xref: /openbmc/linux/arch/x86/kvm/pmu.c (revision 34fa67e7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4  *
5  * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6  *
7  * Authors:
8  *   Avi Kivity   <avi@redhat.com>
9  *   Gleb Natapov <gleb@redhat.com>
10  *   Wei Huang    <wei@redhat.com>
11  */
12 
13 #include <linux/types.h>
14 #include <linux/kvm_host.h>
15 #include <linux/perf_event.h>
16 #include <asm/perf_event.h>
17 #include "x86.h"
18 #include "cpuid.h"
19 #include "lapic.h"
20 #include "pmu.h"
21 
22 /* This is enough to filter the vast majority of currently defined events. */
23 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
24 
25 /* NOTE:
26  * - Each perf counter is defined as "struct kvm_pmc";
27  * - There are two types of perf counters: general purpose (gp) and fixed.
28  *   gp counters are stored in gp_counters[] and fixed counters are stored
29  *   in fixed_counters[] respectively. Both of them are part of "struct
30  *   kvm_pmu";
31  * - pmu.c understands the difference between gp counters and fixed counters.
32  *   However AMD doesn't support fixed-counters;
33  * - There are three types of index to access perf counters (PMC):
34  *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
35  *        has MSR_K7_PERFCTRn.
36  *     2. MSR Index (named idx): This normally is used by RDPMC instruction.
37  *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
38  *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
39  *        that it also supports fixed counters. idx can be used to as index to
40  *        gp and fixed counters.
41  *     3. Global PMC Index (named pmc): pmc is an index specific to PMU
42  *        code. Each pmc, stored in kvm_pmc.idx field, is unique across
43  *        all perf counters (both gp and fixed). The mapping relationship
44  *        between pmc and perf counters is as the following:
45  *        * Intel: [0 .. INTEL_PMC_MAX_GENERIC-1] <=> gp counters
46  *                 [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
47  *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] <=> gp counters
48  */
49 
50 static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
51 {
52 	struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
53 	struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
54 
55 	kvm_pmu_deliver_pmi(vcpu);
56 }
57 
58 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
59 {
60 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
61 
62 	/* Ignore counters that have been reprogrammed already. */
63 	if (test_and_set_bit(pmc->idx, pmu->reprogram_pmi))
64 		return;
65 
66 	__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
67 	kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
68 
69 	if (!pmc->intr)
70 		return;
71 
72 	/*
73 	 * Inject PMI. If vcpu was in a guest mode during NMI PMI
74 	 * can be ejected on a guest mode re-entry. Otherwise we can't
75 	 * be sure that vcpu wasn't executing hlt instruction at the
76 	 * time of vmexit and is not going to re-enter guest mode until
77 	 * woken up. So we should wake it, but this is impossible from
78 	 * NMI context. Do it from irq work instead.
79 	 */
80 	if (in_pmi && !kvm_handling_nmi_from_guest(pmc->vcpu))
81 		irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
82 	else
83 		kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
84 }
85 
86 static void kvm_perf_overflow(struct perf_event *perf_event,
87 			      struct perf_sample_data *data,
88 			      struct pt_regs *regs)
89 {
90 	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
91 
92 	__kvm_perf_overflow(pmc, true);
93 }
94 
95 static void pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type,
96 				  unsigned config, bool exclude_user,
97 				  bool exclude_kernel, bool intr,
98 				  bool in_tx, bool in_tx_cp)
99 {
100 	struct perf_event *event;
101 	struct perf_event_attr attr = {
102 		.type = type,
103 		.size = sizeof(attr),
104 		.pinned = true,
105 		.exclude_idle = true,
106 		.exclude_host = 1,
107 		.exclude_user = exclude_user,
108 		.exclude_kernel = exclude_kernel,
109 		.config = config,
110 	};
111 
112 	attr.sample_period = get_sample_period(pmc, pmc->counter);
113 
114 	if (in_tx)
115 		attr.config |= HSW_IN_TX;
116 	if (in_tx_cp) {
117 		/*
118 		 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
119 		 * period. Just clear the sample period so at least
120 		 * allocating the counter doesn't fail.
121 		 */
122 		attr.sample_period = 0;
123 		attr.config |= HSW_IN_TX_CHECKPOINTED;
124 	}
125 
126 	event = perf_event_create_kernel_counter(&attr, -1, current,
127 						 kvm_perf_overflow, pmc);
128 	if (IS_ERR(event)) {
129 		pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
130 			    PTR_ERR(event), pmc->idx);
131 		return;
132 	}
133 
134 	pmc->perf_event = event;
135 	pmc_to_pmu(pmc)->event_count++;
136 	clear_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi);
137 	pmc->is_paused = false;
138 	pmc->intr = intr;
139 }
140 
141 static void pmc_pause_counter(struct kvm_pmc *pmc)
142 {
143 	u64 counter = pmc->counter;
144 
145 	if (!pmc->perf_event || pmc->is_paused)
146 		return;
147 
148 	/* update counter, reset event value to avoid redundant accumulation */
149 	counter += perf_event_pause(pmc->perf_event, true);
150 	pmc->counter = counter & pmc_bitmask(pmc);
151 	pmc->is_paused = true;
152 }
153 
154 static bool pmc_resume_counter(struct kvm_pmc *pmc)
155 {
156 	if (!pmc->perf_event)
157 		return false;
158 
159 	/* recalibrate sample period and check if it's accepted by perf core */
160 	if (perf_event_period(pmc->perf_event,
161 			      get_sample_period(pmc, pmc->counter)))
162 		return false;
163 
164 	/* reuse perf_event to serve as pmc_reprogram_counter() does*/
165 	perf_event_enable(pmc->perf_event);
166 	pmc->is_paused = false;
167 
168 	clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
169 	return true;
170 }
171 
172 void reprogram_gp_counter(struct kvm_pmc *pmc, u64 eventsel)
173 {
174 	unsigned config, type = PERF_TYPE_RAW;
175 	struct kvm *kvm = pmc->vcpu->kvm;
176 	struct kvm_pmu_event_filter *filter;
177 	int i;
178 	bool allow_event = true;
179 
180 	if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
181 		printk_once("kvm pmu: pin control bit is ignored\n");
182 
183 	pmc->eventsel = eventsel;
184 
185 	pmc_pause_counter(pmc);
186 
187 	if (!(eventsel & ARCH_PERFMON_EVENTSEL_ENABLE) || !pmc_is_enabled(pmc))
188 		return;
189 
190 	filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
191 	if (filter) {
192 		for (i = 0; i < filter->nevents; i++)
193 			if (filter->events[i] ==
194 			    (eventsel & AMD64_RAW_EVENT_MASK_NB))
195 				break;
196 		if (filter->action == KVM_PMU_EVENT_ALLOW &&
197 		    i == filter->nevents)
198 			allow_event = false;
199 		if (filter->action == KVM_PMU_EVENT_DENY &&
200 		    i < filter->nevents)
201 			allow_event = false;
202 	}
203 	if (!allow_event)
204 		return;
205 
206 	if (!(eventsel & (ARCH_PERFMON_EVENTSEL_EDGE |
207 			  ARCH_PERFMON_EVENTSEL_INV |
208 			  ARCH_PERFMON_EVENTSEL_CMASK |
209 			  HSW_IN_TX |
210 			  HSW_IN_TX_CHECKPOINTED))) {
211 		config = kvm_x86_ops.pmu_ops->pmc_perf_hw_id(pmc);
212 		if (config != PERF_COUNT_HW_MAX)
213 			type = PERF_TYPE_HARDWARE;
214 	}
215 
216 	if (type == PERF_TYPE_RAW)
217 		config = eventsel & X86_RAW_EVENT_MASK;
218 
219 	if (pmc->current_config == eventsel && pmc_resume_counter(pmc))
220 		return;
221 
222 	pmc_release_perf_event(pmc);
223 
224 	pmc->current_config = eventsel;
225 	pmc_reprogram_counter(pmc, type, config,
226 			      !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
227 			      !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
228 			      eventsel & ARCH_PERFMON_EVENTSEL_INT,
229 			      (eventsel & HSW_IN_TX),
230 			      (eventsel & HSW_IN_TX_CHECKPOINTED));
231 }
232 EXPORT_SYMBOL_GPL(reprogram_gp_counter);
233 
234 void reprogram_fixed_counter(struct kvm_pmc *pmc, u8 ctrl, int idx)
235 {
236 	unsigned en_field = ctrl & 0x3;
237 	bool pmi = ctrl & 0x8;
238 	struct kvm_pmu_event_filter *filter;
239 	struct kvm *kvm = pmc->vcpu->kvm;
240 
241 	pmc_pause_counter(pmc);
242 
243 	if (!en_field || !pmc_is_enabled(pmc))
244 		return;
245 
246 	filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
247 	if (filter) {
248 		if (filter->action == KVM_PMU_EVENT_DENY &&
249 		    test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
250 			return;
251 		if (filter->action == KVM_PMU_EVENT_ALLOW &&
252 		    !test_bit(idx, (ulong *)&filter->fixed_counter_bitmap))
253 			return;
254 	}
255 
256 	if (pmc->current_config == (u64)ctrl && pmc_resume_counter(pmc))
257 		return;
258 
259 	pmc_release_perf_event(pmc);
260 
261 	pmc->current_config = (u64)ctrl;
262 	pmc_reprogram_counter(pmc, PERF_TYPE_HARDWARE,
263 			      kvm_x86_ops.pmu_ops->pmc_perf_hw_id(pmc),
264 			      !(en_field & 0x2), /* exclude user */
265 			      !(en_field & 0x1), /* exclude kernel */
266 			      pmi, false, false);
267 }
268 EXPORT_SYMBOL_GPL(reprogram_fixed_counter);
269 
270 void reprogram_counter(struct kvm_pmu *pmu, int pmc_idx)
271 {
272 	struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, pmc_idx);
273 
274 	if (!pmc)
275 		return;
276 
277 	if (pmc_is_gp(pmc))
278 		reprogram_gp_counter(pmc, pmc->eventsel);
279 	else {
280 		int idx = pmc_idx - INTEL_PMC_IDX_FIXED;
281 		u8 ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, idx);
282 
283 		reprogram_fixed_counter(pmc, ctrl, idx);
284 	}
285 }
286 EXPORT_SYMBOL_GPL(reprogram_counter);
287 
288 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
289 {
290 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
291 	int bit;
292 
293 	for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
294 		struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, bit);
295 
296 		if (unlikely(!pmc || !pmc->perf_event)) {
297 			clear_bit(bit, pmu->reprogram_pmi);
298 			continue;
299 		}
300 
301 		reprogram_counter(pmu, bit);
302 	}
303 
304 	/*
305 	 * Unused perf_events are only released if the corresponding MSRs
306 	 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
307 	 * triggers KVM_REQ_PMU if cleanup is needed.
308 	 */
309 	if (unlikely(pmu->need_cleanup))
310 		kvm_pmu_cleanup(vcpu);
311 }
312 
313 /* check if idx is a valid index to access PMU */
314 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
315 {
316 	return kvm_x86_ops.pmu_ops->is_valid_rdpmc_ecx(vcpu, idx);
317 }
318 
319 bool is_vmware_backdoor_pmc(u32 pmc_idx)
320 {
321 	switch (pmc_idx) {
322 	case VMWARE_BACKDOOR_PMC_HOST_TSC:
323 	case VMWARE_BACKDOOR_PMC_REAL_TIME:
324 	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
325 		return true;
326 	}
327 	return false;
328 }
329 
330 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
331 {
332 	u64 ctr_val;
333 
334 	switch (idx) {
335 	case VMWARE_BACKDOOR_PMC_HOST_TSC:
336 		ctr_val = rdtsc();
337 		break;
338 	case VMWARE_BACKDOOR_PMC_REAL_TIME:
339 		ctr_val = ktime_get_boottime_ns();
340 		break;
341 	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
342 		ctr_val = ktime_get_boottime_ns() +
343 			vcpu->kvm->arch.kvmclock_offset;
344 		break;
345 	default:
346 		return 1;
347 	}
348 
349 	*data = ctr_val;
350 	return 0;
351 }
352 
353 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
354 {
355 	bool fast_mode = idx & (1u << 31);
356 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
357 	struct kvm_pmc *pmc;
358 	u64 mask = fast_mode ? ~0u : ~0ull;
359 
360 	if (!pmu->version)
361 		return 1;
362 
363 	if (is_vmware_backdoor_pmc(idx))
364 		return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
365 
366 	pmc = kvm_x86_ops.pmu_ops->rdpmc_ecx_to_pmc(vcpu, idx, &mask);
367 	if (!pmc)
368 		return 1;
369 
370 	if (!(kvm_read_cr4(vcpu) & X86_CR4_PCE) &&
371 	    (static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
372 	    (kvm_read_cr0(vcpu) & X86_CR0_PE))
373 		return 1;
374 
375 	*data = pmc_read_counter(pmc) & mask;
376 	return 0;
377 }
378 
379 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
380 {
381 	if (lapic_in_kernel(vcpu)) {
382 		if (kvm_x86_ops.pmu_ops->deliver_pmi)
383 			kvm_x86_ops.pmu_ops->deliver_pmi(vcpu);
384 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
385 	}
386 }
387 
388 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
389 {
390 	return kvm_x86_ops.pmu_ops->msr_idx_to_pmc(vcpu, msr) ||
391 		kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, msr);
392 }
393 
394 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
395 {
396 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
397 	struct kvm_pmc *pmc = kvm_x86_ops.pmu_ops->msr_idx_to_pmc(vcpu, msr);
398 
399 	if (pmc)
400 		__set_bit(pmc->idx, pmu->pmc_in_use);
401 }
402 
403 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
404 {
405 	return kvm_x86_ops.pmu_ops->get_msr(vcpu, msr_info);
406 }
407 
408 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
409 {
410 	kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
411 	return kvm_x86_ops.pmu_ops->set_msr(vcpu, msr_info);
412 }
413 
414 /* refresh PMU settings. This function generally is called when underlying
415  * settings are changed (such as changes of PMU CPUID by guest VMs), which
416  * should rarely happen.
417  */
418 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
419 {
420 	kvm_x86_ops.pmu_ops->refresh(vcpu);
421 }
422 
423 void kvm_pmu_reset(struct kvm_vcpu *vcpu)
424 {
425 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
426 
427 	irq_work_sync(&pmu->irq_work);
428 	kvm_x86_ops.pmu_ops->reset(vcpu);
429 }
430 
431 void kvm_pmu_init(struct kvm_vcpu *vcpu)
432 {
433 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
434 
435 	memset(pmu, 0, sizeof(*pmu));
436 	kvm_x86_ops.pmu_ops->init(vcpu);
437 	init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
438 	pmu->event_count = 0;
439 	pmu->need_cleanup = false;
440 	kvm_pmu_refresh(vcpu);
441 }
442 
443 static inline bool pmc_speculative_in_use(struct kvm_pmc *pmc)
444 {
445 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
446 
447 	if (pmc_is_fixed(pmc))
448 		return fixed_ctrl_field(pmu->fixed_ctr_ctrl,
449 			pmc->idx - INTEL_PMC_IDX_FIXED) & 0x3;
450 
451 	return pmc->eventsel & ARCH_PERFMON_EVENTSEL_ENABLE;
452 }
453 
454 /* Release perf_events for vPMCs that have been unused for a full time slice.  */
455 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
456 {
457 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
458 	struct kvm_pmc *pmc = NULL;
459 	DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
460 	int i;
461 
462 	pmu->need_cleanup = false;
463 
464 	bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
465 		      pmu->pmc_in_use, X86_PMC_IDX_MAX);
466 
467 	for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
468 		pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, i);
469 
470 		if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
471 			pmc_stop_counter(pmc);
472 	}
473 
474 	if (kvm_x86_ops.pmu_ops->cleanup)
475 		kvm_x86_ops.pmu_ops->cleanup(vcpu);
476 
477 	bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
478 }
479 
480 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
481 {
482 	kvm_pmu_reset(vcpu);
483 }
484 
485 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
486 {
487 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
488 	u64 prev_count;
489 
490 	prev_count = pmc->counter;
491 	pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc);
492 
493 	reprogram_counter(pmu, pmc->idx);
494 	if (pmc->counter < prev_count)
495 		__kvm_perf_overflow(pmc, false);
496 }
497 
498 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc,
499 	unsigned int perf_hw_id)
500 {
501 	u64 old_eventsel = pmc->eventsel;
502 	unsigned int config;
503 
504 	pmc->eventsel &= (ARCH_PERFMON_EVENTSEL_EVENT | ARCH_PERFMON_EVENTSEL_UMASK);
505 	config = kvm_x86_ops.pmu_ops->pmc_perf_hw_id(pmc);
506 	pmc->eventsel = old_eventsel;
507 	return config == perf_hw_id;
508 }
509 
510 static inline bool cpl_is_matched(struct kvm_pmc *pmc)
511 {
512 	bool select_os, select_user;
513 	u64 config = pmc->current_config;
514 
515 	if (pmc_is_gp(pmc)) {
516 		select_os = config & ARCH_PERFMON_EVENTSEL_OS;
517 		select_user = config & ARCH_PERFMON_EVENTSEL_USR;
518 	} else {
519 		select_os = config & 0x1;
520 		select_user = config & 0x2;
521 	}
522 
523 	return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
524 }
525 
526 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
527 {
528 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
529 	struct kvm_pmc *pmc;
530 	int i;
531 
532 	for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
533 		pmc = kvm_x86_ops.pmu_ops->pmc_idx_to_pmc(pmu, i);
534 
535 		if (!pmc || !pmc_is_enabled(pmc) || !pmc_speculative_in_use(pmc))
536 			continue;
537 
538 		/* Ignore checks for edge detect, pin control, invert and CMASK bits */
539 		if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc))
540 			kvm_pmu_incr_counter(pmc);
541 	}
542 }
543 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
544 
545 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
546 {
547 	struct kvm_pmu_event_filter tmp, *filter;
548 	size_t size;
549 	int r;
550 
551 	if (copy_from_user(&tmp, argp, sizeof(tmp)))
552 		return -EFAULT;
553 
554 	if (tmp.action != KVM_PMU_EVENT_ALLOW &&
555 	    tmp.action != KVM_PMU_EVENT_DENY)
556 		return -EINVAL;
557 
558 	if (tmp.flags != 0)
559 		return -EINVAL;
560 
561 	if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
562 		return -E2BIG;
563 
564 	size = struct_size(filter, events, tmp.nevents);
565 	filter = kmalloc(size, GFP_KERNEL_ACCOUNT);
566 	if (!filter)
567 		return -ENOMEM;
568 
569 	r = -EFAULT;
570 	if (copy_from_user(filter, argp, size))
571 		goto cleanup;
572 
573 	/* Ensure nevents can't be changed between the user copies. */
574 	*filter = tmp;
575 
576 	mutex_lock(&kvm->lock);
577 	filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
578 				     mutex_is_locked(&kvm->lock));
579 	mutex_unlock(&kvm->lock);
580 
581 	synchronize_srcu_expedited(&kvm->srcu);
582 	r = 0;
583 cleanup:
584 	kfree(filter);
585 	return r;
586 }
587