1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine -- Performance Monitoring Unit support 4 * 5 * Copyright 2015 Red Hat, Inc. and/or its affiliates. 6 * 7 * Authors: 8 * Avi Kivity <avi@redhat.com> 9 * Gleb Natapov <gleb@redhat.com> 10 * Wei Huang <wei@redhat.com> 11 */ 12 13 #include <linux/types.h> 14 #include <linux/kvm_host.h> 15 #include <linux/perf_event.h> 16 #include <linux/bsearch.h> 17 #include <linux/sort.h> 18 #include <asm/perf_event.h> 19 #include <asm/cpu_device_id.h> 20 #include "x86.h" 21 #include "cpuid.h" 22 #include "lapic.h" 23 #include "pmu.h" 24 25 /* This is enough to filter the vast majority of currently defined events. */ 26 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300 27 28 struct x86_pmu_capability __read_mostly kvm_pmu_cap; 29 EXPORT_SYMBOL_GPL(kvm_pmu_cap); 30 31 static const struct x86_cpu_id vmx_icl_pebs_cpu[] = { 32 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL), 33 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL), 34 {} 35 }; 36 37 /* NOTE: 38 * - Each perf counter is defined as "struct kvm_pmc"; 39 * - There are two types of perf counters: general purpose (gp) and fixed. 40 * gp counters are stored in gp_counters[] and fixed counters are stored 41 * in fixed_counters[] respectively. Both of them are part of "struct 42 * kvm_pmu"; 43 * - pmu.c understands the difference between gp counters and fixed counters. 44 * However AMD doesn't support fixed-counters; 45 * - There are three types of index to access perf counters (PMC): 46 * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD 47 * has MSR_K7_PERFCTRn and, for families 15H and later, 48 * MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are 49 * aliased to MSR_K7_PERFCTRn. 50 * 2. MSR Index (named idx): This normally is used by RDPMC instruction. 51 * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access 52 * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except 53 * that it also supports fixed counters. idx can be used to as index to 54 * gp and fixed counters. 55 * 3. Global PMC Index (named pmc): pmc is an index specific to PMU 56 * code. Each pmc, stored in kvm_pmc.idx field, is unique across 57 * all perf counters (both gp and fixed). The mapping relationship 58 * between pmc and perf counters is as the following: 59 * * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters 60 * [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed 61 * * AMD: [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H 62 * and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters 63 */ 64 65 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly; 66 67 #define KVM_X86_PMU_OP(func) \ 68 DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func, \ 69 *(((struct kvm_pmu_ops *)0)->func)); 70 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP 71 #include <asm/kvm-x86-pmu-ops.h> 72 73 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops) 74 { 75 memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops)); 76 77 #define __KVM_X86_PMU_OP(func) \ 78 static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func); 79 #define KVM_X86_PMU_OP(func) \ 80 WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func) 81 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP 82 #include <asm/kvm-x86-pmu-ops.h> 83 #undef __KVM_X86_PMU_OP 84 } 85 86 static inline bool pmc_is_enabled(struct kvm_pmc *pmc) 87 { 88 return static_call(kvm_x86_pmu_pmc_is_enabled)(pmc); 89 } 90 91 static void kvm_pmi_trigger_fn(struct irq_work *irq_work) 92 { 93 struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work); 94 struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu); 95 96 kvm_pmu_deliver_pmi(vcpu); 97 } 98 99 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi) 100 { 101 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 102 bool skip_pmi = false; 103 104 /* Ignore counters that have been reprogrammed already. */ 105 if (test_and_set_bit(pmc->idx, pmu->reprogram_pmi)) 106 return; 107 108 if (pmc->perf_event && pmc->perf_event->attr.precise_ip) { 109 if (!in_pmi) { 110 /* 111 * TODO: KVM is currently _choosing_ to not generate records 112 * for emulated instructions, avoiding BUFFER_OVF PMI when 113 * there are no records. Strictly speaking, it should be done 114 * as well in the right context to improve sampling accuracy. 115 */ 116 skip_pmi = true; 117 } else { 118 /* Indicate PEBS overflow PMI to guest. */ 119 skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, 120 (unsigned long *)&pmu->global_status); 121 } 122 } else { 123 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status); 124 } 125 kvm_make_request(KVM_REQ_PMU, pmc->vcpu); 126 127 if (!pmc->intr || skip_pmi) 128 return; 129 130 /* 131 * Inject PMI. If vcpu was in a guest mode during NMI PMI 132 * can be ejected on a guest mode re-entry. Otherwise we can't 133 * be sure that vcpu wasn't executing hlt instruction at the 134 * time of vmexit and is not going to re-enter guest mode until 135 * woken up. So we should wake it, but this is impossible from 136 * NMI context. Do it from irq work instead. 137 */ 138 if (in_pmi && !kvm_handling_nmi_from_guest(pmc->vcpu)) 139 irq_work_queue(&pmc_to_pmu(pmc)->irq_work); 140 else 141 kvm_make_request(KVM_REQ_PMI, pmc->vcpu); 142 } 143 144 static void kvm_perf_overflow(struct perf_event *perf_event, 145 struct perf_sample_data *data, 146 struct pt_regs *regs) 147 { 148 struct kvm_pmc *pmc = perf_event->overflow_handler_context; 149 150 __kvm_perf_overflow(pmc, true); 151 } 152 153 static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, 154 u64 config, bool exclude_user, 155 bool exclude_kernel, bool intr) 156 { 157 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 158 struct perf_event *event; 159 struct perf_event_attr attr = { 160 .type = type, 161 .size = sizeof(attr), 162 .pinned = true, 163 .exclude_idle = true, 164 .exclude_host = 1, 165 .exclude_user = exclude_user, 166 .exclude_kernel = exclude_kernel, 167 .config = config, 168 }; 169 bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable); 170 171 attr.sample_period = get_sample_period(pmc, pmc->counter); 172 173 if ((attr.config & HSW_IN_TX_CHECKPOINTED) && 174 guest_cpuid_is_intel(pmc->vcpu)) { 175 /* 176 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero 177 * period. Just clear the sample period so at least 178 * allocating the counter doesn't fail. 179 */ 180 attr.sample_period = 0; 181 } 182 if (pebs) { 183 /* 184 * The non-zero precision level of guest event makes the ordinary 185 * guest event becomes a guest PEBS event and triggers the host 186 * PEBS PMI handler to determine whether the PEBS overflow PMI 187 * comes from the host counters or the guest. 188 * 189 * For most PEBS hardware events, the difference in the software 190 * precision levels of guest and host PEBS events will not affect 191 * the accuracy of the PEBS profiling result, because the "event IP" 192 * in the PEBS record is calibrated on the guest side. 193 * 194 * On Icelake everything is fine. Other hardware (GLC+, TNT+) that 195 * could possibly care here is unsupported and needs changes. 196 */ 197 attr.precise_ip = 1; 198 if (x86_match_cpu(vmx_icl_pebs_cpu) && pmc->idx == 32) 199 attr.precise_ip = 3; 200 } 201 202 event = perf_event_create_kernel_counter(&attr, -1, current, 203 kvm_perf_overflow, pmc); 204 if (IS_ERR(event)) { 205 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n", 206 PTR_ERR(event), pmc->idx); 207 return; 208 } 209 210 pmc->perf_event = event; 211 pmc_to_pmu(pmc)->event_count++; 212 clear_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi); 213 pmc->is_paused = false; 214 pmc->intr = intr || pebs; 215 } 216 217 static void pmc_pause_counter(struct kvm_pmc *pmc) 218 { 219 u64 counter = pmc->counter; 220 221 if (!pmc->perf_event || pmc->is_paused) 222 return; 223 224 /* update counter, reset event value to avoid redundant accumulation */ 225 counter += perf_event_pause(pmc->perf_event, true); 226 pmc->counter = counter & pmc_bitmask(pmc); 227 pmc->is_paused = true; 228 } 229 230 static bool pmc_resume_counter(struct kvm_pmc *pmc) 231 { 232 if (!pmc->perf_event) 233 return false; 234 235 /* recalibrate sample period and check if it's accepted by perf core */ 236 if (perf_event_period(pmc->perf_event, 237 get_sample_period(pmc, pmc->counter))) 238 return false; 239 240 if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) != 241 (!!pmc->perf_event->attr.precise_ip)) 242 return false; 243 244 /* reuse perf_event to serve as pmc_reprogram_counter() does*/ 245 perf_event_enable(pmc->perf_event); 246 pmc->is_paused = false; 247 248 clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi); 249 return true; 250 } 251 252 static int cmp_u64(const void *pa, const void *pb) 253 { 254 u64 a = *(u64 *)pa; 255 u64 b = *(u64 *)pb; 256 257 return (a > b) - (a < b); 258 } 259 260 static bool check_pmu_event_filter(struct kvm_pmc *pmc) 261 { 262 struct kvm_pmu_event_filter *filter; 263 struct kvm *kvm = pmc->vcpu->kvm; 264 bool allow_event = true; 265 __u64 key; 266 int idx; 267 268 if (!static_call(kvm_x86_pmu_hw_event_available)(pmc)) 269 return false; 270 271 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu); 272 if (!filter) 273 goto out; 274 275 if (pmc_is_gp(pmc)) { 276 key = pmc->eventsel & AMD64_RAW_EVENT_MASK_NB; 277 if (bsearch(&key, filter->events, filter->nevents, 278 sizeof(__u64), cmp_u64)) 279 allow_event = filter->action == KVM_PMU_EVENT_ALLOW; 280 else 281 allow_event = filter->action == KVM_PMU_EVENT_DENY; 282 } else { 283 idx = pmc->idx - INTEL_PMC_IDX_FIXED; 284 if (filter->action == KVM_PMU_EVENT_DENY && 285 test_bit(idx, (ulong *)&filter->fixed_counter_bitmap)) 286 allow_event = false; 287 if (filter->action == KVM_PMU_EVENT_ALLOW && 288 !test_bit(idx, (ulong *)&filter->fixed_counter_bitmap)) 289 allow_event = false; 290 } 291 292 out: 293 return allow_event; 294 } 295 296 void reprogram_counter(struct kvm_pmc *pmc) 297 { 298 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 299 u64 eventsel = pmc->eventsel; 300 u64 new_config = eventsel; 301 u8 fixed_ctr_ctrl; 302 303 pmc_pause_counter(pmc); 304 305 if (!pmc_speculative_in_use(pmc) || !pmc_is_enabled(pmc)) 306 return; 307 308 if (!check_pmu_event_filter(pmc)) 309 return; 310 311 if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL) 312 printk_once("kvm pmu: pin control bit is ignored\n"); 313 314 if (pmc_is_fixed(pmc)) { 315 fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, 316 pmc->idx - INTEL_PMC_IDX_FIXED); 317 if (fixed_ctr_ctrl & 0x1) 318 eventsel |= ARCH_PERFMON_EVENTSEL_OS; 319 if (fixed_ctr_ctrl & 0x2) 320 eventsel |= ARCH_PERFMON_EVENTSEL_USR; 321 if (fixed_ctr_ctrl & 0x8) 322 eventsel |= ARCH_PERFMON_EVENTSEL_INT; 323 new_config = (u64)fixed_ctr_ctrl; 324 } 325 326 if (pmc->current_config == new_config && pmc_resume_counter(pmc)) 327 return; 328 329 pmc_release_perf_event(pmc); 330 331 pmc->current_config = new_config; 332 pmc_reprogram_counter(pmc, PERF_TYPE_RAW, 333 (eventsel & pmu->raw_event_mask), 334 !(eventsel & ARCH_PERFMON_EVENTSEL_USR), 335 !(eventsel & ARCH_PERFMON_EVENTSEL_OS), 336 eventsel & ARCH_PERFMON_EVENTSEL_INT); 337 } 338 EXPORT_SYMBOL_GPL(reprogram_counter); 339 340 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu) 341 { 342 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 343 int bit; 344 345 for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) { 346 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit); 347 348 if (unlikely(!pmc || !pmc->perf_event)) { 349 clear_bit(bit, pmu->reprogram_pmi); 350 continue; 351 } 352 reprogram_counter(pmc); 353 } 354 355 /* 356 * Unused perf_events are only released if the corresponding MSRs 357 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in 358 * triggers KVM_REQ_PMU if cleanup is needed. 359 */ 360 if (unlikely(pmu->need_cleanup)) 361 kvm_pmu_cleanup(vcpu); 362 } 363 364 /* check if idx is a valid index to access PMU */ 365 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx) 366 { 367 return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx); 368 } 369 370 bool is_vmware_backdoor_pmc(u32 pmc_idx) 371 { 372 switch (pmc_idx) { 373 case VMWARE_BACKDOOR_PMC_HOST_TSC: 374 case VMWARE_BACKDOOR_PMC_REAL_TIME: 375 case VMWARE_BACKDOOR_PMC_APPARENT_TIME: 376 return true; 377 } 378 return false; 379 } 380 381 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) 382 { 383 u64 ctr_val; 384 385 switch (idx) { 386 case VMWARE_BACKDOOR_PMC_HOST_TSC: 387 ctr_val = rdtsc(); 388 break; 389 case VMWARE_BACKDOOR_PMC_REAL_TIME: 390 ctr_val = ktime_get_boottime_ns(); 391 break; 392 case VMWARE_BACKDOOR_PMC_APPARENT_TIME: 393 ctr_val = ktime_get_boottime_ns() + 394 vcpu->kvm->arch.kvmclock_offset; 395 break; 396 default: 397 return 1; 398 } 399 400 *data = ctr_val; 401 return 0; 402 } 403 404 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) 405 { 406 bool fast_mode = idx & (1u << 31); 407 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 408 struct kvm_pmc *pmc; 409 u64 mask = fast_mode ? ~0u : ~0ull; 410 411 if (!pmu->version) 412 return 1; 413 414 if (is_vmware_backdoor_pmc(idx)) 415 return kvm_pmu_rdpmc_vmware(vcpu, idx, data); 416 417 pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask); 418 if (!pmc) 419 return 1; 420 421 if (!(kvm_read_cr4(vcpu) & X86_CR4_PCE) && 422 (static_call(kvm_x86_get_cpl)(vcpu) != 0) && 423 (kvm_read_cr0(vcpu) & X86_CR0_PE)) 424 return 1; 425 426 *data = pmc_read_counter(pmc) & mask; 427 return 0; 428 } 429 430 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu) 431 { 432 if (lapic_in_kernel(vcpu)) { 433 static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu); 434 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC); 435 } 436 } 437 438 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr) 439 { 440 return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) || 441 static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr); 442 } 443 444 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr) 445 { 446 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 447 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr); 448 449 if (pmc) 450 __set_bit(pmc->idx, pmu->pmc_in_use); 451 } 452 453 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 454 { 455 return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info); 456 } 457 458 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 459 { 460 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index); 461 return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info); 462 } 463 464 /* refresh PMU settings. This function generally is called when underlying 465 * settings are changed (such as changes of PMU CPUID by guest VMs), which 466 * should rarely happen. 467 */ 468 void kvm_pmu_refresh(struct kvm_vcpu *vcpu) 469 { 470 static_call(kvm_x86_pmu_refresh)(vcpu); 471 } 472 473 void kvm_pmu_reset(struct kvm_vcpu *vcpu) 474 { 475 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 476 477 irq_work_sync(&pmu->irq_work); 478 static_call(kvm_x86_pmu_reset)(vcpu); 479 } 480 481 void kvm_pmu_init(struct kvm_vcpu *vcpu) 482 { 483 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 484 485 memset(pmu, 0, sizeof(*pmu)); 486 static_call(kvm_x86_pmu_init)(vcpu); 487 init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn); 488 pmu->event_count = 0; 489 pmu->need_cleanup = false; 490 kvm_pmu_refresh(vcpu); 491 } 492 493 /* Release perf_events for vPMCs that have been unused for a full time slice. */ 494 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu) 495 { 496 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 497 struct kvm_pmc *pmc = NULL; 498 DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX); 499 int i; 500 501 pmu->need_cleanup = false; 502 503 bitmap_andnot(bitmask, pmu->all_valid_pmc_idx, 504 pmu->pmc_in_use, X86_PMC_IDX_MAX); 505 506 for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) { 507 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i); 508 509 if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc)) 510 pmc_stop_counter(pmc); 511 } 512 513 static_call_cond(kvm_x86_pmu_cleanup)(vcpu); 514 515 bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX); 516 } 517 518 void kvm_pmu_destroy(struct kvm_vcpu *vcpu) 519 { 520 kvm_pmu_reset(vcpu); 521 } 522 523 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc) 524 { 525 u64 prev_count; 526 527 prev_count = pmc->counter; 528 pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc); 529 530 reprogram_counter(pmc); 531 if (pmc->counter < prev_count) 532 __kvm_perf_overflow(pmc, false); 533 } 534 535 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc, 536 unsigned int perf_hw_id) 537 { 538 return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) & 539 AMD64_RAW_EVENT_MASK_NB); 540 } 541 542 static inline bool cpl_is_matched(struct kvm_pmc *pmc) 543 { 544 bool select_os, select_user; 545 u64 config = pmc->current_config; 546 547 if (pmc_is_gp(pmc)) { 548 select_os = config & ARCH_PERFMON_EVENTSEL_OS; 549 select_user = config & ARCH_PERFMON_EVENTSEL_USR; 550 } else { 551 select_os = config & 0x1; 552 select_user = config & 0x2; 553 } 554 555 return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user; 556 } 557 558 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id) 559 { 560 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 561 struct kvm_pmc *pmc; 562 int i; 563 564 for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) { 565 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i); 566 567 if (!pmc || !pmc_is_enabled(pmc) || !pmc_speculative_in_use(pmc)) 568 continue; 569 570 /* Ignore checks for edge detect, pin control, invert and CMASK bits */ 571 if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc)) 572 kvm_pmu_incr_counter(pmc); 573 } 574 } 575 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event); 576 577 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp) 578 { 579 struct kvm_pmu_event_filter tmp, *filter; 580 size_t size; 581 int r; 582 583 if (copy_from_user(&tmp, argp, sizeof(tmp))) 584 return -EFAULT; 585 586 if (tmp.action != KVM_PMU_EVENT_ALLOW && 587 tmp.action != KVM_PMU_EVENT_DENY) 588 return -EINVAL; 589 590 if (tmp.flags != 0) 591 return -EINVAL; 592 593 if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS) 594 return -E2BIG; 595 596 size = struct_size(filter, events, tmp.nevents); 597 filter = kmalloc(size, GFP_KERNEL_ACCOUNT); 598 if (!filter) 599 return -ENOMEM; 600 601 r = -EFAULT; 602 if (copy_from_user(filter, argp, size)) 603 goto cleanup; 604 605 /* Ensure nevents can't be changed between the user copies. */ 606 *filter = tmp; 607 608 /* 609 * Sort the in-kernel list so that we can search it with bsearch. 610 */ 611 sort(&filter->events, filter->nevents, sizeof(__u64), cmp_u64, NULL); 612 613 mutex_lock(&kvm->lock); 614 filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter, 615 mutex_is_locked(&kvm->lock)); 616 mutex_unlock(&kvm->lock); 617 618 synchronize_srcu_expedited(&kvm->srcu); 619 r = 0; 620 cleanup: 621 kfree(filter); 622 return r; 623 } 624