xref: /openbmc/linux/arch/x86/kvm/pmu.c (revision 82df5b73)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4  *
5  * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6  *
7  * Authors:
8  *   Avi Kivity   <avi@redhat.com>
9  *   Gleb Natapov <gleb@redhat.com>
10  *   Wei Huang    <wei@redhat.com>
11  */
12 
13 #include <linux/types.h>
14 #include <linux/kvm_host.h>
15 #include <linux/perf_event.h>
16 #include <asm/perf_event.h>
17 #include "x86.h"
18 #include "cpuid.h"
19 #include "lapic.h"
20 #include "pmu.h"
21 
22 /* This is enough to filter the vast majority of currently defined events. */
23 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
24 
25 /* NOTE:
26  * - Each perf counter is defined as "struct kvm_pmc";
27  * - There are two types of perf counters: general purpose (gp) and fixed.
28  *   gp counters are stored in gp_counters[] and fixed counters are stored
29  *   in fixed_counters[] respectively. Both of them are part of "struct
30  *   kvm_pmu";
31  * - pmu.c understands the difference between gp counters and fixed counters.
32  *   However AMD doesn't support fixed-counters;
33  * - There are three types of index to access perf counters (PMC):
34  *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
35  *        has MSR_K7_PERFCTRn.
36  *     2. MSR Index (named idx): This normally is used by RDPMC instruction.
37  *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
38  *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
39  *        that it also supports fixed counters. idx can be used to as index to
40  *        gp and fixed counters.
41  *     3. Global PMC Index (named pmc): pmc is an index specific to PMU
42  *        code. Each pmc, stored in kvm_pmc.idx field, is unique across
43  *        all perf counters (both gp and fixed). The mapping relationship
44  *        between pmc and perf counters is as the following:
45  *        * Intel: [0 .. INTEL_PMC_MAX_GENERIC-1] <=> gp counters
46  *                 [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
47  *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] <=> gp counters
48  */
49 
50 static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
51 {
52 	struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
53 	struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
54 
55 	kvm_pmu_deliver_pmi(vcpu);
56 }
57 
58 static void kvm_perf_overflow(struct perf_event *perf_event,
59 			      struct perf_sample_data *data,
60 			      struct pt_regs *regs)
61 {
62 	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
63 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
64 
65 	if (!test_and_set_bit(pmc->idx, pmu->reprogram_pmi)) {
66 		__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
67 		kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
68 	}
69 }
70 
71 static void kvm_perf_overflow_intr(struct perf_event *perf_event,
72 				   struct perf_sample_data *data,
73 				   struct pt_regs *regs)
74 {
75 	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
76 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
77 
78 	if (!test_and_set_bit(pmc->idx, pmu->reprogram_pmi)) {
79 		__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
80 		kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
81 
82 		/*
83 		 * Inject PMI. If vcpu was in a guest mode during NMI PMI
84 		 * can be ejected on a guest mode re-entry. Otherwise we can't
85 		 * be sure that vcpu wasn't executing hlt instruction at the
86 		 * time of vmexit and is not going to re-enter guest mode until
87 		 * woken up. So we should wake it, but this is impossible from
88 		 * NMI context. Do it from irq work instead.
89 		 */
90 		if (!kvm_is_in_guest())
91 			irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
92 		else
93 			kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
94 	}
95 }
96 
97 static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type,
98 				  unsigned config, bool exclude_user,
99 				  bool exclude_kernel, bool intr,
100 				  bool in_tx, bool in_tx_cp)
101 {
102 	struct perf_event *event;
103 	struct perf_event_attr attr = {
104 		.type = type,
105 		.size = sizeof(attr),
106 		.pinned = true,
107 		.exclude_idle = true,
108 		.exclude_host = 1,
109 		.exclude_user = exclude_user,
110 		.exclude_kernel = exclude_kernel,
111 		.config = config,
112 	};
113 
114 	attr.sample_period = get_sample_period(pmc, pmc->counter);
115 
116 	if (in_tx)
117 		attr.config |= HSW_IN_TX;
118 	if (in_tx_cp) {
119 		/*
120 		 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
121 		 * period. Just clear the sample period so at least
122 		 * allocating the counter doesn't fail.
123 		 */
124 		attr.sample_period = 0;
125 		attr.config |= HSW_IN_TX_CHECKPOINTED;
126 	}
127 
128 	event = perf_event_create_kernel_counter(&attr, -1, current,
129 						 intr ? kvm_perf_overflow_intr :
130 						 kvm_perf_overflow, pmc);
131 	if (IS_ERR(event)) {
132 		pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
133 			    PTR_ERR(event), pmc->idx);
134 		return;
135 	}
136 
137 	pmc->perf_event = event;
138 	pmc_to_pmu(pmc)->event_count++;
139 	clear_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi);
140 }
141 
142 static void pmc_pause_counter(struct kvm_pmc *pmc)
143 {
144 	u64 counter = pmc->counter;
145 
146 	if (!pmc->perf_event)
147 		return;
148 
149 	/* update counter, reset event value to avoid redundant accumulation */
150 	counter += perf_event_pause(pmc->perf_event, true);
151 	pmc->counter = counter & pmc_bitmask(pmc);
152 }
153 
154 static bool pmc_resume_counter(struct kvm_pmc *pmc)
155 {
156 	if (!pmc->perf_event)
157 		return false;
158 
159 	/* recalibrate sample period and check if it's accepted by perf core */
160 	if (perf_event_period(pmc->perf_event,
161 			      get_sample_period(pmc, pmc->counter)))
162 		return false;
163 
164 	/* reuse perf_event to serve as pmc_reprogram_counter() does*/
165 	perf_event_enable(pmc->perf_event);
166 
167 	clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
168 	return true;
169 }
170 
171 void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel)
172 {
173 	unsigned config, type = PERF_TYPE_RAW;
174 	u8 event_select, unit_mask;
175 	struct kvm *kvm = pmc->vcpu->kvm;
176 	struct kvm_pmu_event_filter *filter;
177 	int i;
178 	bool allow_event = true;
179 
180 	if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
181 		printk_once("kvm pmu: pin control bit is ignored\n");
182 
183 	pmc->eventsel = eventsel;
184 
185 	pmc_pause_counter(pmc);
186 
187 	if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_is_enabled(pmc))
188 		return;
189 
190 	filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
191 	if (filter) {
192 		for (i = 0; i < filter->nevents; i++)
193 			if (filter->events[i] ==
194 			    (eventsel & AMD64_RAW_EVENT_MASK_NB))
195 				break;
196 		if (filter->action == KVM_PMU_EVENT_ALLOW &&
197 		    i == filter->nevents)
198 			allow_event = false;
199 		if (filter->action == KVM_PMU_EVENT_DENY &&
200 		    i < filter->nevents)
201 			allow_event = false;
202 	}
203 	if (!allow_event)
204 		return;
205 
206 	event_select = eventsel & ARCH_PERFMON_EVENTSEL_EVENT;
207 	unit_mask = (eventsel & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
208 
209 	if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE |
210 			  ARCH_PERFMON_EVENTSEL_INV |
211 			  ARCH_PERFMON_EVENTSEL_CMASK |
212 			  HSW_IN_TX |
213 			  HSW_IN_TX_CHECKPOINTED))) {
214 		config = kvm_x86_ops.pmu_ops->find_arch_event(pmc_to_pmu(pmc),
215 						      event_select,
216 						      unit_mask);
217 		if (config != PERF_COUNT_HW_MAX)
218 			type = PERF_TYPE_HARDWARE;
219 	}
220 
221 	if (type == PERF_TYPE_RAW)
222 		config = eventsel & X86_RAW_EVENT_MASK;
223 
224 	if (pmc->current_config == eventsel && pmc_resume_counter(pmc))
225 		return;
226 
227 	pmc_release_perf_event(pmc);
228 
229 	pmc->current_config = eventsel;
230 	pmc_reprogram_counter(pmc, type, config,
231 			      !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
232 			      !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
233 			      eventsel & ARCH_PERFMON_EVENTSEL_INT,
234 			      (eventsel & HSW_IN_TX),
235 			      (eventsel & HSW_IN_TX_CHECKPOINTED));
236 }
237 EXPORT_SYMBOL_GPL(reprogram_gp_counter);
238 
239 void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 ctrl, int idx)
240 {
241 	unsigned en_field = ctrl & 0x3;
242 	bool pmi = ctrl & 0x8;
243 	struct kvm_pmu_event_filter *filter;
244 	struct kvm *kvm = pmc->vcpu->kvm;
245 
246 	pmc_pause_counter(pmc);
247 
248 	if (!en_field || !pmc_is_enabled(pmc))
249 		return;
250 
251 	filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
252 	if (filter) {
253 		if (filter->action == KVM_PMU_EVENT_DENY &&
254 		    test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
255 			return;
256 		if (filter->action == KVM_PMU_EVENT_ALLOW &&
257 		    !test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
258 			return;
259 	}
260 
261 	if (pmc->current_config == (u64)ctrl && pmc_resume_counter(pmc))
262 		return;
263 
264 	pmc_release_perf_event(pmc);
265 
266 	pmc->current_config = (u64)ctrl;
267 	pmc_reprogram_counter(pmc, PERF_TYPE_HARDWARE,
268 			      kvm_x86_ops.pmu_ops->find_fixed_event(idx),
269 			      !(en_field & 0x2), /* exclude user */
270 			      !(en_field & 0x1), /* exclude kernel */
271 			      pmi, false, false);
272 }
273 EXPORT_SYMBOL_GPL(reprogram_fixed_counter);
274 
275 void reprogram_counter(struct kvm_pmu *pmu, int pmc_idx)
276 {
277 	struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, pmc_idx);
278 
279 	if (!pmc)
280 		return;
281 
282 	if (pmc_is_gp(pmc))
283 		reprogram_gp_counter(pmc, pmc->eventsel);
284 	else {
285 		int idx = pmc_idx - INTEL_PMC_IDX_FIXED;
286 		u8 ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, idx);
287 
288 		reprogram_fixed_counter(pmc, ctrl, idx);
289 	}
290 }
291 EXPORT_SYMBOL_GPL(reprogram_counter);
292 
293 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
294 {
295 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
296 	int bit;
297 
298 	for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
299 		struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, bit);
300 
301 		if (unlikely(!pmc || !pmc->perf_event)) {
302 			clear_bit(bit, pmu->reprogram_pmi);
303 			continue;
304 		}
305 
306 		reprogram_counter(pmu, bit);
307 	}
308 
309 	/*
310 	 * Unused perf_events are only released if the corresponding MSRs
311 	 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
312 	 * triggers KVM_REQ_PMU if cleanup is needed.
313 	 */
314 	if (unlikely(pmu->need_cleanup))
315 		kvm_pmu_cleanup(vcpu);
316 }
317 
318 /* check if idx is a valid index to access PMU */
319 int kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
320 {
321 	return kvm_x86_ops.pmu_ops->is_valid_rdpmc_ecx(vcpu, idx);
322 }
323 
324 bool is_vmware_backdoor_pmc(u32 pmc_idx)
325 {
326 	switch (pmc_idx) {
327 	case VMWARE_BACKDOOR_PMC_HOST_TSC:
328 	case VMWARE_BACKDOOR_PMC_REAL_TIME:
329 	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
330 		return true;
331 	}
332 	return false;
333 }
334 
335 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
336 {
337 	u64 ctr_val;
338 
339 	switch (idx) {
340 	case VMWARE_BACKDOOR_PMC_HOST_TSC:
341 		ctr_val = rdtsc();
342 		break;
343 	case VMWARE_BACKDOOR_PMC_REAL_TIME:
344 		ctr_val = ktime_get_boottime_ns();
345 		break;
346 	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
347 		ctr_val = ktime_get_boottime_ns() +
348 			vcpu->kvm->arch.kvmclock_offset;
349 		break;
350 	default:
351 		return 1;
352 	}
353 
354 	*data = ctr_val;
355 	return 0;
356 }
357 
358 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
359 {
360 	bool fast_mode = idx & (1u << 31);
361 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
362 	struct kvm_pmc *pmc;
363 	u64 mask = fast_mode ? ~0u : ~0ull;
364 
365 	if (!pmu->version)
366 		return 1;
367 
368 	if (is_vmware_backdoor_pmc(idx))
369 		return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
370 
371 	pmc = kvm_x86_ops.pmu_ops->rdpmc_ecx_to_pmc(vcpu, idx, &mask);
372 	if (!pmc)
373 		return 1;
374 
375 	*data = pmc_read_counter(pmc) & mask;
376 	return 0;
377 }
378 
379 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
380 {
381 	if (lapic_in_kernel(vcpu))
382 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
383 }
384 
385 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
386 {
387 	return kvm_x86_ops.pmu_ops->msr_idx_to_pmc(vcpu, msr) ||
388 		kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, msr);
389 }
390 
391 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
392 {
393 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
394 	struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->msr_idx_to_pmc(vcpu, msr);
395 
396 	if (pmc)
397 		__set_bit(pmc->idx, pmu->pmc_in_use);
398 }
399 
400 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
401 {
402 	return kvm_x86_ops.pmu_ops->get_msr(vcpu, msr_info);
403 }
404 
405 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
406 {
407 	kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
408 	return kvm_x86_ops.pmu_ops->set_msr(vcpu, msr_info);
409 }
410 
411 /* refresh PMU settings. This function generally is called when underlying
412  * settings are changed (such as changes of PMU CPUID by guest VMs), which
413  * should rarely happen.
414  */
415 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
416 {
417 	kvm_x86_ops.pmu_ops->refresh(vcpu);
418 }
419 
420 void kvm_pmu_reset(struct kvm_vcpu *vcpu)
421 {
422 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
423 
424 	irq_work_sync(&pmu->irq_work);
425 	kvm_x86_ops.pmu_ops->reset(vcpu);
426 }
427 
428 void kvm_pmu_init(struct kvm_vcpu *vcpu)
429 {
430 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
431 
432 	memset(pmu, 0, sizeof(*pmu));
433 	kvm_x86_ops.pmu_ops->init(vcpu);
434 	init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
435 	pmu->event_count = 0;
436 	pmu->need_cleanup = false;
437 	kvm_pmu_refresh(vcpu);
438 }
439 
440 static inline bool pmc_speculative_in_use(struct kvm_pmc *pmc)
441 {
442 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
443 
444 	if (pmc_is_fixed(pmc))
445 		return fixed_ctrl_field(pmu->fixed_ctr_ctrl,
446 			pmc->idx - INTEL_PMC_IDX_FIXED) & 0x3;
447 
448 	return pmc->eventsel & ARCH_PERFMON_EVENTSEL_ENABLE;
449 }
450 
451 /* Release perf_events for vPMCs that have been unused for a full time slice.  */
452 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
453 {
454 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
455 	struct kvm_pmc *pmc = NULL;
456 	DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
457 	int i;
458 
459 	pmu->need_cleanup = false;
460 
461 	bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
462 		      pmu->pmc_in_use, X86_PMC_IDX_MAX);
463 
464 	for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
465 		pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, i);
466 
467 		if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
468 			pmc_stop_counter(pmc);
469 	}
470 
471 	bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
472 }
473 
474 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
475 {
476 	kvm_pmu_reset(vcpu);
477 }
478 
479 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
480 {
481 	struct kvm_pmu_event_filter tmp, *filter;
482 	size_t size;
483 	int r;
484 
485 	if (copy_from_user(&tmp, argp, sizeof(tmp)))
486 		return -EFAULT;
487 
488 	if (tmp.action != KVM_PMU_EVENT_ALLOW &&
489 	    tmp.action != KVM_PMU_EVENT_DENY)
490 		return -EINVAL;
491 
492 	if (tmp.flags != 0)
493 		return -EINVAL;
494 
495 	if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
496 		return -E2BIG;
497 
498 	size = struct_size(filter, events, tmp.nevents);
499 	filter = kmalloc(size, GFP_KERNEL_ACCOUNT);
500 	if (!filter)
501 		return -ENOMEM;
502 
503 	r = -EFAULT;
504 	if (copy_from_user(filter, argp, size))
505 		goto cleanup;
506 
507 	/* Ensure nevents can't be changed between the user copies. */
508 	*filter = tmp;
509 
510 	mutex_lock(&kvm->lock);
511 	filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
512 				     mutex_is_locked(&kvm->lock));
513 	mutex_unlock(&kvm->lock);
514 
515 	synchronize_srcu_expedited(&kvm->srcu);
516 	r = 0;
517 cleanup:
518 	kfree(filter);
519 	return r;
520 }
521