1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine -- Performance Monitoring Unit support 4 * 5 * Copyright 2015 Red Hat, Inc. and/or its affiliates. 6 * 7 * Authors: 8 * Avi Kivity <avi@redhat.com> 9 * Gleb Natapov <gleb@redhat.com> 10 * Wei Huang <wei@redhat.com> 11 */ 12 13 #include <linux/types.h> 14 #include <linux/kvm_host.h> 15 #include <linux/perf_event.h> 16 #include <asm/perf_event.h> 17 #include "x86.h" 18 #include "cpuid.h" 19 #include "lapic.h" 20 #include "pmu.h" 21 22 /* This is enough to filter the vast majority of currently defined events. */ 23 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300 24 25 /* NOTE: 26 * - Each perf counter is defined as "struct kvm_pmc"; 27 * - There are two types of perf counters: general purpose (gp) and fixed. 28 * gp counters are stored in gp_counters[] and fixed counters are stored 29 * in fixed_counters[] respectively. Both of them are part of "struct 30 * kvm_pmu"; 31 * - pmu.c understands the difference between gp counters and fixed counters. 32 * However AMD doesn't support fixed-counters; 33 * - There are three types of index to access perf counters (PMC): 34 * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD 35 * has MSR_K7_PERFCTRn. 36 * 2. MSR Index (named idx): This normally is used by RDPMC instruction. 37 * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access 38 * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except 39 * that it also supports fixed counters. idx can be used to as index to 40 * gp and fixed counters. 41 * 3. Global PMC Index (named pmc): pmc is an index specific to PMU 42 * code. Each pmc, stored in kvm_pmc.idx field, is unique across 43 * all perf counters (both gp and fixed). The mapping relationship 44 * between pmc and perf counters is as the following: 45 * * Intel: [0 .. INTEL_PMC_MAX_GENERIC-1] <=> gp counters 46 * [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed 47 * * AMD: [0 .. AMD64_NUM_COUNTERS-1] <=> gp counters 48 */ 49 50 static void kvm_pmi_trigger_fn(struct irq_work *irq_work) 51 { 52 struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work); 53 struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu); 54 55 kvm_pmu_deliver_pmi(vcpu); 56 } 57 58 static void kvm_perf_overflow(struct perf_event *perf_event, 59 struct perf_sample_data *data, 60 struct pt_regs *regs) 61 { 62 struct kvm_pmc *pmc = perf_event->overflow_handler_context; 63 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 64 65 if (!test_and_set_bit(pmc->idx, 66 (unsigned long *)&pmu->reprogram_pmi)) { 67 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status); 68 kvm_make_request(KVM_REQ_PMU, pmc->vcpu); 69 } 70 } 71 72 static void kvm_perf_overflow_intr(struct perf_event *perf_event, 73 struct perf_sample_data *data, 74 struct pt_regs *regs) 75 { 76 struct kvm_pmc *pmc = perf_event->overflow_handler_context; 77 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 78 79 if (!test_and_set_bit(pmc->idx, 80 (unsigned long *)&pmu->reprogram_pmi)) { 81 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status); 82 kvm_make_request(KVM_REQ_PMU, pmc->vcpu); 83 84 /* 85 * Inject PMI. If vcpu was in a guest mode during NMI PMI 86 * can be ejected on a guest mode re-entry. Otherwise we can't 87 * be sure that vcpu wasn't executing hlt instruction at the 88 * time of vmexit and is not going to re-enter guest mode until 89 * woken up. So we should wake it, but this is impossible from 90 * NMI context. Do it from irq work instead. 91 */ 92 if (!kvm_is_in_guest()) 93 irq_work_queue(&pmc_to_pmu(pmc)->irq_work); 94 else 95 kvm_make_request(KVM_REQ_PMI, pmc->vcpu); 96 } 97 } 98 99 static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, 100 unsigned config, bool exclude_user, 101 bool exclude_kernel, bool intr, 102 bool in_tx, bool in_tx_cp) 103 { 104 struct perf_event *event; 105 struct perf_event_attr attr = { 106 .type = type, 107 .size = sizeof(attr), 108 .pinned = true, 109 .exclude_idle = true, 110 .exclude_host = 1, 111 .exclude_user = exclude_user, 112 .exclude_kernel = exclude_kernel, 113 .config = config, 114 }; 115 116 attr.sample_period = (-pmc->counter) & pmc_bitmask(pmc); 117 118 if (in_tx) 119 attr.config |= HSW_IN_TX; 120 if (in_tx_cp) { 121 /* 122 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero 123 * period. Just clear the sample period so at least 124 * allocating the counter doesn't fail. 125 */ 126 attr.sample_period = 0; 127 attr.config |= HSW_IN_TX_CHECKPOINTED; 128 } 129 130 event = perf_event_create_kernel_counter(&attr, -1, current, 131 intr ? kvm_perf_overflow_intr : 132 kvm_perf_overflow, pmc); 133 if (IS_ERR(event)) { 134 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n", 135 PTR_ERR(event), pmc->idx); 136 return; 137 } 138 139 pmc->perf_event = event; 140 clear_bit(pmc->idx, (unsigned long*)&pmc_to_pmu(pmc)->reprogram_pmi); 141 } 142 143 void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel) 144 { 145 unsigned config, type = PERF_TYPE_RAW; 146 u8 event_select, unit_mask; 147 struct kvm *kvm = pmc->vcpu->kvm; 148 struct kvm_pmu_event_filter *filter; 149 int i; 150 bool allow_event = true; 151 152 if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL) 153 printk_once("kvm pmu: pin control bit is ignored\n"); 154 155 pmc->eventsel = eventsel; 156 157 pmc_stop_counter(pmc); 158 159 if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_is_enabled(pmc)) 160 return; 161 162 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu); 163 if (filter) { 164 for (i = 0; i < filter->nevents; i++) 165 if (filter->events[i] == 166 (eventsel & AMD64_RAW_EVENT_MASK_NB)) 167 break; 168 if (filter->action == KVM_PMU_EVENT_ALLOW && 169 i == filter->nevents) 170 allow_event = false; 171 if (filter->action == KVM_PMU_EVENT_DENY && 172 i < filter->nevents) 173 allow_event = false; 174 } 175 if (!allow_event) 176 return; 177 178 event_select = eventsel & ARCH_PERFMON_EVENTSEL_EVENT; 179 unit_mask = (eventsel & ARCH_PERFMON_EVENTSEL_UMASK) >> 8; 180 181 if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE | 182 ARCH_PERFMON_EVENTSEL_INV | 183 ARCH_PERFMON_EVENTSEL_CMASK | 184 HSW_IN_TX | 185 HSW_IN_TX_CHECKPOINTED))) { 186 config = kvm_x86_ops->pmu_ops->find_arch_event(pmc_to_pmu(pmc), 187 event_select, 188 unit_mask); 189 if (config != PERF_COUNT_HW_MAX) 190 type = PERF_TYPE_HARDWARE; 191 } 192 193 if (type == PERF_TYPE_RAW) 194 config = eventsel & X86_RAW_EVENT_MASK; 195 196 pmc_reprogram_counter(pmc, type, config, 197 !(eventsel & ARCH_PERFMON_EVENTSEL_USR), 198 !(eventsel & ARCH_PERFMON_EVENTSEL_OS), 199 eventsel & ARCH_PERFMON_EVENTSEL_INT, 200 (eventsel & HSW_IN_TX), 201 (eventsel & HSW_IN_TX_CHECKPOINTED)); 202 } 203 EXPORT_SYMBOL_GPL(reprogram_gp_counter); 204 205 void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 ctrl, int idx) 206 { 207 unsigned en_field = ctrl & 0x3; 208 bool pmi = ctrl & 0x8; 209 struct kvm_pmu_event_filter *filter; 210 struct kvm *kvm = pmc->vcpu->kvm; 211 212 pmc_stop_counter(pmc); 213 214 if (!en_field || !pmc_is_enabled(pmc)) 215 return; 216 217 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu); 218 if (filter) { 219 if (filter->action == KVM_PMU_EVENT_DENY && 220 test_bit(idx, (ulong *)&filter->fixed_counter_bitmap)) 221 return; 222 if (filter->action == KVM_PMU_EVENT_ALLOW && 223 !test_bit(idx, (ulong *)&filter->fixed_counter_bitmap)) 224 return; 225 } 226 227 pmc_reprogram_counter(pmc, PERF_TYPE_HARDWARE, 228 kvm_x86_ops->pmu_ops->find_fixed_event(idx), 229 !(en_field & 0x2), /* exclude user */ 230 !(en_field & 0x1), /* exclude kernel */ 231 pmi, false, false); 232 } 233 EXPORT_SYMBOL_GPL(reprogram_fixed_counter); 234 235 void reprogram_counter(struct kvm_pmu *pmu, int pmc_idx) 236 { 237 struct kvm_pmc *pmc = kvm_x86_ops->pmu_ops->pmc_idx_to_pmc(pmu, pmc_idx); 238 239 if (!pmc) 240 return; 241 242 if (pmc_is_gp(pmc)) 243 reprogram_gp_counter(pmc, pmc->eventsel); 244 else { 245 int idx = pmc_idx - INTEL_PMC_IDX_FIXED; 246 u8 ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, idx); 247 248 reprogram_fixed_counter(pmc, ctrl, idx); 249 } 250 } 251 EXPORT_SYMBOL_GPL(reprogram_counter); 252 253 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu) 254 { 255 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 256 u64 bitmask; 257 int bit; 258 259 bitmask = pmu->reprogram_pmi; 260 261 for_each_set_bit(bit, (unsigned long *)&bitmask, X86_PMC_IDX_MAX) { 262 struct kvm_pmc *pmc = kvm_x86_ops->pmu_ops->pmc_idx_to_pmc(pmu, bit); 263 264 if (unlikely(!pmc || !pmc->perf_event)) { 265 clear_bit(bit, (unsigned long *)&pmu->reprogram_pmi); 266 continue; 267 } 268 269 reprogram_counter(pmu, bit); 270 } 271 } 272 273 /* check if idx is a valid index to access PMU */ 274 int kvm_pmu_is_valid_msr_idx(struct kvm_vcpu *vcpu, unsigned idx) 275 { 276 return kvm_x86_ops->pmu_ops->is_valid_msr_idx(vcpu, idx); 277 } 278 279 bool is_vmware_backdoor_pmc(u32 pmc_idx) 280 { 281 switch (pmc_idx) { 282 case VMWARE_BACKDOOR_PMC_HOST_TSC: 283 case VMWARE_BACKDOOR_PMC_REAL_TIME: 284 case VMWARE_BACKDOOR_PMC_APPARENT_TIME: 285 return true; 286 } 287 return false; 288 } 289 290 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) 291 { 292 u64 ctr_val; 293 294 switch (idx) { 295 case VMWARE_BACKDOOR_PMC_HOST_TSC: 296 ctr_val = rdtsc(); 297 break; 298 case VMWARE_BACKDOOR_PMC_REAL_TIME: 299 ctr_val = ktime_get_boottime_ns(); 300 break; 301 case VMWARE_BACKDOOR_PMC_APPARENT_TIME: 302 ctr_val = ktime_get_boottime_ns() + 303 vcpu->kvm->arch.kvmclock_offset; 304 break; 305 default: 306 return 1; 307 } 308 309 *data = ctr_val; 310 return 0; 311 } 312 313 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) 314 { 315 bool fast_mode = idx & (1u << 31); 316 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 317 struct kvm_pmc *pmc; 318 u64 mask = fast_mode ? ~0u : ~0ull; 319 320 if (!pmu->version) 321 return 1; 322 323 if (is_vmware_backdoor_pmc(idx)) 324 return kvm_pmu_rdpmc_vmware(vcpu, idx, data); 325 326 pmc = kvm_x86_ops->pmu_ops->msr_idx_to_pmc(vcpu, idx, &mask); 327 if (!pmc) 328 return 1; 329 330 *data = pmc_read_counter(pmc) & mask; 331 return 0; 332 } 333 334 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu) 335 { 336 if (lapic_in_kernel(vcpu)) 337 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC); 338 } 339 340 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr) 341 { 342 return kvm_x86_ops->pmu_ops->is_valid_msr(vcpu, msr); 343 } 344 345 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *data) 346 { 347 return kvm_x86_ops->pmu_ops->get_msr(vcpu, msr, data); 348 } 349 350 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 351 { 352 return kvm_x86_ops->pmu_ops->set_msr(vcpu, msr_info); 353 } 354 355 /* refresh PMU settings. This function generally is called when underlying 356 * settings are changed (such as changes of PMU CPUID by guest VMs), which 357 * should rarely happen. 358 */ 359 void kvm_pmu_refresh(struct kvm_vcpu *vcpu) 360 { 361 kvm_x86_ops->pmu_ops->refresh(vcpu); 362 } 363 364 void kvm_pmu_reset(struct kvm_vcpu *vcpu) 365 { 366 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 367 368 irq_work_sync(&pmu->irq_work); 369 kvm_x86_ops->pmu_ops->reset(vcpu); 370 } 371 372 void kvm_pmu_init(struct kvm_vcpu *vcpu) 373 { 374 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 375 376 memset(pmu, 0, sizeof(*pmu)); 377 kvm_x86_ops->pmu_ops->init(vcpu); 378 init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn); 379 kvm_pmu_refresh(vcpu); 380 } 381 382 void kvm_pmu_destroy(struct kvm_vcpu *vcpu) 383 { 384 kvm_pmu_reset(vcpu); 385 } 386 387 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp) 388 { 389 struct kvm_pmu_event_filter tmp, *filter; 390 size_t size; 391 int r; 392 393 if (copy_from_user(&tmp, argp, sizeof(tmp))) 394 return -EFAULT; 395 396 if (tmp.action != KVM_PMU_EVENT_ALLOW && 397 tmp.action != KVM_PMU_EVENT_DENY) 398 return -EINVAL; 399 400 if (tmp.flags != 0) 401 return -EINVAL; 402 403 if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS) 404 return -E2BIG; 405 406 size = struct_size(filter, events, tmp.nevents); 407 filter = kmalloc(size, GFP_KERNEL_ACCOUNT); 408 if (!filter) 409 return -ENOMEM; 410 411 r = -EFAULT; 412 if (copy_from_user(filter, argp, size)) 413 goto cleanup; 414 415 /* Ensure nevents can't be changed between the user copies. */ 416 *filter = tmp; 417 418 mutex_lock(&kvm->lock); 419 rcu_swap_protected(kvm->arch.pmu_event_filter, filter, 420 mutex_is_locked(&kvm->lock)); 421 mutex_unlock(&kvm->lock); 422 423 synchronize_srcu_expedited(&kvm->srcu); 424 r = 0; 425 cleanup: 426 kfree(filter); 427 return r; 428 } 429