1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine -- Performance Monitoring Unit support 4 * 5 * Copyright 2015 Red Hat, Inc. and/or its affiliates. 6 * 7 * Authors: 8 * Avi Kivity <avi@redhat.com> 9 * Gleb Natapov <gleb@redhat.com> 10 * Wei Huang <wei@redhat.com> 11 */ 12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 13 14 #include <linux/types.h> 15 #include <linux/kvm_host.h> 16 #include <linux/perf_event.h> 17 #include <linux/bsearch.h> 18 #include <linux/sort.h> 19 #include <asm/perf_event.h> 20 #include <asm/cpu_device_id.h> 21 #include "x86.h" 22 #include "cpuid.h" 23 #include "lapic.h" 24 #include "pmu.h" 25 26 /* This is enough to filter the vast majority of currently defined events. */ 27 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300 28 29 struct x86_pmu_capability __read_mostly kvm_pmu_cap; 30 EXPORT_SYMBOL_GPL(kvm_pmu_cap); 31 32 /* Precise Distribution of Instructions Retired (PDIR) */ 33 static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = { 34 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL), 35 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL), 36 /* Instruction-Accurate PDIR (PDIR++) */ 37 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL), 38 {} 39 }; 40 41 /* Precise Distribution (PDist) */ 42 static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = { 43 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL), 44 {} 45 }; 46 47 /* NOTE: 48 * - Each perf counter is defined as "struct kvm_pmc"; 49 * - There are two types of perf counters: general purpose (gp) and fixed. 50 * gp counters are stored in gp_counters[] and fixed counters are stored 51 * in fixed_counters[] respectively. Both of them are part of "struct 52 * kvm_pmu"; 53 * - pmu.c understands the difference between gp counters and fixed counters. 54 * However AMD doesn't support fixed-counters; 55 * - There are three types of index to access perf counters (PMC): 56 * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD 57 * has MSR_K7_PERFCTRn and, for families 15H and later, 58 * MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are 59 * aliased to MSR_K7_PERFCTRn. 60 * 2. MSR Index (named idx): This normally is used by RDPMC instruction. 61 * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access 62 * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except 63 * that it also supports fixed counters. idx can be used to as index to 64 * gp and fixed counters. 65 * 3. Global PMC Index (named pmc): pmc is an index specific to PMU 66 * code. Each pmc, stored in kvm_pmc.idx field, is unique across 67 * all perf counters (both gp and fixed). The mapping relationship 68 * between pmc and perf counters is as the following: 69 * * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters 70 * [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed 71 * * AMD: [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H 72 * and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters 73 */ 74 75 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly; 76 77 #define KVM_X86_PMU_OP(func) \ 78 DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func, \ 79 *(((struct kvm_pmu_ops *)0)->func)); 80 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP 81 #include <asm/kvm-x86-pmu-ops.h> 82 83 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops) 84 { 85 memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops)); 86 87 #define __KVM_X86_PMU_OP(func) \ 88 static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func); 89 #define KVM_X86_PMU_OP(func) \ 90 WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func) 91 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP 92 #include <asm/kvm-x86-pmu-ops.h> 93 #undef __KVM_X86_PMU_OP 94 } 95 96 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi) 97 { 98 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 99 bool skip_pmi = false; 100 101 if (pmc->perf_event && pmc->perf_event->attr.precise_ip) { 102 if (!in_pmi) { 103 /* 104 * TODO: KVM is currently _choosing_ to not generate records 105 * for emulated instructions, avoiding BUFFER_OVF PMI when 106 * there are no records. Strictly speaking, it should be done 107 * as well in the right context to improve sampling accuracy. 108 */ 109 skip_pmi = true; 110 } else { 111 /* Indicate PEBS overflow PMI to guest. */ 112 skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, 113 (unsigned long *)&pmu->global_status); 114 } 115 } else { 116 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status); 117 } 118 119 if (pmc->intr && !skip_pmi) 120 kvm_make_request(KVM_REQ_PMI, pmc->vcpu); 121 } 122 123 static void kvm_perf_overflow(struct perf_event *perf_event, 124 struct perf_sample_data *data, 125 struct pt_regs *regs) 126 { 127 struct kvm_pmc *pmc = perf_event->overflow_handler_context; 128 129 /* 130 * Ignore overflow events for counters that are scheduled to be 131 * reprogrammed, e.g. if a PMI for the previous event races with KVM's 132 * handling of a related guest WRMSR. 133 */ 134 if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi)) 135 return; 136 137 __kvm_perf_overflow(pmc, true); 138 139 kvm_make_request(KVM_REQ_PMU, pmc->vcpu); 140 } 141 142 static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc) 143 { 144 /* 145 * For some model specific pebs counters with special capabilities 146 * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise 147 * level to the maximum value (currently 3, backwards compatible) 148 * so that the perf subsystem would assign specific hardware counter 149 * with that capability for vPMC. 150 */ 151 if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) || 152 (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu))) 153 return 3; 154 155 /* 156 * The non-zero precision level of guest event makes the ordinary 157 * guest event becomes a guest PEBS event and triggers the host 158 * PEBS PMI handler to determine whether the PEBS overflow PMI 159 * comes from the host counters or the guest. 160 */ 161 return 1; 162 } 163 164 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config, 165 bool exclude_user, bool exclude_kernel, 166 bool intr) 167 { 168 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 169 struct perf_event *event; 170 struct perf_event_attr attr = { 171 .type = type, 172 .size = sizeof(attr), 173 .pinned = true, 174 .exclude_idle = true, 175 .exclude_host = 1, 176 .exclude_user = exclude_user, 177 .exclude_kernel = exclude_kernel, 178 .config = config, 179 }; 180 bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable); 181 182 attr.sample_period = get_sample_period(pmc, pmc->counter); 183 184 if ((attr.config & HSW_IN_TX_CHECKPOINTED) && 185 guest_cpuid_is_intel(pmc->vcpu)) { 186 /* 187 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero 188 * period. Just clear the sample period so at least 189 * allocating the counter doesn't fail. 190 */ 191 attr.sample_period = 0; 192 } 193 if (pebs) { 194 /* 195 * For most PEBS hardware events, the difference in the software 196 * precision levels of guest and host PEBS events will not affect 197 * the accuracy of the PEBS profiling result, because the "event IP" 198 * in the PEBS record is calibrated on the guest side. 199 */ 200 attr.precise_ip = pmc_get_pebs_precise_level(pmc); 201 } 202 203 event = perf_event_create_kernel_counter(&attr, -1, current, 204 kvm_perf_overflow, pmc); 205 if (IS_ERR(event)) { 206 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n", 207 PTR_ERR(event), pmc->idx); 208 return PTR_ERR(event); 209 } 210 211 pmc->perf_event = event; 212 pmc_to_pmu(pmc)->event_count++; 213 pmc->is_paused = false; 214 pmc->intr = intr || pebs; 215 return 0; 216 } 217 218 static void pmc_pause_counter(struct kvm_pmc *pmc) 219 { 220 u64 counter = pmc->counter; 221 222 if (!pmc->perf_event || pmc->is_paused) 223 return; 224 225 /* update counter, reset event value to avoid redundant accumulation */ 226 counter += perf_event_pause(pmc->perf_event, true); 227 pmc->counter = counter & pmc_bitmask(pmc); 228 pmc->is_paused = true; 229 } 230 231 static bool pmc_resume_counter(struct kvm_pmc *pmc) 232 { 233 if (!pmc->perf_event) 234 return false; 235 236 /* recalibrate sample period and check if it's accepted by perf core */ 237 if (is_sampling_event(pmc->perf_event) && 238 perf_event_period(pmc->perf_event, 239 get_sample_period(pmc, pmc->counter))) 240 return false; 241 242 if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) != 243 (!!pmc->perf_event->attr.precise_ip)) 244 return false; 245 246 /* reuse perf_event to serve as pmc_reprogram_counter() does*/ 247 perf_event_enable(pmc->perf_event); 248 pmc->is_paused = false; 249 250 return true; 251 } 252 253 static void pmc_release_perf_event(struct kvm_pmc *pmc) 254 { 255 if (pmc->perf_event) { 256 perf_event_release_kernel(pmc->perf_event); 257 pmc->perf_event = NULL; 258 pmc->current_config = 0; 259 pmc_to_pmu(pmc)->event_count--; 260 } 261 } 262 263 static void pmc_stop_counter(struct kvm_pmc *pmc) 264 { 265 if (pmc->perf_event) { 266 pmc->counter = pmc_read_counter(pmc); 267 pmc_release_perf_event(pmc); 268 } 269 } 270 271 static int filter_cmp(const void *pa, const void *pb, u64 mask) 272 { 273 u64 a = *(u64 *)pa & mask; 274 u64 b = *(u64 *)pb & mask; 275 276 return (a > b) - (a < b); 277 } 278 279 280 static int filter_sort_cmp(const void *pa, const void *pb) 281 { 282 return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT | 283 KVM_PMU_MASKED_ENTRY_EXCLUDE)); 284 } 285 286 /* 287 * For the event filter, searching is done on the 'includes' list and 288 * 'excludes' list separately rather than on the 'events' list (which 289 * has both). As a result the exclude bit can be ignored. 290 */ 291 static int filter_event_cmp(const void *pa, const void *pb) 292 { 293 return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT)); 294 } 295 296 static int find_filter_index(u64 *events, u64 nevents, u64 key) 297 { 298 u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]), 299 filter_event_cmp); 300 301 if (!fe) 302 return -1; 303 304 return fe - events; 305 } 306 307 static bool is_filter_entry_match(u64 filter_event, u64 umask) 308 { 309 u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8); 310 u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH; 311 312 BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >> 313 (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) != 314 ARCH_PERFMON_EVENTSEL_UMASK); 315 316 return (umask & mask) == match; 317 } 318 319 static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel) 320 { 321 u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT; 322 u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK; 323 int i, index; 324 325 index = find_filter_index(events, nevents, event_select); 326 if (index < 0) 327 return false; 328 329 /* 330 * Entries are sorted by the event select. Walk the list in both 331 * directions to process all entries with the targeted event select. 332 */ 333 for (i = index; i < nevents; i++) { 334 if (filter_event_cmp(&events[i], &event_select)) 335 break; 336 337 if (is_filter_entry_match(events[i], umask)) 338 return true; 339 } 340 341 for (i = index - 1; i >= 0; i--) { 342 if (filter_event_cmp(&events[i], &event_select)) 343 break; 344 345 if (is_filter_entry_match(events[i], umask)) 346 return true; 347 } 348 349 return false; 350 } 351 352 static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f, 353 u64 eventsel) 354 { 355 if (filter_contains_match(f->includes, f->nr_includes, eventsel) && 356 !filter_contains_match(f->excludes, f->nr_excludes, eventsel)) 357 return f->action == KVM_PMU_EVENT_ALLOW; 358 359 return f->action == KVM_PMU_EVENT_DENY; 360 } 361 362 static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter, 363 int idx) 364 { 365 int fixed_idx = idx - INTEL_PMC_IDX_FIXED; 366 367 if (filter->action == KVM_PMU_EVENT_DENY && 368 test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap)) 369 return false; 370 if (filter->action == KVM_PMU_EVENT_ALLOW && 371 !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap)) 372 return false; 373 374 return true; 375 } 376 377 static bool check_pmu_event_filter(struct kvm_pmc *pmc) 378 { 379 struct kvm_x86_pmu_event_filter *filter; 380 struct kvm *kvm = pmc->vcpu->kvm; 381 382 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu); 383 if (!filter) 384 return true; 385 386 if (pmc_is_gp(pmc)) 387 return is_gp_event_allowed(filter, pmc->eventsel); 388 389 return is_fixed_event_allowed(filter, pmc->idx); 390 } 391 392 static bool pmc_event_is_allowed(struct kvm_pmc *pmc) 393 { 394 return pmc_is_globally_enabled(pmc) && pmc_speculative_in_use(pmc) && 395 static_call(kvm_x86_pmu_hw_event_available)(pmc) && 396 check_pmu_event_filter(pmc); 397 } 398 399 static void reprogram_counter(struct kvm_pmc *pmc) 400 { 401 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 402 u64 eventsel = pmc->eventsel; 403 u64 new_config = eventsel; 404 u8 fixed_ctr_ctrl; 405 406 pmc_pause_counter(pmc); 407 408 if (!pmc_event_is_allowed(pmc)) 409 goto reprogram_complete; 410 411 if (pmc->counter < pmc->prev_counter) 412 __kvm_perf_overflow(pmc, false); 413 414 if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL) 415 printk_once("kvm pmu: pin control bit is ignored\n"); 416 417 if (pmc_is_fixed(pmc)) { 418 fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, 419 pmc->idx - INTEL_PMC_IDX_FIXED); 420 if (fixed_ctr_ctrl & 0x1) 421 eventsel |= ARCH_PERFMON_EVENTSEL_OS; 422 if (fixed_ctr_ctrl & 0x2) 423 eventsel |= ARCH_PERFMON_EVENTSEL_USR; 424 if (fixed_ctr_ctrl & 0x8) 425 eventsel |= ARCH_PERFMON_EVENTSEL_INT; 426 new_config = (u64)fixed_ctr_ctrl; 427 } 428 429 if (pmc->current_config == new_config && pmc_resume_counter(pmc)) 430 goto reprogram_complete; 431 432 pmc_release_perf_event(pmc); 433 434 pmc->current_config = new_config; 435 436 /* 437 * If reprogramming fails, e.g. due to contention, leave the counter's 438 * regprogram bit set, i.e. opportunistically try again on the next PMU 439 * refresh. Don't make a new request as doing so can stall the guest 440 * if reprogramming repeatedly fails. 441 */ 442 if (pmc_reprogram_counter(pmc, PERF_TYPE_RAW, 443 (eventsel & pmu->raw_event_mask), 444 !(eventsel & ARCH_PERFMON_EVENTSEL_USR), 445 !(eventsel & ARCH_PERFMON_EVENTSEL_OS), 446 eventsel & ARCH_PERFMON_EVENTSEL_INT)) 447 return; 448 449 reprogram_complete: 450 clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi); 451 pmc->prev_counter = 0; 452 } 453 454 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu) 455 { 456 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 457 int bit; 458 459 for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) { 460 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit); 461 462 if (unlikely(!pmc)) { 463 clear_bit(bit, pmu->reprogram_pmi); 464 continue; 465 } 466 467 reprogram_counter(pmc); 468 } 469 470 /* 471 * Unused perf_events are only released if the corresponding MSRs 472 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in 473 * triggers KVM_REQ_PMU if cleanup is needed. 474 */ 475 if (unlikely(pmu->need_cleanup)) 476 kvm_pmu_cleanup(vcpu); 477 } 478 479 /* check if idx is a valid index to access PMU */ 480 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx) 481 { 482 return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx); 483 } 484 485 bool is_vmware_backdoor_pmc(u32 pmc_idx) 486 { 487 switch (pmc_idx) { 488 case VMWARE_BACKDOOR_PMC_HOST_TSC: 489 case VMWARE_BACKDOOR_PMC_REAL_TIME: 490 case VMWARE_BACKDOOR_PMC_APPARENT_TIME: 491 return true; 492 } 493 return false; 494 } 495 496 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) 497 { 498 u64 ctr_val; 499 500 switch (idx) { 501 case VMWARE_BACKDOOR_PMC_HOST_TSC: 502 ctr_val = rdtsc(); 503 break; 504 case VMWARE_BACKDOOR_PMC_REAL_TIME: 505 ctr_val = ktime_get_boottime_ns(); 506 break; 507 case VMWARE_BACKDOOR_PMC_APPARENT_TIME: 508 ctr_val = ktime_get_boottime_ns() + 509 vcpu->kvm->arch.kvmclock_offset; 510 break; 511 default: 512 return 1; 513 } 514 515 *data = ctr_val; 516 return 0; 517 } 518 519 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) 520 { 521 bool fast_mode = idx & (1u << 31); 522 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 523 struct kvm_pmc *pmc; 524 u64 mask = fast_mode ? ~0u : ~0ull; 525 526 if (!pmu->version) 527 return 1; 528 529 if (is_vmware_backdoor_pmc(idx)) 530 return kvm_pmu_rdpmc_vmware(vcpu, idx, data); 531 532 pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask); 533 if (!pmc) 534 return 1; 535 536 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCE) && 537 (static_call(kvm_x86_get_cpl)(vcpu) != 0) && 538 kvm_is_cr0_bit_set(vcpu, X86_CR0_PE)) 539 return 1; 540 541 *data = pmc_read_counter(pmc) & mask; 542 return 0; 543 } 544 545 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu) 546 { 547 if (lapic_in_kernel(vcpu)) { 548 static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu); 549 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC); 550 } 551 } 552 553 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr) 554 { 555 switch (msr) { 556 case MSR_CORE_PERF_GLOBAL_STATUS: 557 case MSR_CORE_PERF_GLOBAL_CTRL: 558 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 559 return kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)); 560 default: 561 break; 562 } 563 return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) || 564 static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr); 565 } 566 567 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr) 568 { 569 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 570 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr); 571 572 if (pmc) 573 __set_bit(pmc->idx, pmu->pmc_in_use); 574 } 575 576 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 577 { 578 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 579 u32 msr = msr_info->index; 580 581 switch (msr) { 582 case MSR_CORE_PERF_GLOBAL_STATUS: 583 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 584 msr_info->data = pmu->global_status; 585 break; 586 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 587 case MSR_CORE_PERF_GLOBAL_CTRL: 588 msr_info->data = pmu->global_ctrl; 589 break; 590 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 591 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 592 msr_info->data = 0; 593 break; 594 default: 595 return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info); 596 } 597 598 return 0; 599 } 600 601 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 602 { 603 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 604 u32 msr = msr_info->index; 605 u64 data = msr_info->data; 606 u64 diff; 607 608 /* 609 * Note, AMD ignores writes to reserved bits and read-only PMU MSRs, 610 * whereas Intel generates #GP on attempts to write reserved/RO MSRs. 611 */ 612 switch (msr) { 613 case MSR_CORE_PERF_GLOBAL_STATUS: 614 if (!msr_info->host_initiated) 615 return 1; /* RO MSR */ 616 fallthrough; 617 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 618 /* Per PPR, Read-only MSR. Writes are ignored. */ 619 if (!msr_info->host_initiated) 620 break; 621 622 if (data & pmu->global_status_mask) 623 return 1; 624 625 pmu->global_status = data; 626 break; 627 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 628 data &= ~pmu->global_ctrl_mask; 629 fallthrough; 630 case MSR_CORE_PERF_GLOBAL_CTRL: 631 if (!kvm_valid_perf_global_ctrl(pmu, data)) 632 return 1; 633 634 if (pmu->global_ctrl != data) { 635 diff = pmu->global_ctrl ^ data; 636 pmu->global_ctrl = data; 637 reprogram_counters(pmu, diff); 638 } 639 break; 640 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 641 /* 642 * GLOBAL_OVF_CTRL, a.k.a. GLOBAL STATUS_RESET, clears bits in 643 * GLOBAL_STATUS, and so the set of reserved bits is the same. 644 */ 645 if (data & pmu->global_status_mask) 646 return 1; 647 fallthrough; 648 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 649 if (!msr_info->host_initiated) 650 pmu->global_status &= ~data; 651 break; 652 default: 653 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index); 654 return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info); 655 } 656 657 return 0; 658 } 659 660 void kvm_pmu_reset(struct kvm_vcpu *vcpu) 661 { 662 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 663 struct kvm_pmc *pmc; 664 int i; 665 666 pmu->need_cleanup = false; 667 668 bitmap_zero(pmu->reprogram_pmi, X86_PMC_IDX_MAX); 669 670 for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) { 671 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i); 672 if (!pmc) 673 continue; 674 675 pmc_stop_counter(pmc); 676 pmc->counter = 0; 677 678 if (pmc_is_gp(pmc)) 679 pmc->eventsel = 0; 680 } 681 682 pmu->fixed_ctr_ctrl = pmu->global_ctrl = pmu->global_status = 0; 683 684 static_call_cond(kvm_x86_pmu_reset)(vcpu); 685 } 686 687 688 /* 689 * Refresh the PMU configuration for the vCPU, e.g. if userspace changes CPUID 690 * and/or PERF_CAPABILITIES. 691 */ 692 void kvm_pmu_refresh(struct kvm_vcpu *vcpu) 693 { 694 if (KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm)) 695 return; 696 697 /* 698 * Stop/release all existing counters/events before realizing the new 699 * vPMU model. 700 */ 701 kvm_pmu_reset(vcpu); 702 703 bitmap_zero(vcpu_to_pmu(vcpu)->all_valid_pmc_idx, X86_PMC_IDX_MAX); 704 static_call(kvm_x86_pmu_refresh)(vcpu); 705 } 706 707 void kvm_pmu_init(struct kvm_vcpu *vcpu) 708 { 709 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 710 711 memset(pmu, 0, sizeof(*pmu)); 712 static_call(kvm_x86_pmu_init)(vcpu); 713 pmu->event_count = 0; 714 pmu->need_cleanup = false; 715 kvm_pmu_refresh(vcpu); 716 } 717 718 /* Release perf_events for vPMCs that have been unused for a full time slice. */ 719 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu) 720 { 721 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 722 struct kvm_pmc *pmc = NULL; 723 DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX); 724 int i; 725 726 pmu->need_cleanup = false; 727 728 bitmap_andnot(bitmask, pmu->all_valid_pmc_idx, 729 pmu->pmc_in_use, X86_PMC_IDX_MAX); 730 731 for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) { 732 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i); 733 734 if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc)) 735 pmc_stop_counter(pmc); 736 } 737 738 static_call_cond(kvm_x86_pmu_cleanup)(vcpu); 739 740 bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX); 741 } 742 743 void kvm_pmu_destroy(struct kvm_vcpu *vcpu) 744 { 745 kvm_pmu_reset(vcpu); 746 } 747 748 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc) 749 { 750 pmc->prev_counter = pmc->counter; 751 pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc); 752 kvm_pmu_request_counter_reprogram(pmc); 753 } 754 755 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc, 756 unsigned int perf_hw_id) 757 { 758 return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) & 759 AMD64_RAW_EVENT_MASK_NB); 760 } 761 762 static inline bool cpl_is_matched(struct kvm_pmc *pmc) 763 { 764 bool select_os, select_user; 765 u64 config; 766 767 if (pmc_is_gp(pmc)) { 768 config = pmc->eventsel; 769 select_os = config & ARCH_PERFMON_EVENTSEL_OS; 770 select_user = config & ARCH_PERFMON_EVENTSEL_USR; 771 } else { 772 config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl, 773 pmc->idx - INTEL_PMC_IDX_FIXED); 774 select_os = config & 0x1; 775 select_user = config & 0x2; 776 } 777 778 return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user; 779 } 780 781 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id) 782 { 783 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 784 struct kvm_pmc *pmc; 785 int i; 786 787 for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) { 788 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i); 789 790 if (!pmc || !pmc_event_is_allowed(pmc)) 791 continue; 792 793 /* Ignore checks for edge detect, pin control, invert and CMASK bits */ 794 if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc)) 795 kvm_pmu_incr_counter(pmc); 796 } 797 } 798 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event); 799 800 static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter) 801 { 802 u64 mask = kvm_pmu_ops.EVENTSEL_EVENT | 803 KVM_PMU_MASKED_ENTRY_UMASK_MASK | 804 KVM_PMU_MASKED_ENTRY_UMASK_MATCH | 805 KVM_PMU_MASKED_ENTRY_EXCLUDE; 806 int i; 807 808 for (i = 0; i < filter->nevents; i++) { 809 if (filter->events[i] & ~mask) 810 return false; 811 } 812 813 return true; 814 } 815 816 static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter) 817 { 818 int i, j; 819 820 for (i = 0, j = 0; i < filter->nevents; i++) { 821 /* 822 * Skip events that are impossible to match against a guest 823 * event. When filtering, only the event select + unit mask 824 * of the guest event is used. To maintain backwards 825 * compatibility, impossible filters can't be rejected :-( 826 */ 827 if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT | 828 ARCH_PERFMON_EVENTSEL_UMASK)) 829 continue; 830 /* 831 * Convert userspace events to a common in-kernel event so 832 * only one code path is needed to support both events. For 833 * the in-kernel events use masked events because they are 834 * flexible enough to handle both cases. To convert to masked 835 * events all that's needed is to add an "all ones" umask_mask, 836 * (unmasked filter events don't support EXCLUDE). 837 */ 838 filter->events[j++] = filter->events[i] | 839 (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT); 840 } 841 842 filter->nevents = j; 843 } 844 845 static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter) 846 { 847 int i; 848 849 if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS)) 850 convert_to_masked_filter(filter); 851 else if (!is_masked_filter_valid(filter)) 852 return -EINVAL; 853 854 /* 855 * Sort entries by event select and includes vs. excludes so that all 856 * entries for a given event select can be processed efficiently during 857 * filtering. The EXCLUDE flag uses a more significant bit than the 858 * event select, and so the sorted list is also effectively split into 859 * includes and excludes sub-lists. 860 */ 861 sort(&filter->events, filter->nevents, sizeof(filter->events[0]), 862 filter_sort_cmp, NULL); 863 864 i = filter->nevents; 865 /* Find the first EXCLUDE event (only supported for masked events). */ 866 if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) { 867 for (i = 0; i < filter->nevents; i++) { 868 if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE) 869 break; 870 } 871 } 872 873 filter->nr_includes = i; 874 filter->nr_excludes = filter->nevents - filter->nr_includes; 875 filter->includes = filter->events; 876 filter->excludes = filter->events + filter->nr_includes; 877 878 return 0; 879 } 880 881 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp) 882 { 883 struct kvm_pmu_event_filter __user *user_filter = argp; 884 struct kvm_x86_pmu_event_filter *filter; 885 struct kvm_pmu_event_filter tmp; 886 struct kvm_vcpu *vcpu; 887 unsigned long i; 888 size_t size; 889 int r; 890 891 if (copy_from_user(&tmp, user_filter, sizeof(tmp))) 892 return -EFAULT; 893 894 if (tmp.action != KVM_PMU_EVENT_ALLOW && 895 tmp.action != KVM_PMU_EVENT_DENY) 896 return -EINVAL; 897 898 if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK) 899 return -EINVAL; 900 901 if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS) 902 return -E2BIG; 903 904 size = struct_size(filter, events, tmp.nevents); 905 filter = kzalloc(size, GFP_KERNEL_ACCOUNT); 906 if (!filter) 907 return -ENOMEM; 908 909 filter->action = tmp.action; 910 filter->nevents = tmp.nevents; 911 filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap; 912 filter->flags = tmp.flags; 913 914 r = -EFAULT; 915 if (copy_from_user(filter->events, user_filter->events, 916 sizeof(filter->events[0]) * filter->nevents)) 917 goto cleanup; 918 919 r = prepare_filter_lists(filter); 920 if (r) 921 goto cleanup; 922 923 mutex_lock(&kvm->lock); 924 filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter, 925 mutex_is_locked(&kvm->lock)); 926 mutex_unlock(&kvm->lock); 927 synchronize_srcu_expedited(&kvm->srcu); 928 929 BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) > 930 sizeof(((struct kvm_pmu *)0)->__reprogram_pmi)); 931 932 kvm_for_each_vcpu(i, vcpu, kvm) 933 atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull); 934 935 kvm_make_all_cpus_request(kvm, KVM_REQ_PMU); 936 937 r = 0; 938 cleanup: 939 kfree(filter); 940 return r; 941 } 942