1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine -- Performance Monitoring Unit support 4 * 5 * Copyright 2015 Red Hat, Inc. and/or its affiliates. 6 * 7 * Authors: 8 * Avi Kivity <avi@redhat.com> 9 * Gleb Natapov <gleb@redhat.com> 10 * Wei Huang <wei@redhat.com> 11 */ 12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 13 14 #include <linux/types.h> 15 #include <linux/kvm_host.h> 16 #include <linux/perf_event.h> 17 #include <linux/bsearch.h> 18 #include <linux/sort.h> 19 #include <asm/perf_event.h> 20 #include <asm/cpu_device_id.h> 21 #include "x86.h" 22 #include "cpuid.h" 23 #include "lapic.h" 24 #include "pmu.h" 25 26 /* This is enough to filter the vast majority of currently defined events. */ 27 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300 28 29 struct x86_pmu_capability __read_mostly kvm_pmu_cap; 30 EXPORT_SYMBOL_GPL(kvm_pmu_cap); 31 32 /* Precise Distribution of Instructions Retired (PDIR) */ 33 static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = { 34 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL), 35 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL), 36 /* Instruction-Accurate PDIR (PDIR++) */ 37 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL), 38 {} 39 }; 40 41 /* Precise Distribution (PDist) */ 42 static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = { 43 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL), 44 {} 45 }; 46 47 /* NOTE: 48 * - Each perf counter is defined as "struct kvm_pmc"; 49 * - There are two types of perf counters: general purpose (gp) and fixed. 50 * gp counters are stored in gp_counters[] and fixed counters are stored 51 * in fixed_counters[] respectively. Both of them are part of "struct 52 * kvm_pmu"; 53 * - pmu.c understands the difference between gp counters and fixed counters. 54 * However AMD doesn't support fixed-counters; 55 * - There are three types of index to access perf counters (PMC): 56 * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD 57 * has MSR_K7_PERFCTRn and, for families 15H and later, 58 * MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are 59 * aliased to MSR_K7_PERFCTRn. 60 * 2. MSR Index (named idx): This normally is used by RDPMC instruction. 61 * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access 62 * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except 63 * that it also supports fixed counters. idx can be used to as index to 64 * gp and fixed counters. 65 * 3. Global PMC Index (named pmc): pmc is an index specific to PMU 66 * code. Each pmc, stored in kvm_pmc.idx field, is unique across 67 * all perf counters (both gp and fixed). The mapping relationship 68 * between pmc and perf counters is as the following: 69 * * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters 70 * [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed 71 * * AMD: [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H 72 * and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters 73 */ 74 75 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly; 76 77 #define KVM_X86_PMU_OP(func) \ 78 DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func, \ 79 *(((struct kvm_pmu_ops *)0)->func)); 80 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP 81 #include <asm/kvm-x86-pmu-ops.h> 82 83 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops) 84 { 85 memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops)); 86 87 #define __KVM_X86_PMU_OP(func) \ 88 static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func); 89 #define KVM_X86_PMU_OP(func) \ 90 WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func) 91 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP 92 #include <asm/kvm-x86-pmu-ops.h> 93 #undef __KVM_X86_PMU_OP 94 } 95 96 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi) 97 { 98 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 99 bool skip_pmi = false; 100 101 if (pmc->perf_event && pmc->perf_event->attr.precise_ip) { 102 if (!in_pmi) { 103 /* 104 * TODO: KVM is currently _choosing_ to not generate records 105 * for emulated instructions, avoiding BUFFER_OVF PMI when 106 * there are no records. Strictly speaking, it should be done 107 * as well in the right context to improve sampling accuracy. 108 */ 109 skip_pmi = true; 110 } else { 111 /* Indicate PEBS overflow PMI to guest. */ 112 skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, 113 (unsigned long *)&pmu->global_status); 114 } 115 } else { 116 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status); 117 } 118 119 if (pmc->intr && !skip_pmi) 120 kvm_make_request(KVM_REQ_PMI, pmc->vcpu); 121 } 122 123 static void kvm_perf_overflow(struct perf_event *perf_event, 124 struct perf_sample_data *data, 125 struct pt_regs *regs) 126 { 127 struct kvm_pmc *pmc = perf_event->overflow_handler_context; 128 129 /* 130 * Ignore overflow events for counters that are scheduled to be 131 * reprogrammed, e.g. if a PMI for the previous event races with KVM's 132 * handling of a related guest WRMSR. 133 */ 134 if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi)) 135 return; 136 137 __kvm_perf_overflow(pmc, true); 138 139 kvm_make_request(KVM_REQ_PMU, pmc->vcpu); 140 } 141 142 static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc) 143 { 144 /* 145 * For some model specific pebs counters with special capabilities 146 * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise 147 * level to the maximum value (currently 3, backwards compatible) 148 * so that the perf subsystem would assign specific hardware counter 149 * with that capability for vPMC. 150 */ 151 if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) || 152 (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu))) 153 return 3; 154 155 /* 156 * The non-zero precision level of guest event makes the ordinary 157 * guest event becomes a guest PEBS event and triggers the host 158 * PEBS PMI handler to determine whether the PEBS overflow PMI 159 * comes from the host counters or the guest. 160 */ 161 return 1; 162 } 163 164 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config, 165 bool exclude_user, bool exclude_kernel, 166 bool intr) 167 { 168 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 169 struct perf_event *event; 170 struct perf_event_attr attr = { 171 .type = type, 172 .size = sizeof(attr), 173 .pinned = true, 174 .exclude_idle = true, 175 .exclude_host = 1, 176 .exclude_user = exclude_user, 177 .exclude_kernel = exclude_kernel, 178 .config = config, 179 }; 180 bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable); 181 182 attr.sample_period = get_sample_period(pmc, pmc->counter); 183 184 if ((attr.config & HSW_IN_TX_CHECKPOINTED) && 185 guest_cpuid_is_intel(pmc->vcpu)) { 186 /* 187 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero 188 * period. Just clear the sample period so at least 189 * allocating the counter doesn't fail. 190 */ 191 attr.sample_period = 0; 192 } 193 if (pebs) { 194 /* 195 * For most PEBS hardware events, the difference in the software 196 * precision levels of guest and host PEBS events will not affect 197 * the accuracy of the PEBS profiling result, because the "event IP" 198 * in the PEBS record is calibrated on the guest side. 199 */ 200 attr.precise_ip = pmc_get_pebs_precise_level(pmc); 201 } 202 203 event = perf_event_create_kernel_counter(&attr, -1, current, 204 kvm_perf_overflow, pmc); 205 if (IS_ERR(event)) { 206 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n", 207 PTR_ERR(event), pmc->idx); 208 return PTR_ERR(event); 209 } 210 211 pmc->perf_event = event; 212 pmc_to_pmu(pmc)->event_count++; 213 pmc->is_paused = false; 214 pmc->intr = intr || pebs; 215 return 0; 216 } 217 218 static void pmc_pause_counter(struct kvm_pmc *pmc) 219 { 220 u64 counter = pmc->counter; 221 222 if (!pmc->perf_event || pmc->is_paused) 223 return; 224 225 /* update counter, reset event value to avoid redundant accumulation */ 226 counter += perf_event_pause(pmc->perf_event, true); 227 pmc->counter = counter & pmc_bitmask(pmc); 228 pmc->is_paused = true; 229 } 230 231 static bool pmc_resume_counter(struct kvm_pmc *pmc) 232 { 233 if (!pmc->perf_event) 234 return false; 235 236 /* recalibrate sample period and check if it's accepted by perf core */ 237 if (is_sampling_event(pmc->perf_event) && 238 perf_event_period(pmc->perf_event, 239 get_sample_period(pmc, pmc->counter))) 240 return false; 241 242 if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) != 243 (!!pmc->perf_event->attr.precise_ip)) 244 return false; 245 246 /* reuse perf_event to serve as pmc_reprogram_counter() does*/ 247 perf_event_enable(pmc->perf_event); 248 pmc->is_paused = false; 249 250 return true; 251 } 252 253 static int filter_cmp(const void *pa, const void *pb, u64 mask) 254 { 255 u64 a = *(u64 *)pa & mask; 256 u64 b = *(u64 *)pb & mask; 257 258 return (a > b) - (a < b); 259 } 260 261 262 static int filter_sort_cmp(const void *pa, const void *pb) 263 { 264 return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT | 265 KVM_PMU_MASKED_ENTRY_EXCLUDE)); 266 } 267 268 /* 269 * For the event filter, searching is done on the 'includes' list and 270 * 'excludes' list separately rather than on the 'events' list (which 271 * has both). As a result the exclude bit can be ignored. 272 */ 273 static int filter_event_cmp(const void *pa, const void *pb) 274 { 275 return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT)); 276 } 277 278 static int find_filter_index(u64 *events, u64 nevents, u64 key) 279 { 280 u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]), 281 filter_event_cmp); 282 283 if (!fe) 284 return -1; 285 286 return fe - events; 287 } 288 289 static bool is_filter_entry_match(u64 filter_event, u64 umask) 290 { 291 u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8); 292 u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH; 293 294 BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >> 295 (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) != 296 ARCH_PERFMON_EVENTSEL_UMASK); 297 298 return (umask & mask) == match; 299 } 300 301 static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel) 302 { 303 u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT; 304 u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK; 305 int i, index; 306 307 index = find_filter_index(events, nevents, event_select); 308 if (index < 0) 309 return false; 310 311 /* 312 * Entries are sorted by the event select. Walk the list in both 313 * directions to process all entries with the targeted event select. 314 */ 315 for (i = index; i < nevents; i++) { 316 if (filter_event_cmp(&events[i], &event_select)) 317 break; 318 319 if (is_filter_entry_match(events[i], umask)) 320 return true; 321 } 322 323 for (i = index - 1; i >= 0; i--) { 324 if (filter_event_cmp(&events[i], &event_select)) 325 break; 326 327 if (is_filter_entry_match(events[i], umask)) 328 return true; 329 } 330 331 return false; 332 } 333 334 static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f, 335 u64 eventsel) 336 { 337 if (filter_contains_match(f->includes, f->nr_includes, eventsel) && 338 !filter_contains_match(f->excludes, f->nr_excludes, eventsel)) 339 return f->action == KVM_PMU_EVENT_ALLOW; 340 341 return f->action == KVM_PMU_EVENT_DENY; 342 } 343 344 static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter, 345 int idx) 346 { 347 int fixed_idx = idx - INTEL_PMC_IDX_FIXED; 348 349 if (filter->action == KVM_PMU_EVENT_DENY && 350 test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap)) 351 return false; 352 if (filter->action == KVM_PMU_EVENT_ALLOW && 353 !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap)) 354 return false; 355 356 return true; 357 } 358 359 static bool check_pmu_event_filter(struct kvm_pmc *pmc) 360 { 361 struct kvm_x86_pmu_event_filter *filter; 362 struct kvm *kvm = pmc->vcpu->kvm; 363 364 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu); 365 if (!filter) 366 return true; 367 368 if (pmc_is_gp(pmc)) 369 return is_gp_event_allowed(filter, pmc->eventsel); 370 371 return is_fixed_event_allowed(filter, pmc->idx); 372 } 373 374 static bool pmc_event_is_allowed(struct kvm_pmc *pmc) 375 { 376 return pmc_is_globally_enabled(pmc) && pmc_speculative_in_use(pmc) && 377 static_call(kvm_x86_pmu_hw_event_available)(pmc) && 378 check_pmu_event_filter(pmc); 379 } 380 381 static void reprogram_counter(struct kvm_pmc *pmc) 382 { 383 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 384 u64 eventsel = pmc->eventsel; 385 u64 new_config = eventsel; 386 u8 fixed_ctr_ctrl; 387 388 pmc_pause_counter(pmc); 389 390 if (!pmc_event_is_allowed(pmc)) 391 goto reprogram_complete; 392 393 if (pmc->counter < pmc->prev_counter) 394 __kvm_perf_overflow(pmc, false); 395 396 if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL) 397 printk_once("kvm pmu: pin control bit is ignored\n"); 398 399 if (pmc_is_fixed(pmc)) { 400 fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, 401 pmc->idx - INTEL_PMC_IDX_FIXED); 402 if (fixed_ctr_ctrl & 0x1) 403 eventsel |= ARCH_PERFMON_EVENTSEL_OS; 404 if (fixed_ctr_ctrl & 0x2) 405 eventsel |= ARCH_PERFMON_EVENTSEL_USR; 406 if (fixed_ctr_ctrl & 0x8) 407 eventsel |= ARCH_PERFMON_EVENTSEL_INT; 408 new_config = (u64)fixed_ctr_ctrl; 409 } 410 411 if (pmc->current_config == new_config && pmc_resume_counter(pmc)) 412 goto reprogram_complete; 413 414 pmc_release_perf_event(pmc); 415 416 pmc->current_config = new_config; 417 418 /* 419 * If reprogramming fails, e.g. due to contention, leave the counter's 420 * regprogram bit set, i.e. opportunistically try again on the next PMU 421 * refresh. Don't make a new request as doing so can stall the guest 422 * if reprogramming repeatedly fails. 423 */ 424 if (pmc_reprogram_counter(pmc, PERF_TYPE_RAW, 425 (eventsel & pmu->raw_event_mask), 426 !(eventsel & ARCH_PERFMON_EVENTSEL_USR), 427 !(eventsel & ARCH_PERFMON_EVENTSEL_OS), 428 eventsel & ARCH_PERFMON_EVENTSEL_INT)) 429 return; 430 431 reprogram_complete: 432 clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi); 433 pmc->prev_counter = 0; 434 } 435 436 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu) 437 { 438 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 439 int bit; 440 441 for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) { 442 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit); 443 444 if (unlikely(!pmc)) { 445 clear_bit(bit, pmu->reprogram_pmi); 446 continue; 447 } 448 449 reprogram_counter(pmc); 450 } 451 452 /* 453 * Unused perf_events are only released if the corresponding MSRs 454 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in 455 * triggers KVM_REQ_PMU if cleanup is needed. 456 */ 457 if (unlikely(pmu->need_cleanup)) 458 kvm_pmu_cleanup(vcpu); 459 } 460 461 /* check if idx is a valid index to access PMU */ 462 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx) 463 { 464 return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx); 465 } 466 467 bool is_vmware_backdoor_pmc(u32 pmc_idx) 468 { 469 switch (pmc_idx) { 470 case VMWARE_BACKDOOR_PMC_HOST_TSC: 471 case VMWARE_BACKDOOR_PMC_REAL_TIME: 472 case VMWARE_BACKDOOR_PMC_APPARENT_TIME: 473 return true; 474 } 475 return false; 476 } 477 478 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) 479 { 480 u64 ctr_val; 481 482 switch (idx) { 483 case VMWARE_BACKDOOR_PMC_HOST_TSC: 484 ctr_val = rdtsc(); 485 break; 486 case VMWARE_BACKDOOR_PMC_REAL_TIME: 487 ctr_val = ktime_get_boottime_ns(); 488 break; 489 case VMWARE_BACKDOOR_PMC_APPARENT_TIME: 490 ctr_val = ktime_get_boottime_ns() + 491 vcpu->kvm->arch.kvmclock_offset; 492 break; 493 default: 494 return 1; 495 } 496 497 *data = ctr_val; 498 return 0; 499 } 500 501 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) 502 { 503 bool fast_mode = idx & (1u << 31); 504 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 505 struct kvm_pmc *pmc; 506 u64 mask = fast_mode ? ~0u : ~0ull; 507 508 if (!pmu->version) 509 return 1; 510 511 if (is_vmware_backdoor_pmc(idx)) 512 return kvm_pmu_rdpmc_vmware(vcpu, idx, data); 513 514 pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask); 515 if (!pmc) 516 return 1; 517 518 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCE) && 519 (static_call(kvm_x86_get_cpl)(vcpu) != 0) && 520 kvm_is_cr0_bit_set(vcpu, X86_CR0_PE)) 521 return 1; 522 523 *data = pmc_read_counter(pmc) & mask; 524 return 0; 525 } 526 527 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu) 528 { 529 if (lapic_in_kernel(vcpu)) { 530 static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu); 531 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC); 532 } 533 } 534 535 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr) 536 { 537 switch (msr) { 538 case MSR_CORE_PERF_GLOBAL_STATUS: 539 case MSR_CORE_PERF_GLOBAL_CTRL: 540 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 541 return kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)); 542 default: 543 break; 544 } 545 return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) || 546 static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr); 547 } 548 549 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr) 550 { 551 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 552 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr); 553 554 if (pmc) 555 __set_bit(pmc->idx, pmu->pmc_in_use); 556 } 557 558 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 559 { 560 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 561 u32 msr = msr_info->index; 562 563 switch (msr) { 564 case MSR_CORE_PERF_GLOBAL_STATUS: 565 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 566 msr_info->data = pmu->global_status; 567 break; 568 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 569 case MSR_CORE_PERF_GLOBAL_CTRL: 570 msr_info->data = pmu->global_ctrl; 571 break; 572 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 573 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 574 msr_info->data = 0; 575 break; 576 default: 577 return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info); 578 } 579 580 return 0; 581 } 582 583 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 584 { 585 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 586 u32 msr = msr_info->index; 587 u64 data = msr_info->data; 588 u64 diff; 589 590 /* 591 * Note, AMD ignores writes to reserved bits and read-only PMU MSRs, 592 * whereas Intel generates #GP on attempts to write reserved/RO MSRs. 593 */ 594 switch (msr) { 595 case MSR_CORE_PERF_GLOBAL_STATUS: 596 if (!msr_info->host_initiated) 597 return 1; /* RO MSR */ 598 fallthrough; 599 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: 600 /* Per PPR, Read-only MSR. Writes are ignored. */ 601 if (!msr_info->host_initiated) 602 break; 603 604 if (data & pmu->global_status_mask) 605 return 1; 606 607 pmu->global_status = data; 608 break; 609 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: 610 data &= ~pmu->global_ctrl_mask; 611 fallthrough; 612 case MSR_CORE_PERF_GLOBAL_CTRL: 613 if (!kvm_valid_perf_global_ctrl(pmu, data)) 614 return 1; 615 616 if (pmu->global_ctrl != data) { 617 diff = pmu->global_ctrl ^ data; 618 pmu->global_ctrl = data; 619 reprogram_counters(pmu, diff); 620 } 621 break; 622 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 623 /* 624 * GLOBAL_OVF_CTRL, a.k.a. GLOBAL STATUS_RESET, clears bits in 625 * GLOBAL_STATUS, and so the set of reserved bits is the same. 626 */ 627 if (data & pmu->global_status_mask) 628 return 1; 629 fallthrough; 630 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: 631 if (!msr_info->host_initiated) 632 pmu->global_status &= ~data; 633 break; 634 default: 635 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index); 636 return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info); 637 } 638 639 return 0; 640 } 641 642 /* refresh PMU settings. This function generally is called when underlying 643 * settings are changed (such as changes of PMU CPUID by guest VMs), which 644 * should rarely happen. 645 */ 646 void kvm_pmu_refresh(struct kvm_vcpu *vcpu) 647 { 648 if (KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm)) 649 return; 650 651 bitmap_zero(vcpu_to_pmu(vcpu)->all_valid_pmc_idx, X86_PMC_IDX_MAX); 652 static_call(kvm_x86_pmu_refresh)(vcpu); 653 } 654 655 void kvm_pmu_reset(struct kvm_vcpu *vcpu) 656 { 657 static_call(kvm_x86_pmu_reset)(vcpu); 658 } 659 660 void kvm_pmu_init(struct kvm_vcpu *vcpu) 661 { 662 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 663 664 memset(pmu, 0, sizeof(*pmu)); 665 static_call(kvm_x86_pmu_init)(vcpu); 666 pmu->event_count = 0; 667 pmu->need_cleanup = false; 668 kvm_pmu_refresh(vcpu); 669 } 670 671 /* Release perf_events for vPMCs that have been unused for a full time slice. */ 672 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu) 673 { 674 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 675 struct kvm_pmc *pmc = NULL; 676 DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX); 677 int i; 678 679 pmu->need_cleanup = false; 680 681 bitmap_andnot(bitmask, pmu->all_valid_pmc_idx, 682 pmu->pmc_in_use, X86_PMC_IDX_MAX); 683 684 for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) { 685 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i); 686 687 if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc)) 688 pmc_stop_counter(pmc); 689 } 690 691 static_call_cond(kvm_x86_pmu_cleanup)(vcpu); 692 693 bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX); 694 } 695 696 void kvm_pmu_destroy(struct kvm_vcpu *vcpu) 697 { 698 kvm_pmu_reset(vcpu); 699 } 700 701 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc) 702 { 703 pmc->prev_counter = pmc->counter; 704 pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc); 705 kvm_pmu_request_counter_reprogram(pmc); 706 } 707 708 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc, 709 unsigned int perf_hw_id) 710 { 711 return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) & 712 AMD64_RAW_EVENT_MASK_NB); 713 } 714 715 static inline bool cpl_is_matched(struct kvm_pmc *pmc) 716 { 717 bool select_os, select_user; 718 u64 config; 719 720 if (pmc_is_gp(pmc)) { 721 config = pmc->eventsel; 722 select_os = config & ARCH_PERFMON_EVENTSEL_OS; 723 select_user = config & ARCH_PERFMON_EVENTSEL_USR; 724 } else { 725 config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl, 726 pmc->idx - INTEL_PMC_IDX_FIXED); 727 select_os = config & 0x1; 728 select_user = config & 0x2; 729 } 730 731 return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user; 732 } 733 734 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id) 735 { 736 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 737 struct kvm_pmc *pmc; 738 int i; 739 740 for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) { 741 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i); 742 743 if (!pmc || !pmc_event_is_allowed(pmc)) 744 continue; 745 746 /* Ignore checks for edge detect, pin control, invert and CMASK bits */ 747 if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc)) 748 kvm_pmu_incr_counter(pmc); 749 } 750 } 751 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event); 752 753 static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter) 754 { 755 u64 mask = kvm_pmu_ops.EVENTSEL_EVENT | 756 KVM_PMU_MASKED_ENTRY_UMASK_MASK | 757 KVM_PMU_MASKED_ENTRY_UMASK_MATCH | 758 KVM_PMU_MASKED_ENTRY_EXCLUDE; 759 int i; 760 761 for (i = 0; i < filter->nevents; i++) { 762 if (filter->events[i] & ~mask) 763 return false; 764 } 765 766 return true; 767 } 768 769 static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter) 770 { 771 int i, j; 772 773 for (i = 0, j = 0; i < filter->nevents; i++) { 774 /* 775 * Skip events that are impossible to match against a guest 776 * event. When filtering, only the event select + unit mask 777 * of the guest event is used. To maintain backwards 778 * compatibility, impossible filters can't be rejected :-( 779 */ 780 if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT | 781 ARCH_PERFMON_EVENTSEL_UMASK)) 782 continue; 783 /* 784 * Convert userspace events to a common in-kernel event so 785 * only one code path is needed to support both events. For 786 * the in-kernel events use masked events because they are 787 * flexible enough to handle both cases. To convert to masked 788 * events all that's needed is to add an "all ones" umask_mask, 789 * (unmasked filter events don't support EXCLUDE). 790 */ 791 filter->events[j++] = filter->events[i] | 792 (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT); 793 } 794 795 filter->nevents = j; 796 } 797 798 static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter) 799 { 800 int i; 801 802 if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS)) 803 convert_to_masked_filter(filter); 804 else if (!is_masked_filter_valid(filter)) 805 return -EINVAL; 806 807 /* 808 * Sort entries by event select and includes vs. excludes so that all 809 * entries for a given event select can be processed efficiently during 810 * filtering. The EXCLUDE flag uses a more significant bit than the 811 * event select, and so the sorted list is also effectively split into 812 * includes and excludes sub-lists. 813 */ 814 sort(&filter->events, filter->nevents, sizeof(filter->events[0]), 815 filter_sort_cmp, NULL); 816 817 i = filter->nevents; 818 /* Find the first EXCLUDE event (only supported for masked events). */ 819 if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) { 820 for (i = 0; i < filter->nevents; i++) { 821 if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE) 822 break; 823 } 824 } 825 826 filter->nr_includes = i; 827 filter->nr_excludes = filter->nevents - filter->nr_includes; 828 filter->includes = filter->events; 829 filter->excludes = filter->events + filter->nr_includes; 830 831 return 0; 832 } 833 834 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp) 835 { 836 struct kvm_pmu_event_filter __user *user_filter = argp; 837 struct kvm_x86_pmu_event_filter *filter; 838 struct kvm_pmu_event_filter tmp; 839 struct kvm_vcpu *vcpu; 840 unsigned long i; 841 size_t size; 842 int r; 843 844 if (copy_from_user(&tmp, user_filter, sizeof(tmp))) 845 return -EFAULT; 846 847 if (tmp.action != KVM_PMU_EVENT_ALLOW && 848 tmp.action != KVM_PMU_EVENT_DENY) 849 return -EINVAL; 850 851 if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK) 852 return -EINVAL; 853 854 if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS) 855 return -E2BIG; 856 857 size = struct_size(filter, events, tmp.nevents); 858 filter = kzalloc(size, GFP_KERNEL_ACCOUNT); 859 if (!filter) 860 return -ENOMEM; 861 862 filter->action = tmp.action; 863 filter->nevents = tmp.nevents; 864 filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap; 865 filter->flags = tmp.flags; 866 867 r = -EFAULT; 868 if (copy_from_user(filter->events, user_filter->events, 869 sizeof(filter->events[0]) * filter->nevents)) 870 goto cleanup; 871 872 r = prepare_filter_lists(filter); 873 if (r) 874 goto cleanup; 875 876 mutex_lock(&kvm->lock); 877 filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter, 878 mutex_is_locked(&kvm->lock)); 879 mutex_unlock(&kvm->lock); 880 synchronize_srcu_expedited(&kvm->srcu); 881 882 BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) > 883 sizeof(((struct kvm_pmu *)0)->__reprogram_pmi)); 884 885 kvm_for_each_vcpu(i, vcpu, kvm) 886 atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull); 887 888 kvm_make_all_cpus_request(kvm, KVM_REQ_PMU); 889 890 r = 0; 891 cleanup: 892 kfree(filter); 893 return r; 894 } 895