29 * needs to be updated to translate the kernel-defined feature into the
30 * KVM-defined feature.
31 *
32 * For features that are 100% KVM-only, i.e. not defined by cpufeatures.h,
33 * forego the intermediate KVM_X86_FEATURE and directly define X86_FEATURE_* so
34 * that X86_FEATURE_* can be used in KVM. No __feature_translate() handling is
35 * needed in this case.
36 */
37 #define KVM_X86_FEATURE(w, f) ((w)*32 + (f))
38
39 /* Intel-defined SGX sub-features, CPUID level 0x12 (EAX). */
40 #define KVM_X86_FEATURE_SGX1 KVM_X86_FEATURE(CPUID_12_EAX, 0)
41 #define KVM_X86_FEATURE_SGX2 KVM_X86_FEATURE(CPUID_12_EAX, 1)
42 #define KVM_X86_FEATURE_SGX_EDECCSSA KVM_X86_FEATURE(CPUID_12_EAX, 11)
43
44 /* Intel-defined sub-features, CPUID level 0x00000007:1 (EDX) */
45 #define X86_FEATURE_AVX_VNNI_INT8 KVM_X86_FEATURE(CPUID_7_1_EDX, 4)
46 #define X86_FEATURE_AVX_NE_CONVERT KVM_X86_FEATURE(CPUID_7_1_EDX, 5)
47 #define X86_FEATURE_AMX_COMPLEX KVM_X86_FEATURE(CPUID_7_1_EDX, 8)
48 #define X86_FEATURE_PREFETCHITI KVM_X86_FEATURE(CPUID_7_1_EDX, 14)
49
50 /* Intel-defined sub-features, CPUID level 0x00000007:2 (EDX) */
51 #define X86_FEATURE_INTEL_PSFD KVM_X86_FEATURE(CPUID_7_2_EDX, 0)
52 #define X86_FEATURE_IPRED_CTRL KVM_X86_FEATURE(CPUID_7_2_EDX, 1)
53 #define KVM_X86_FEATURE_RRSBA_CTRL KVM_X86_FEATURE(CPUID_7_2_EDX, 2)
54 #define X86_FEATURE_DDPD_U KVM_X86_FEATURE(CPUID_7_2_EDX, 3)
55 #define KVM_X86_FEATURE_BHI_CTRL KVM_X86_FEATURE(CPUID_7_2_EDX, 4)
56 #define X86_FEATURE_MCDT_NO KVM_X86_FEATURE(CPUID_7_2_EDX, 5)
57
58 /* CPUID level 0x80000007 (EDX). */
59 #define KVM_X86_FEATURE_CONSTANT_TSC KVM_X86_FEATURE(CPUID_8000_0007_EDX, 8)
60
61 /* CPUID level 0x80000022 (EAX) */
62 #define KVM_X86_FEATURE_PERFMON_V2 KVM_X86_FEATURE(CPUID_8000_0022_EAX, 0)
63
64 struct cpuid_reg {
65 u32 function;
66 u32 index;
67 int reg;
68 };
69
70 static const struct cpuid_reg reverse_cpuid[] = {
71 [CPUID_1_EDX] = { 1, 0, CPUID_EDX},
72 [CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
73 [CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
74 [CPUID_1_ECX] = { 1, 0, CPUID_ECX},
75 [CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
76 [CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
77 [CPUID_7_0_EBX] = { 7, 0, CPUID_EBX},
78 [CPUID_D_1_EAX] = { 0xd, 1, CPUID_EAX},
79 [CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
80 [CPUID_6_EAX] = { 6, 0, CPUID_EAX},
81 [CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
82 [CPUID_7_ECX] = { 7, 0, CPUID_ECX},
83 [CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
84 [CPUID_7_EDX] = { 7, 0, CPUID_EDX},
85 [CPUID_7_1_EAX] = { 7, 1, CPUID_EAX},
86 [CPUID_12_EAX] = {0x00000012, 0, CPUID_EAX},
87 [CPUID_8000_001F_EAX] = {0x8000001f, 0, CPUID_EAX},
88 [CPUID_7_1_EDX] = { 7, 1, CPUID_EDX},
89 [CPUID_8000_0007_EDX] = {0x80000007, 0, CPUID_EDX},
90 [CPUID_8000_0021_EAX] = {0x80000021, 0, CPUID_EAX},
91 [CPUID_8000_0022_EAX] = {0x80000022, 0, CPUID_EAX},
92 [CPUID_7_2_EDX] = { 7, 2, CPUID_EDX},
93 };
94
95 /*
96 * Reverse CPUID and its derivatives can only be used for hardware-defined
97 * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
98 * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
99 * is nonsensical as the bit number/mask is an arbitrary software-defined value
100 * and can't be used by KVM to query/control guest capabilities. And obviously
101 * the leaf being queried must have an entry in the lookup table.
102 */
reverse_cpuid_check(unsigned int x86_leaf)103 static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
104 {
105 BUILD_BUG_ON(NR_CPUID_WORDS != NCAPINTS);
106 BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
107 BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
108 BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
109 BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
110 BUILD_BUG_ON(x86_leaf == CPUID_LNX_5);
111 BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
112 BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
113 }
114
115 /*
116 * Translate feature bits that are scattered in the kernel's cpufeatures word
117 * into KVM feature words that align with hardware's definitions.
118 */
__feature_translate(int x86_feature)119 static __always_inline u32 __feature_translate(int x86_feature)
120 {
121 #define KVM_X86_TRANSLATE_FEATURE(f) \
122 case X86_FEATURE_##f: return KVM_X86_FEATURE_##f
123
124 switch (x86_feature) {
125 KVM_X86_TRANSLATE_FEATURE(SGX1);
126 KVM_X86_TRANSLATE_FEATURE(SGX2);
127 KVM_X86_TRANSLATE_FEATURE(SGX_EDECCSSA);
128 KVM_X86_TRANSLATE_FEATURE(CONSTANT_TSC);
129 KVM_X86_TRANSLATE_FEATURE(PERFMON_V2);
130 KVM_X86_TRANSLATE_FEATURE(RRSBA_CTRL);
131 KVM_X86_TRANSLATE_FEATURE(BHI_CTRL);
132 default:
133 return x86_feature;
134 }
135 }
136
__feature_leaf(int x86_feature)137 static __always_inline u32 __feature_leaf(int x86_feature)
138 {
139 return __feature_translate(x86_feature) / 32;
140 }
141
142 /*
143 * Retrieve the bit mask from an X86_FEATURE_* definition. Features contain
144 * the hardware defined bit number (stored in bits 4:0) and a software defined
145 * "word" (stored in bits 31:5). The word is used to index into arrays of
146 * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
147 */
__feature_bit(int x86_feature)148 static __always_inline u32 __feature_bit(int x86_feature)
149 {
150 x86_feature = __feature_translate(x86_feature);
151
152 reverse_cpuid_check(x86_feature / 32);
153 return 1 << (x86_feature & 31);
154 }
155
156 #define feature_bit(name) __feature_bit(X86_FEATURE_##name)
157
x86_feature_cpuid(unsigned int x86_feature)158 static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
159 {
160 unsigned int x86_leaf = __feature_leaf(x86_feature);
161
162 reverse_cpuid_check(x86_leaf);
163 return reverse_cpuid[x86_leaf];
164 }
165
__cpuid_entry_get_reg(struct kvm_cpuid_entry2 * entry,u32 reg)166 static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
167 u32 reg)
168 {
169 switch (reg) {
170 case CPUID_EAX:
171 return &entry->eax;
172 case CPUID_EBX:
173 return &entry->ebx;
174 case CPUID_ECX:
175 return &entry->ecx;
176 case CPUID_EDX:
177 return &entry->edx;
178 default:
179 BUILD_BUG();
180 return NULL;
181 }
182 }
183
cpuid_entry_get_reg(struct kvm_cpuid_entry2 * entry,unsigned int x86_feature)184 static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
185 unsigned int x86_feature)
186 {
187 const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
188
189 return __cpuid_entry_get_reg(entry, cpuid.reg);
190 }
191
cpuid_entry_get(struct kvm_cpuid_entry2 * entry,unsigned int x86_feature)192 static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
193 unsigned int x86_feature)
194 {
195 u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
196
197 return *reg & __feature_bit(x86_feature);
198 }
199
cpuid_entry_has(struct kvm_cpuid_entry2 * entry,unsigned int x86_feature)200 static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
201 unsigned int x86_feature)
202 {
203 return cpuid_entry_get(entry, x86_feature);
204 }
205
cpuid_entry_clear(struct kvm_cpuid_entry2 * entry,unsigned int x86_feature)206 static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
207 unsigned int x86_feature)
208 {
209 u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
210
211 *reg &= ~__feature_bit(x86_feature);
212 }
213
cpuid_entry_set(struct kvm_cpuid_entry2 * entry,unsigned int x86_feature)214 static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
215 unsigned int x86_feature)
216 {
217 u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
218
219 *reg |= __feature_bit(x86_feature);
220 }
221
cpuid_entry_change(struct kvm_cpuid_entry2 * entry,unsigned int x86_feature,bool set)222 static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
223 unsigned int x86_feature,
224 bool set)
225 {
226 u32 *reg = cpuid_entry_get_reg(entry, x86_feature);
227
228 /*
229 * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
230 * compiler into using CMOV instead of Jcc when possible.
231 */
232 if (set)
233 *reg |= __feature_bit(x86_feature);
234 else
235 *reg &= ~__feature_bit(x86_feature);
236 }
237
238 #endif /* ARCH_X86_KVM_REVERSE_CPUID_H */
239