1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine -- Performance Monitoring Unit support 4 * 5 * Copyright 2015 Red Hat, Inc. and/or its affiliates. 6 * 7 * Authors: 8 * Avi Kivity <avi@redhat.com> 9 * Gleb Natapov <gleb@redhat.com> 10 * Wei Huang <wei@redhat.com> 11 */ 12 13 #include <linux/types.h> 14 #include <linux/kvm_host.h> 15 #include <linux/perf_event.h> 16 #include <linux/bsearch.h> 17 #include <linux/sort.h> 18 #include <asm/perf_event.h> 19 #include "x86.h" 20 #include "cpuid.h" 21 #include "lapic.h" 22 #include "pmu.h" 23 24 /* This is enough to filter the vast majority of currently defined events. */ 25 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300 26 27 /* NOTE: 28 * - Each perf counter is defined as "struct kvm_pmc"; 29 * - There are two types of perf counters: general purpose (gp) and fixed. 30 * gp counters are stored in gp_counters[] and fixed counters are stored 31 * in fixed_counters[] respectively. Both of them are part of "struct 32 * kvm_pmu"; 33 * - pmu.c understands the difference between gp counters and fixed counters. 34 * However AMD doesn't support fixed-counters; 35 * - There are three types of index to access perf counters (PMC): 36 * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD 37 * has MSR_K7_PERFCTRn. 38 * 2. MSR Index (named idx): This normally is used by RDPMC instruction. 39 * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access 40 * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except 41 * that it also supports fixed counters. idx can be used to as index to 42 * gp and fixed counters. 43 * 3. Global PMC Index (named pmc): pmc is an index specific to PMU 44 * code. Each pmc, stored in kvm_pmc.idx field, is unique across 45 * all perf counters (both gp and fixed). The mapping relationship 46 * between pmc and perf counters is as the following: 47 * * Intel: [0 .. INTEL_PMC_MAX_GENERIC-1] <=> gp counters 48 * [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed 49 * * AMD: [0 .. AMD64_NUM_COUNTERS-1] <=> gp counters 50 */ 51 52 static void kvm_pmi_trigger_fn(struct irq_work *irq_work) 53 { 54 struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work); 55 struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu); 56 57 kvm_pmu_deliver_pmi(vcpu); 58 } 59 60 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi) 61 { 62 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 63 64 /* Ignore counters that have been reprogrammed already. */ 65 if (test_and_set_bit(pmc->idx, pmu->reprogram_pmi)) 66 return; 67 68 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status); 69 kvm_make_request(KVM_REQ_PMU, pmc->vcpu); 70 71 if (!pmc->intr) 72 return; 73 74 /* 75 * Inject PMI. If vcpu was in a guest mode during NMI PMI 76 * can be ejected on a guest mode re-entry. Otherwise we can't 77 * be sure that vcpu wasn't executing hlt instruction at the 78 * time of vmexit and is not going to re-enter guest mode until 79 * woken up. So we should wake it, but this is impossible from 80 * NMI context. Do it from irq work instead. 81 */ 82 if (in_pmi && !kvm_handling_nmi_from_guest(pmc->vcpu)) 83 irq_work_queue(&pmc_to_pmu(pmc)->irq_work); 84 else 85 kvm_make_request(KVM_REQ_PMI, pmc->vcpu); 86 } 87 88 static void kvm_perf_overflow(struct perf_event *perf_event, 89 struct perf_sample_data *data, 90 struct pt_regs *regs) 91 { 92 struct kvm_pmc *pmc = perf_event->overflow_handler_context; 93 94 __kvm_perf_overflow(pmc, true); 95 } 96 97 static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, 98 u64 config, bool exclude_user, 99 bool exclude_kernel, bool intr) 100 { 101 struct perf_event *event; 102 struct perf_event_attr attr = { 103 .type = type, 104 .size = sizeof(attr), 105 .pinned = true, 106 .exclude_idle = true, 107 .exclude_host = 1, 108 .exclude_user = exclude_user, 109 .exclude_kernel = exclude_kernel, 110 .config = config, 111 }; 112 113 if (type == PERF_TYPE_HARDWARE && config >= PERF_COUNT_HW_MAX) 114 return; 115 116 attr.sample_period = get_sample_period(pmc, pmc->counter); 117 118 if ((attr.config & HSW_IN_TX_CHECKPOINTED) && 119 guest_cpuid_is_intel(pmc->vcpu)) { 120 /* 121 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero 122 * period. Just clear the sample period so at least 123 * allocating the counter doesn't fail. 124 */ 125 attr.sample_period = 0; 126 } 127 128 event = perf_event_create_kernel_counter(&attr, -1, current, 129 kvm_perf_overflow, pmc); 130 if (IS_ERR(event)) { 131 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n", 132 PTR_ERR(event), pmc->idx); 133 return; 134 } 135 136 pmc->perf_event = event; 137 pmc_to_pmu(pmc)->event_count++; 138 clear_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi); 139 pmc->is_paused = false; 140 pmc->intr = intr; 141 } 142 143 static void pmc_pause_counter(struct kvm_pmc *pmc) 144 { 145 u64 counter = pmc->counter; 146 147 if (!pmc->perf_event || pmc->is_paused) 148 return; 149 150 /* update counter, reset event value to avoid redundant accumulation */ 151 counter += perf_event_pause(pmc->perf_event, true); 152 pmc->counter = counter & pmc_bitmask(pmc); 153 pmc->is_paused = true; 154 } 155 156 static bool pmc_resume_counter(struct kvm_pmc *pmc) 157 { 158 if (!pmc->perf_event) 159 return false; 160 161 /* recalibrate sample period and check if it's accepted by perf core */ 162 if (perf_event_period(pmc->perf_event, 163 get_sample_period(pmc, pmc->counter))) 164 return false; 165 166 /* reuse perf_event to serve as pmc_reprogram_counter() does*/ 167 perf_event_enable(pmc->perf_event); 168 pmc->is_paused = false; 169 170 clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi); 171 return true; 172 } 173 174 static int cmp_u64(const void *pa, const void *pb) 175 { 176 u64 a = *(u64 *)pa; 177 u64 b = *(u64 *)pb; 178 179 return (a > b) - (a < b); 180 } 181 182 void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel) 183 { 184 u64 config; 185 u32 type = PERF_TYPE_RAW; 186 struct kvm *kvm = pmc->vcpu->kvm; 187 struct kvm_pmu_event_filter *filter; 188 struct kvm_pmu *pmu = vcpu_to_pmu(pmc->vcpu); 189 bool allow_event = true; 190 191 if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL) 192 printk_once("kvm pmu: pin control bit is ignored\n"); 193 194 pmc->eventsel = eventsel; 195 196 pmc_pause_counter(pmc); 197 198 if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_is_enabled(pmc)) 199 return; 200 201 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu); 202 if (filter) { 203 __u64 key = eventsel & AMD64_RAW_EVENT_MASK_NB; 204 205 if (bsearch(&key, filter->events, filter->nevents, 206 sizeof(__u64), cmp_u64)) 207 allow_event = filter->action == KVM_PMU_EVENT_ALLOW; 208 else 209 allow_event = filter->action == KVM_PMU_EVENT_DENY; 210 } 211 if (!allow_event) 212 return; 213 214 if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE | 215 ARCH_PERFMON_EVENTSEL_INV | 216 ARCH_PERFMON_EVENTSEL_CMASK | 217 HSW_IN_TX | 218 HSW_IN_TX_CHECKPOINTED))) { 219 config = kvm_x86_ops.pmu_ops->pmc_perf_hw_id(pmc); 220 if (config != PERF_COUNT_HW_MAX) 221 type = PERF_TYPE_HARDWARE; 222 } 223 224 if (type == PERF_TYPE_RAW) 225 config = eventsel & pmu->raw_event_mask; 226 227 if (pmc->current_config == eventsel && pmc_resume_counter(pmc)) 228 return; 229 230 pmc_release_perf_event(pmc); 231 232 pmc->current_config = eventsel; 233 pmc_reprogram_counter(pmc, type, config, 234 !(eventsel & ARCH_PERFMON_EVENTSEL_USR), 235 !(eventsel & ARCH_PERFMON_EVENTSEL_OS), 236 eventsel & ARCH_PERFMON_EVENTSEL_INT); 237 } 238 EXPORT_SYMBOL_GPL(reprogram_gp_counter); 239 240 void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 ctrl, int idx) 241 { 242 unsigned en_field = ctrl & 0x3; 243 bool pmi = ctrl & 0x8; 244 struct kvm_pmu_event_filter *filter; 245 struct kvm *kvm = pmc->vcpu->kvm; 246 247 pmc_pause_counter(pmc); 248 249 if (!en_field || !pmc_is_enabled(pmc)) 250 return; 251 252 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu); 253 if (filter) { 254 if (filter->action == KVM_PMU_EVENT_DENY && 255 test_bit(idx, (ulong *)&filter->fixed_counter_bitmap)) 256 return; 257 if (filter->action == KVM_PMU_EVENT_ALLOW && 258 !test_bit(idx, (ulong *)&filter->fixed_counter_bitmap)) 259 return; 260 } 261 262 if (pmc->current_config == (u64)ctrl && pmc_resume_counter(pmc)) 263 return; 264 265 pmc_release_perf_event(pmc); 266 267 pmc->current_config = (u64)ctrl; 268 pmc_reprogram_counter(pmc, PERF_TYPE_HARDWARE, 269 kvm_x86_ops.pmu_ops->pmc_perf_hw_id(pmc), 270 !(en_field & 0x2), /* exclude user */ 271 !(en_field & 0x1), /* exclude kernel */ 272 pmi); 273 } 274 EXPORT_SYMBOL_GPL(reprogram_fixed_counter); 275 276 void reprogram_counter(struct kvm_pmu *pmu, int pmc_idx) 277 { 278 struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, pmc_idx); 279 280 if (!pmc) 281 return; 282 283 if (pmc_is_gp(pmc)) 284 reprogram_gp_counter(pmc, pmc->eventsel); 285 else { 286 int idx = pmc_idx - INTEL_PMC_IDX_FIXED; 287 u8 ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, idx); 288 289 reprogram_fixed_counter(pmc, ctrl, idx); 290 } 291 } 292 EXPORT_SYMBOL_GPL(reprogram_counter); 293 294 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu) 295 { 296 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 297 int bit; 298 299 for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) { 300 struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, bit); 301 302 if (unlikely(!pmc || !pmc->perf_event)) { 303 clear_bit(bit, pmu->reprogram_pmi); 304 continue; 305 } 306 307 reprogram_counter(pmu, bit); 308 } 309 310 /* 311 * Unused perf_events are only released if the corresponding MSRs 312 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in 313 * triggers KVM_REQ_PMU if cleanup is needed. 314 */ 315 if (unlikely(pmu->need_cleanup)) 316 kvm_pmu_cleanup(vcpu); 317 } 318 319 /* check if idx is a valid index to access PMU */ 320 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx) 321 { 322 return kvm_x86_ops.pmu_ops->is_valid_rdpmc_ecx(vcpu, idx); 323 } 324 325 bool is_vmware_backdoor_pmc(u32 pmc_idx) 326 { 327 switch (pmc_idx) { 328 case VMWARE_BACKDOOR_PMC_HOST_TSC: 329 case VMWARE_BACKDOOR_PMC_REAL_TIME: 330 case VMWARE_BACKDOOR_PMC_APPARENT_TIME: 331 return true; 332 } 333 return false; 334 } 335 336 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) 337 { 338 u64 ctr_val; 339 340 switch (idx) { 341 case VMWARE_BACKDOOR_PMC_HOST_TSC: 342 ctr_val = rdtsc(); 343 break; 344 case VMWARE_BACKDOOR_PMC_REAL_TIME: 345 ctr_val = ktime_get_boottime_ns(); 346 break; 347 case VMWARE_BACKDOOR_PMC_APPARENT_TIME: 348 ctr_val = ktime_get_boottime_ns() + 349 vcpu->kvm->arch.kvmclock_offset; 350 break; 351 default: 352 return 1; 353 } 354 355 *data = ctr_val; 356 return 0; 357 } 358 359 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) 360 { 361 bool fast_mode = idx & (1u << 31); 362 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 363 struct kvm_pmc *pmc; 364 u64 mask = fast_mode ? ~0u : ~0ull; 365 366 if (!pmu->version) 367 return 1; 368 369 if (is_vmware_backdoor_pmc(idx)) 370 return kvm_pmu_rdpmc_vmware(vcpu, idx, data); 371 372 pmc = kvm_x86_ops.pmu_ops->rdpmc_ecx_to_pmc(vcpu, idx, &mask); 373 if (!pmc) 374 return 1; 375 376 if (!(kvm_read_cr4(vcpu) & X86_CR4_PCE) && 377 (static_call(kvm_x86_get_cpl)(vcpu) != 0) && 378 (kvm_read_cr0(vcpu) & X86_CR0_PE)) 379 return 1; 380 381 *data = pmc_read_counter(pmc) & mask; 382 return 0; 383 } 384 385 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu) 386 { 387 if (lapic_in_kernel(vcpu)) { 388 if (kvm_x86_ops.pmu_ops->deliver_pmi) 389 kvm_x86_ops.pmu_ops->deliver_pmi(vcpu); 390 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC); 391 } 392 } 393 394 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr) 395 { 396 return kvm_x86_ops.pmu_ops->msr_idx_to_pmc(vcpu, msr) || 397 kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, msr); 398 } 399 400 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr) 401 { 402 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 403 struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->msr_idx_to_pmc(vcpu, msr); 404 405 if (pmc) 406 __set_bit(pmc->idx, pmu->pmc_in_use); 407 } 408 409 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 410 { 411 return kvm_x86_ops.pmu_ops->get_msr(vcpu, msr_info); 412 } 413 414 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 415 { 416 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index); 417 return kvm_x86_ops.pmu_ops->set_msr(vcpu, msr_info); 418 } 419 420 /* refresh PMU settings. This function generally is called when underlying 421 * settings are changed (such as changes of PMU CPUID by guest VMs), which 422 * should rarely happen. 423 */ 424 void kvm_pmu_refresh(struct kvm_vcpu *vcpu) 425 { 426 kvm_x86_ops.pmu_ops->refresh(vcpu); 427 } 428 429 void kvm_pmu_reset(struct kvm_vcpu *vcpu) 430 { 431 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 432 433 irq_work_sync(&pmu->irq_work); 434 kvm_x86_ops.pmu_ops->reset(vcpu); 435 } 436 437 void kvm_pmu_init(struct kvm_vcpu *vcpu) 438 { 439 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 440 441 memset(pmu, 0, sizeof(*pmu)); 442 kvm_x86_ops.pmu_ops->init(vcpu); 443 init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn); 444 pmu->event_count = 0; 445 pmu->need_cleanup = false; 446 kvm_pmu_refresh(vcpu); 447 } 448 449 static inline bool pmc_speculative_in_use(struct kvm_pmc *pmc) 450 { 451 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 452 453 if (pmc_is_fixed(pmc)) 454 return fixed_ctrl_field(pmu->fixed_ctr_ctrl, 455 pmc->idx - INTEL_PMC_IDX_FIXED) & 0x3; 456 457 return pmc->eventsel & ARCH_PERFMON_EVENTSEL_ENABLE; 458 } 459 460 /* Release perf_events for vPMCs that have been unused for a full time slice. */ 461 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu) 462 { 463 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 464 struct kvm_pmc *pmc = NULL; 465 DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX); 466 int i; 467 468 pmu->need_cleanup = false; 469 470 bitmap_andnot(bitmask, pmu->all_valid_pmc_idx, 471 pmu->pmc_in_use, X86_PMC_IDX_MAX); 472 473 for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) { 474 pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, i); 475 476 if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc)) 477 pmc_stop_counter(pmc); 478 } 479 480 if (kvm_x86_ops.pmu_ops->cleanup) 481 kvm_x86_ops.pmu_ops->cleanup(vcpu); 482 483 bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX); 484 } 485 486 void kvm_pmu_destroy(struct kvm_vcpu *vcpu) 487 { 488 kvm_pmu_reset(vcpu); 489 } 490 491 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc) 492 { 493 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 494 u64 prev_count; 495 496 prev_count = pmc->counter; 497 pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc); 498 499 reprogram_counter(pmu, pmc->idx); 500 if (pmc->counter < prev_count) 501 __kvm_perf_overflow(pmc, false); 502 } 503 504 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc, 505 unsigned int perf_hw_id) 506 { 507 u64 old_eventsel = pmc->eventsel; 508 unsigned int config; 509 510 pmc->eventsel &= (ARCH_PERFMON_EVENTSEL_EVENT | ARCH_PERFMON_EVENTSEL_UMASK); 511 config = kvm_x86_ops.pmu_ops->pmc_perf_hw_id(pmc); 512 pmc->eventsel = old_eventsel; 513 return config == perf_hw_id; 514 } 515 516 static inline bool cpl_is_matched(struct kvm_pmc *pmc) 517 { 518 bool select_os, select_user; 519 u64 config = pmc->current_config; 520 521 if (pmc_is_gp(pmc)) { 522 select_os = config & ARCH_PERFMON_EVENTSEL_OS; 523 select_user = config & ARCH_PERFMON_EVENTSEL_USR; 524 } else { 525 select_os = config & 0x1; 526 select_user = config & 0x2; 527 } 528 529 return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user; 530 } 531 532 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id) 533 { 534 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 535 struct kvm_pmc *pmc; 536 int i; 537 538 for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) { 539 pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, i); 540 541 if (!pmc || !pmc_is_enabled(pmc) || !pmc_speculative_in_use(pmc)) 542 continue; 543 544 /* Ignore checks for edge detect, pin control, invert and CMASK bits */ 545 if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc)) 546 kvm_pmu_incr_counter(pmc); 547 } 548 } 549 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event); 550 551 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp) 552 { 553 struct kvm_pmu_event_filter tmp, *filter; 554 size_t size; 555 int r; 556 557 if (copy_from_user(&tmp, argp, sizeof(tmp))) 558 return -EFAULT; 559 560 if (tmp.action != KVM_PMU_EVENT_ALLOW && 561 tmp.action != KVM_PMU_EVENT_DENY) 562 return -EINVAL; 563 564 if (tmp.flags != 0) 565 return -EINVAL; 566 567 if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS) 568 return -E2BIG; 569 570 size = struct_size(filter, events, tmp.nevents); 571 filter = kmalloc(size, GFP_KERNEL_ACCOUNT); 572 if (!filter) 573 return -ENOMEM; 574 575 r = -EFAULT; 576 if (copy_from_user(filter, argp, size)) 577 goto cleanup; 578 579 /* Ensure nevents can't be changed between the user copies. */ 580 *filter = tmp; 581 582 /* 583 * Sort the in-kernel list so that we can search it with bsearch. 584 */ 585 sort(&filter->events, filter->nevents, sizeof(__u64), cmp_u64, NULL); 586 587 mutex_lock(&kvm->lock); 588 filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter, 589 mutex_is_locked(&kvm->lock)); 590 mutex_unlock(&kvm->lock); 591 592 synchronize_srcu_expedited(&kvm->srcu); 593 r = 0; 594 cleanup: 595 kfree(filter); 596 return r; 597 } 598