1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine -- Performance Monitoring Unit support 4 * 5 * Copyright 2015 Red Hat, Inc. and/or its affiliates. 6 * 7 * Authors: 8 * Avi Kivity <avi@redhat.com> 9 * Gleb Natapov <gleb@redhat.com> 10 * Wei Huang <wei@redhat.com> 11 */ 12 13 #include <linux/types.h> 14 #include <linux/kvm_host.h> 15 #include <linux/perf_event.h> 16 #include <linux/bsearch.h> 17 #include <linux/sort.h> 18 #include <asm/perf_event.h> 19 #include <asm/cpu_device_id.h> 20 #include "x86.h" 21 #include "cpuid.h" 22 #include "lapic.h" 23 #include "pmu.h" 24 25 /* This is enough to filter the vast majority of currently defined events. */ 26 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300 27 28 struct x86_pmu_capability __read_mostly kvm_pmu_cap; 29 EXPORT_SYMBOL_GPL(kvm_pmu_cap); 30 31 static const struct x86_cpu_id vmx_icl_pebs_cpu[] = { 32 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL), 33 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL), 34 {} 35 }; 36 37 /* NOTE: 38 * - Each perf counter is defined as "struct kvm_pmc"; 39 * - There are two types of perf counters: general purpose (gp) and fixed. 40 * gp counters are stored in gp_counters[] and fixed counters are stored 41 * in fixed_counters[] respectively. Both of them are part of "struct 42 * kvm_pmu"; 43 * - pmu.c understands the difference between gp counters and fixed counters. 44 * However AMD doesn't support fixed-counters; 45 * - There are three types of index to access perf counters (PMC): 46 * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD 47 * has MSR_K7_PERFCTRn and, for families 15H and later, 48 * MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are 49 * aliased to MSR_K7_PERFCTRn. 50 * 2. MSR Index (named idx): This normally is used by RDPMC instruction. 51 * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access 52 * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except 53 * that it also supports fixed counters. idx can be used to as index to 54 * gp and fixed counters. 55 * 3. Global PMC Index (named pmc): pmc is an index specific to PMU 56 * code. Each pmc, stored in kvm_pmc.idx field, is unique across 57 * all perf counters (both gp and fixed). The mapping relationship 58 * between pmc and perf counters is as the following: 59 * * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters 60 * [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed 61 * * AMD: [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H 62 * and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters 63 */ 64 65 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly; 66 67 #define KVM_X86_PMU_OP(func) \ 68 DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func, \ 69 *(((struct kvm_pmu_ops *)0)->func)); 70 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP 71 #include <asm/kvm-x86-pmu-ops.h> 72 73 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops) 74 { 75 memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops)); 76 77 #define __KVM_X86_PMU_OP(func) \ 78 static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func); 79 #define KVM_X86_PMU_OP(func) \ 80 WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func) 81 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP 82 #include <asm/kvm-x86-pmu-ops.h> 83 #undef __KVM_X86_PMU_OP 84 } 85 86 static inline bool pmc_is_enabled(struct kvm_pmc *pmc) 87 { 88 return static_call(kvm_x86_pmu_pmc_is_enabled)(pmc); 89 } 90 91 static void kvm_pmi_trigger_fn(struct irq_work *irq_work) 92 { 93 struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work); 94 struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu); 95 96 kvm_pmu_deliver_pmi(vcpu); 97 } 98 99 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi) 100 { 101 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 102 bool skip_pmi = false; 103 104 if (pmc->perf_event && pmc->perf_event->attr.precise_ip) { 105 if (!in_pmi) { 106 /* 107 * TODO: KVM is currently _choosing_ to not generate records 108 * for emulated instructions, avoiding BUFFER_OVF PMI when 109 * there are no records. Strictly speaking, it should be done 110 * as well in the right context to improve sampling accuracy. 111 */ 112 skip_pmi = true; 113 } else { 114 /* Indicate PEBS overflow PMI to guest. */ 115 skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, 116 (unsigned long *)&pmu->global_status); 117 } 118 } else { 119 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status); 120 } 121 122 if (!pmc->intr || skip_pmi) 123 return; 124 125 /* 126 * Inject PMI. If vcpu was in a guest mode during NMI PMI 127 * can be ejected on a guest mode re-entry. Otherwise we can't 128 * be sure that vcpu wasn't executing hlt instruction at the 129 * time of vmexit and is not going to re-enter guest mode until 130 * woken up. So we should wake it, but this is impossible from 131 * NMI context. Do it from irq work instead. 132 */ 133 if (in_pmi && !kvm_handling_nmi_from_guest(pmc->vcpu)) 134 irq_work_queue(&pmc_to_pmu(pmc)->irq_work); 135 else 136 kvm_make_request(KVM_REQ_PMI, pmc->vcpu); 137 } 138 139 static void kvm_perf_overflow(struct perf_event *perf_event, 140 struct perf_sample_data *data, 141 struct pt_regs *regs) 142 { 143 struct kvm_pmc *pmc = perf_event->overflow_handler_context; 144 145 /* 146 * Ignore overflow events for counters that are scheduled to be 147 * reprogrammed, e.g. if a PMI for the previous event races with KVM's 148 * handling of a related guest WRMSR. 149 */ 150 if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi)) 151 return; 152 153 __kvm_perf_overflow(pmc, true); 154 155 kvm_make_request(KVM_REQ_PMU, pmc->vcpu); 156 } 157 158 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config, 159 bool exclude_user, bool exclude_kernel, 160 bool intr) 161 { 162 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 163 struct perf_event *event; 164 struct perf_event_attr attr = { 165 .type = type, 166 .size = sizeof(attr), 167 .pinned = true, 168 .exclude_idle = true, 169 .exclude_host = 1, 170 .exclude_user = exclude_user, 171 .exclude_kernel = exclude_kernel, 172 .config = config, 173 }; 174 bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable); 175 176 attr.sample_period = get_sample_period(pmc, pmc->counter); 177 178 if ((attr.config & HSW_IN_TX_CHECKPOINTED) && 179 guest_cpuid_is_intel(pmc->vcpu)) { 180 /* 181 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero 182 * period. Just clear the sample period so at least 183 * allocating the counter doesn't fail. 184 */ 185 attr.sample_period = 0; 186 } 187 if (pebs) { 188 /* 189 * The non-zero precision level of guest event makes the ordinary 190 * guest event becomes a guest PEBS event and triggers the host 191 * PEBS PMI handler to determine whether the PEBS overflow PMI 192 * comes from the host counters or the guest. 193 * 194 * For most PEBS hardware events, the difference in the software 195 * precision levels of guest and host PEBS events will not affect 196 * the accuracy of the PEBS profiling result, because the "event IP" 197 * in the PEBS record is calibrated on the guest side. 198 * 199 * On Icelake everything is fine. Other hardware (GLC+, TNT+) that 200 * could possibly care here is unsupported and needs changes. 201 */ 202 attr.precise_ip = 1; 203 if (x86_match_cpu(vmx_icl_pebs_cpu) && pmc->idx == 32) 204 attr.precise_ip = 3; 205 } 206 207 event = perf_event_create_kernel_counter(&attr, -1, current, 208 kvm_perf_overflow, pmc); 209 if (IS_ERR(event)) { 210 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n", 211 PTR_ERR(event), pmc->idx); 212 return PTR_ERR(event); 213 } 214 215 pmc->perf_event = event; 216 pmc_to_pmu(pmc)->event_count++; 217 pmc->is_paused = false; 218 pmc->intr = intr || pebs; 219 return 0; 220 } 221 222 static void pmc_pause_counter(struct kvm_pmc *pmc) 223 { 224 u64 counter = pmc->counter; 225 226 if (!pmc->perf_event || pmc->is_paused) 227 return; 228 229 /* update counter, reset event value to avoid redundant accumulation */ 230 counter += perf_event_pause(pmc->perf_event, true); 231 pmc->counter = counter & pmc_bitmask(pmc); 232 pmc->is_paused = true; 233 } 234 235 static bool pmc_resume_counter(struct kvm_pmc *pmc) 236 { 237 if (!pmc->perf_event) 238 return false; 239 240 /* recalibrate sample period and check if it's accepted by perf core */ 241 if (perf_event_period(pmc->perf_event, 242 get_sample_period(pmc, pmc->counter))) 243 return false; 244 245 if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) != 246 (!!pmc->perf_event->attr.precise_ip)) 247 return false; 248 249 /* reuse perf_event to serve as pmc_reprogram_counter() does*/ 250 perf_event_enable(pmc->perf_event); 251 pmc->is_paused = false; 252 253 return true; 254 } 255 256 static int cmp_u64(const void *pa, const void *pb) 257 { 258 u64 a = *(u64 *)pa; 259 u64 b = *(u64 *)pb; 260 261 return (a > b) - (a < b); 262 } 263 264 static bool check_pmu_event_filter(struct kvm_pmc *pmc) 265 { 266 struct kvm_pmu_event_filter *filter; 267 struct kvm *kvm = pmc->vcpu->kvm; 268 bool allow_event = true; 269 __u64 key; 270 int idx; 271 272 if (!static_call(kvm_x86_pmu_hw_event_available)(pmc)) 273 return false; 274 275 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu); 276 if (!filter) 277 goto out; 278 279 if (pmc_is_gp(pmc)) { 280 key = pmc->eventsel & AMD64_RAW_EVENT_MASK_NB; 281 if (bsearch(&key, filter->events, filter->nevents, 282 sizeof(__u64), cmp_u64)) 283 allow_event = filter->action == KVM_PMU_EVENT_ALLOW; 284 else 285 allow_event = filter->action == KVM_PMU_EVENT_DENY; 286 } else { 287 idx = pmc->idx - INTEL_PMC_IDX_FIXED; 288 if (filter->action == KVM_PMU_EVENT_DENY && 289 test_bit(idx, (ulong *)&filter->fixed_counter_bitmap)) 290 allow_event = false; 291 if (filter->action == KVM_PMU_EVENT_ALLOW && 292 !test_bit(idx, (ulong *)&filter->fixed_counter_bitmap)) 293 allow_event = false; 294 } 295 296 out: 297 return allow_event; 298 } 299 300 static void reprogram_counter(struct kvm_pmc *pmc) 301 { 302 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 303 u64 eventsel = pmc->eventsel; 304 u64 new_config = eventsel; 305 u8 fixed_ctr_ctrl; 306 307 pmc_pause_counter(pmc); 308 309 if (!pmc_speculative_in_use(pmc) || !pmc_is_enabled(pmc)) 310 goto reprogram_complete; 311 312 if (!check_pmu_event_filter(pmc)) 313 goto reprogram_complete; 314 315 if (pmc->counter < pmc->prev_counter) 316 __kvm_perf_overflow(pmc, false); 317 318 if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL) 319 printk_once("kvm pmu: pin control bit is ignored\n"); 320 321 if (pmc_is_fixed(pmc)) { 322 fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, 323 pmc->idx - INTEL_PMC_IDX_FIXED); 324 if (fixed_ctr_ctrl & 0x1) 325 eventsel |= ARCH_PERFMON_EVENTSEL_OS; 326 if (fixed_ctr_ctrl & 0x2) 327 eventsel |= ARCH_PERFMON_EVENTSEL_USR; 328 if (fixed_ctr_ctrl & 0x8) 329 eventsel |= ARCH_PERFMON_EVENTSEL_INT; 330 new_config = (u64)fixed_ctr_ctrl; 331 } 332 333 if (pmc->current_config == new_config && pmc_resume_counter(pmc)) 334 goto reprogram_complete; 335 336 pmc_release_perf_event(pmc); 337 338 pmc->current_config = new_config; 339 340 /* 341 * If reprogramming fails, e.g. due to contention, leave the counter's 342 * regprogram bit set, i.e. opportunistically try again on the next PMU 343 * refresh. Don't make a new request as doing so can stall the guest 344 * if reprogramming repeatedly fails. 345 */ 346 if (pmc_reprogram_counter(pmc, PERF_TYPE_RAW, 347 (eventsel & pmu->raw_event_mask), 348 !(eventsel & ARCH_PERFMON_EVENTSEL_USR), 349 !(eventsel & ARCH_PERFMON_EVENTSEL_OS), 350 eventsel & ARCH_PERFMON_EVENTSEL_INT)) 351 return; 352 353 reprogram_complete: 354 clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi); 355 pmc->prev_counter = 0; 356 } 357 358 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu) 359 { 360 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 361 int bit; 362 363 for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) { 364 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit); 365 366 if (unlikely(!pmc)) { 367 clear_bit(bit, pmu->reprogram_pmi); 368 continue; 369 } 370 371 reprogram_counter(pmc); 372 } 373 374 /* 375 * Unused perf_events are only released if the corresponding MSRs 376 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in 377 * triggers KVM_REQ_PMU if cleanup is needed. 378 */ 379 if (unlikely(pmu->need_cleanup)) 380 kvm_pmu_cleanup(vcpu); 381 } 382 383 /* check if idx is a valid index to access PMU */ 384 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx) 385 { 386 return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx); 387 } 388 389 bool is_vmware_backdoor_pmc(u32 pmc_idx) 390 { 391 switch (pmc_idx) { 392 case VMWARE_BACKDOOR_PMC_HOST_TSC: 393 case VMWARE_BACKDOOR_PMC_REAL_TIME: 394 case VMWARE_BACKDOOR_PMC_APPARENT_TIME: 395 return true; 396 } 397 return false; 398 } 399 400 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) 401 { 402 u64 ctr_val; 403 404 switch (idx) { 405 case VMWARE_BACKDOOR_PMC_HOST_TSC: 406 ctr_val = rdtsc(); 407 break; 408 case VMWARE_BACKDOOR_PMC_REAL_TIME: 409 ctr_val = ktime_get_boottime_ns(); 410 break; 411 case VMWARE_BACKDOOR_PMC_APPARENT_TIME: 412 ctr_val = ktime_get_boottime_ns() + 413 vcpu->kvm->arch.kvmclock_offset; 414 break; 415 default: 416 return 1; 417 } 418 419 *data = ctr_val; 420 return 0; 421 } 422 423 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) 424 { 425 bool fast_mode = idx & (1u << 31); 426 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 427 struct kvm_pmc *pmc; 428 u64 mask = fast_mode ? ~0u : ~0ull; 429 430 if (!pmu->version) 431 return 1; 432 433 if (is_vmware_backdoor_pmc(idx)) 434 return kvm_pmu_rdpmc_vmware(vcpu, idx, data); 435 436 pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask); 437 if (!pmc) 438 return 1; 439 440 if (!(kvm_read_cr4(vcpu) & X86_CR4_PCE) && 441 (static_call(kvm_x86_get_cpl)(vcpu) != 0) && 442 (kvm_read_cr0(vcpu) & X86_CR0_PE)) 443 return 1; 444 445 *data = pmc_read_counter(pmc) & mask; 446 return 0; 447 } 448 449 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu) 450 { 451 if (lapic_in_kernel(vcpu)) { 452 static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu); 453 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC); 454 } 455 } 456 457 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr) 458 { 459 return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) || 460 static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr); 461 } 462 463 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr) 464 { 465 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 466 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr); 467 468 if (pmc) 469 __set_bit(pmc->idx, pmu->pmc_in_use); 470 } 471 472 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 473 { 474 return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info); 475 } 476 477 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 478 { 479 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index); 480 return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info); 481 } 482 483 /* refresh PMU settings. This function generally is called when underlying 484 * settings are changed (such as changes of PMU CPUID by guest VMs), which 485 * should rarely happen. 486 */ 487 void kvm_pmu_refresh(struct kvm_vcpu *vcpu) 488 { 489 static_call(kvm_x86_pmu_refresh)(vcpu); 490 } 491 492 void kvm_pmu_reset(struct kvm_vcpu *vcpu) 493 { 494 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 495 496 irq_work_sync(&pmu->irq_work); 497 static_call(kvm_x86_pmu_reset)(vcpu); 498 } 499 500 void kvm_pmu_init(struct kvm_vcpu *vcpu) 501 { 502 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 503 504 memset(pmu, 0, sizeof(*pmu)); 505 static_call(kvm_x86_pmu_init)(vcpu); 506 init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn); 507 pmu->event_count = 0; 508 pmu->need_cleanup = false; 509 kvm_pmu_refresh(vcpu); 510 } 511 512 /* Release perf_events for vPMCs that have been unused for a full time slice. */ 513 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu) 514 { 515 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 516 struct kvm_pmc *pmc = NULL; 517 DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX); 518 int i; 519 520 pmu->need_cleanup = false; 521 522 bitmap_andnot(bitmask, pmu->all_valid_pmc_idx, 523 pmu->pmc_in_use, X86_PMC_IDX_MAX); 524 525 for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) { 526 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i); 527 528 if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc)) 529 pmc_stop_counter(pmc); 530 } 531 532 static_call_cond(kvm_x86_pmu_cleanup)(vcpu); 533 534 bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX); 535 } 536 537 void kvm_pmu_destroy(struct kvm_vcpu *vcpu) 538 { 539 kvm_pmu_reset(vcpu); 540 } 541 542 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc) 543 { 544 pmc->prev_counter = pmc->counter; 545 pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc); 546 kvm_pmu_request_counter_reprogam(pmc); 547 } 548 549 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc, 550 unsigned int perf_hw_id) 551 { 552 return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) & 553 AMD64_RAW_EVENT_MASK_NB); 554 } 555 556 static inline bool cpl_is_matched(struct kvm_pmc *pmc) 557 { 558 bool select_os, select_user; 559 u64 config; 560 561 if (pmc_is_gp(pmc)) { 562 config = pmc->eventsel; 563 select_os = config & ARCH_PERFMON_EVENTSEL_OS; 564 select_user = config & ARCH_PERFMON_EVENTSEL_USR; 565 } else { 566 config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl, 567 pmc->idx - INTEL_PMC_IDX_FIXED); 568 select_os = config & 0x1; 569 select_user = config & 0x2; 570 } 571 572 return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user; 573 } 574 575 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id) 576 { 577 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 578 struct kvm_pmc *pmc; 579 int i; 580 581 for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) { 582 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i); 583 584 if (!pmc || !pmc_is_enabled(pmc) || !pmc_speculative_in_use(pmc)) 585 continue; 586 587 /* Ignore checks for edge detect, pin control, invert and CMASK bits */ 588 if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc)) 589 kvm_pmu_incr_counter(pmc); 590 } 591 } 592 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event); 593 594 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp) 595 { 596 struct kvm_pmu_event_filter tmp, *filter; 597 struct kvm_vcpu *vcpu; 598 unsigned long i; 599 size_t size; 600 int r; 601 602 if (copy_from_user(&tmp, argp, sizeof(tmp))) 603 return -EFAULT; 604 605 if (tmp.action != KVM_PMU_EVENT_ALLOW && 606 tmp.action != KVM_PMU_EVENT_DENY) 607 return -EINVAL; 608 609 if (tmp.flags != 0) 610 return -EINVAL; 611 612 if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS) 613 return -E2BIG; 614 615 size = struct_size(filter, events, tmp.nevents); 616 filter = kmalloc(size, GFP_KERNEL_ACCOUNT); 617 if (!filter) 618 return -ENOMEM; 619 620 r = -EFAULT; 621 if (copy_from_user(filter, argp, size)) 622 goto cleanup; 623 624 /* Ensure nevents can't be changed between the user copies. */ 625 *filter = tmp; 626 627 /* 628 * Sort the in-kernel list so that we can search it with bsearch. 629 */ 630 sort(&filter->events, filter->nevents, sizeof(__u64), cmp_u64, NULL); 631 632 mutex_lock(&kvm->lock); 633 filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter, 634 mutex_is_locked(&kvm->lock)); 635 synchronize_srcu_expedited(&kvm->srcu); 636 637 BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) > 638 sizeof(((struct kvm_pmu *)0)->__reprogram_pmi)); 639 640 kvm_for_each_vcpu(i, vcpu, kvm) 641 atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull); 642 643 kvm_make_all_cpus_request(kvm, KVM_REQ_PMU); 644 645 mutex_unlock(&kvm->lock); 646 647 r = 0; 648 cleanup: 649 kfree(filter); 650 return r; 651 } 652