xref: /openbmc/linux/arch/x86/kvm/pmu.c (revision 2fa5ebe3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4  *
5  * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6  *
7  * Authors:
8  *   Avi Kivity   <avi@redhat.com>
9  *   Gleb Natapov <gleb@redhat.com>
10  *   Wei Huang    <wei@redhat.com>
11  */
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/types.h>
15 #include <linux/kvm_host.h>
16 #include <linux/perf_event.h>
17 #include <linux/bsearch.h>
18 #include <linux/sort.h>
19 #include <asm/perf_event.h>
20 #include <asm/cpu_device_id.h>
21 #include "x86.h"
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "pmu.h"
25 
26 /* This is enough to filter the vast majority of currently defined events. */
27 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
28 
29 struct x86_pmu_capability __read_mostly kvm_pmu_cap;
30 EXPORT_SYMBOL_GPL(kvm_pmu_cap);
31 
32 /* Precise Distribution of Instructions Retired (PDIR) */
33 static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = {
34 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL),
35 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL),
36 	/* Instruction-Accurate PDIR (PDIR++) */
37 	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
38 	{}
39 };
40 
41 /* Precise Distribution (PDist) */
42 static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = {
43 	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
44 	{}
45 };
46 
47 /* NOTE:
48  * - Each perf counter is defined as "struct kvm_pmc";
49  * - There are two types of perf counters: general purpose (gp) and fixed.
50  *   gp counters are stored in gp_counters[] and fixed counters are stored
51  *   in fixed_counters[] respectively. Both of them are part of "struct
52  *   kvm_pmu";
53  * - pmu.c understands the difference between gp counters and fixed counters.
54  *   However AMD doesn't support fixed-counters;
55  * - There are three types of index to access perf counters (PMC):
56  *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
57  *        has MSR_K7_PERFCTRn and, for families 15H and later,
58  *        MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
59  *        aliased to MSR_K7_PERFCTRn.
60  *     2. MSR Index (named idx): This normally is used by RDPMC instruction.
61  *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
62  *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
63  *        that it also supports fixed counters. idx can be used to as index to
64  *        gp and fixed counters.
65  *     3. Global PMC Index (named pmc): pmc is an index specific to PMU
66  *        code. Each pmc, stored in kvm_pmc.idx field, is unique across
67  *        all perf counters (both gp and fixed). The mapping relationship
68  *        between pmc and perf counters is as the following:
69  *        * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters
70  *                 [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
71  *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
72  *          and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
73  */
74 
75 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;
76 
77 #define KVM_X86_PMU_OP(func)					     \
78 	DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func,			     \
79 				*(((struct kvm_pmu_ops *)0)->func));
80 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
81 #include <asm/kvm-x86-pmu-ops.h>
82 
83 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
84 {
85 	memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
86 
87 #define __KVM_X86_PMU_OP(func) \
88 	static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
89 #define KVM_X86_PMU_OP(func) \
90 	WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
91 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
92 #include <asm/kvm-x86-pmu-ops.h>
93 #undef __KVM_X86_PMU_OP
94 }
95 
96 static inline bool pmc_is_enabled(struct kvm_pmc *pmc)
97 {
98 	return static_call(kvm_x86_pmu_pmc_is_enabled)(pmc);
99 }
100 
101 static void kvm_pmi_trigger_fn(struct irq_work *irq_work)
102 {
103 	struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work);
104 	struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu);
105 
106 	kvm_pmu_deliver_pmi(vcpu);
107 }
108 
109 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
110 {
111 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
112 	bool skip_pmi = false;
113 
114 	if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
115 		if (!in_pmi) {
116 			/*
117 			 * TODO: KVM is currently _choosing_ to not generate records
118 			 * for emulated instructions, avoiding BUFFER_OVF PMI when
119 			 * there are no records. Strictly speaking, it should be done
120 			 * as well in the right context to improve sampling accuracy.
121 			 */
122 			skip_pmi = true;
123 		} else {
124 			/* Indicate PEBS overflow PMI to guest. */
125 			skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
126 						      (unsigned long *)&pmu->global_status);
127 		}
128 	} else {
129 		__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
130 	}
131 
132 	if (!pmc->intr || skip_pmi)
133 		return;
134 
135 	/*
136 	 * Inject PMI. If vcpu was in a guest mode during NMI PMI
137 	 * can be ejected on a guest mode re-entry. Otherwise we can't
138 	 * be sure that vcpu wasn't executing hlt instruction at the
139 	 * time of vmexit and is not going to re-enter guest mode until
140 	 * woken up. So we should wake it, but this is impossible from
141 	 * NMI context. Do it from irq work instead.
142 	 */
143 	if (in_pmi && !kvm_handling_nmi_from_guest(pmc->vcpu))
144 		irq_work_queue(&pmc_to_pmu(pmc)->irq_work);
145 	else
146 		kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
147 }
148 
149 static void kvm_perf_overflow(struct perf_event *perf_event,
150 			      struct perf_sample_data *data,
151 			      struct pt_regs *regs)
152 {
153 	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
154 
155 	/*
156 	 * Ignore overflow events for counters that are scheduled to be
157 	 * reprogrammed, e.g. if a PMI for the previous event races with KVM's
158 	 * handling of a related guest WRMSR.
159 	 */
160 	if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi))
161 		return;
162 
163 	__kvm_perf_overflow(pmc, true);
164 
165 	kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
166 }
167 
168 static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc)
169 {
170 	/*
171 	 * For some model specific pebs counters with special capabilities
172 	 * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise
173 	 * level to the maximum value (currently 3, backwards compatible)
174 	 * so that the perf subsystem would assign specific hardware counter
175 	 * with that capability for vPMC.
176 	 */
177 	if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) ||
178 	    (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu)))
179 		return 3;
180 
181 	/*
182 	 * The non-zero precision level of guest event makes the ordinary
183 	 * guest event becomes a guest PEBS event and triggers the host
184 	 * PEBS PMI handler to determine whether the PEBS overflow PMI
185 	 * comes from the host counters or the guest.
186 	 */
187 	return 1;
188 }
189 
190 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config,
191 				 bool exclude_user, bool exclude_kernel,
192 				 bool intr)
193 {
194 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
195 	struct perf_event *event;
196 	struct perf_event_attr attr = {
197 		.type = type,
198 		.size = sizeof(attr),
199 		.pinned = true,
200 		.exclude_idle = true,
201 		.exclude_host = 1,
202 		.exclude_user = exclude_user,
203 		.exclude_kernel = exclude_kernel,
204 		.config = config,
205 	};
206 	bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);
207 
208 	attr.sample_period = get_sample_period(pmc, pmc->counter);
209 
210 	if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
211 	    guest_cpuid_is_intel(pmc->vcpu)) {
212 		/*
213 		 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
214 		 * period. Just clear the sample period so at least
215 		 * allocating the counter doesn't fail.
216 		 */
217 		attr.sample_period = 0;
218 	}
219 	if (pebs) {
220 		/*
221 		 * For most PEBS hardware events, the difference in the software
222 		 * precision levels of guest and host PEBS events will not affect
223 		 * the accuracy of the PEBS profiling result, because the "event IP"
224 		 * in the PEBS record is calibrated on the guest side.
225 		 */
226 		attr.precise_ip = pmc_get_pebs_precise_level(pmc);
227 	}
228 
229 	event = perf_event_create_kernel_counter(&attr, -1, current,
230 						 kvm_perf_overflow, pmc);
231 	if (IS_ERR(event)) {
232 		pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
233 			    PTR_ERR(event), pmc->idx);
234 		return PTR_ERR(event);
235 	}
236 
237 	pmc->perf_event = event;
238 	pmc_to_pmu(pmc)->event_count++;
239 	pmc->is_paused = false;
240 	pmc->intr = intr || pebs;
241 	return 0;
242 }
243 
244 static void pmc_pause_counter(struct kvm_pmc *pmc)
245 {
246 	u64 counter = pmc->counter;
247 
248 	if (!pmc->perf_event || pmc->is_paused)
249 		return;
250 
251 	/* update counter, reset event value to avoid redundant accumulation */
252 	counter += perf_event_pause(pmc->perf_event, true);
253 	pmc->counter = counter & pmc_bitmask(pmc);
254 	pmc->is_paused = true;
255 }
256 
257 static bool pmc_resume_counter(struct kvm_pmc *pmc)
258 {
259 	if (!pmc->perf_event)
260 		return false;
261 
262 	/* recalibrate sample period and check if it's accepted by perf core */
263 	if (is_sampling_event(pmc->perf_event) &&
264 	    perf_event_period(pmc->perf_event,
265 			      get_sample_period(pmc, pmc->counter)))
266 		return false;
267 
268 	if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) !=
269 	    (!!pmc->perf_event->attr.precise_ip))
270 		return false;
271 
272 	/* reuse perf_event to serve as pmc_reprogram_counter() does*/
273 	perf_event_enable(pmc->perf_event);
274 	pmc->is_paused = false;
275 
276 	return true;
277 }
278 
279 static int filter_cmp(const void *pa, const void *pb, u64 mask)
280 {
281 	u64 a = *(u64 *)pa & mask;
282 	u64 b = *(u64 *)pb & mask;
283 
284 	return (a > b) - (a < b);
285 }
286 
287 
288 static int filter_sort_cmp(const void *pa, const void *pb)
289 {
290 	return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT |
291 				   KVM_PMU_MASKED_ENTRY_EXCLUDE));
292 }
293 
294 /*
295  * For the event filter, searching is done on the 'includes' list and
296  * 'excludes' list separately rather than on the 'events' list (which
297  * has both).  As a result the exclude bit can be ignored.
298  */
299 static int filter_event_cmp(const void *pa, const void *pb)
300 {
301 	return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT));
302 }
303 
304 static int find_filter_index(u64 *events, u64 nevents, u64 key)
305 {
306 	u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]),
307 			  filter_event_cmp);
308 
309 	if (!fe)
310 		return -1;
311 
312 	return fe - events;
313 }
314 
315 static bool is_filter_entry_match(u64 filter_event, u64 umask)
316 {
317 	u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8);
318 	u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH;
319 
320 	BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >>
321 		     (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) !=
322 		     ARCH_PERFMON_EVENTSEL_UMASK);
323 
324 	return (umask & mask) == match;
325 }
326 
327 static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel)
328 {
329 	u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT;
330 	u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK;
331 	int i, index;
332 
333 	index = find_filter_index(events, nevents, event_select);
334 	if (index < 0)
335 		return false;
336 
337 	/*
338 	 * Entries are sorted by the event select.  Walk the list in both
339 	 * directions to process all entries with the targeted event select.
340 	 */
341 	for (i = index; i < nevents; i++) {
342 		if (filter_event_cmp(&events[i], &event_select))
343 			break;
344 
345 		if (is_filter_entry_match(events[i], umask))
346 			return true;
347 	}
348 
349 	for (i = index - 1; i >= 0; i--) {
350 		if (filter_event_cmp(&events[i], &event_select))
351 			break;
352 
353 		if (is_filter_entry_match(events[i], umask))
354 			return true;
355 	}
356 
357 	return false;
358 }
359 
360 static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f,
361 				u64 eventsel)
362 {
363 	if (filter_contains_match(f->includes, f->nr_includes, eventsel) &&
364 	    !filter_contains_match(f->excludes, f->nr_excludes, eventsel))
365 		return f->action == KVM_PMU_EVENT_ALLOW;
366 
367 	return f->action == KVM_PMU_EVENT_DENY;
368 }
369 
370 static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter,
371 				   int idx)
372 {
373 	int fixed_idx = idx - INTEL_PMC_IDX_FIXED;
374 
375 	if (filter->action == KVM_PMU_EVENT_DENY &&
376 	    test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
377 		return false;
378 	if (filter->action == KVM_PMU_EVENT_ALLOW &&
379 	    !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
380 		return false;
381 
382 	return true;
383 }
384 
385 static bool check_pmu_event_filter(struct kvm_pmc *pmc)
386 {
387 	struct kvm_x86_pmu_event_filter *filter;
388 	struct kvm *kvm = pmc->vcpu->kvm;
389 
390 	if (!static_call(kvm_x86_pmu_hw_event_available)(pmc))
391 		return false;
392 
393 	filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
394 	if (!filter)
395 		return true;
396 
397 	if (pmc_is_gp(pmc))
398 		return is_gp_event_allowed(filter, pmc->eventsel);
399 
400 	return is_fixed_event_allowed(filter, pmc->idx);
401 }
402 
403 static void reprogram_counter(struct kvm_pmc *pmc)
404 {
405 	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
406 	u64 eventsel = pmc->eventsel;
407 	u64 new_config = eventsel;
408 	u8 fixed_ctr_ctrl;
409 
410 	pmc_pause_counter(pmc);
411 
412 	if (!pmc_speculative_in_use(pmc) || !pmc_is_enabled(pmc))
413 		goto reprogram_complete;
414 
415 	if (!check_pmu_event_filter(pmc))
416 		goto reprogram_complete;
417 
418 	if (pmc->counter < pmc->prev_counter)
419 		__kvm_perf_overflow(pmc, false);
420 
421 	if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
422 		printk_once("kvm pmu: pin control bit is ignored\n");
423 
424 	if (pmc_is_fixed(pmc)) {
425 		fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl,
426 						  pmc->idx - INTEL_PMC_IDX_FIXED);
427 		if (fixed_ctr_ctrl & 0x1)
428 			eventsel |= ARCH_PERFMON_EVENTSEL_OS;
429 		if (fixed_ctr_ctrl & 0x2)
430 			eventsel |= ARCH_PERFMON_EVENTSEL_USR;
431 		if (fixed_ctr_ctrl & 0x8)
432 			eventsel |= ARCH_PERFMON_EVENTSEL_INT;
433 		new_config = (u64)fixed_ctr_ctrl;
434 	}
435 
436 	if (pmc->current_config == new_config && pmc_resume_counter(pmc))
437 		goto reprogram_complete;
438 
439 	pmc_release_perf_event(pmc);
440 
441 	pmc->current_config = new_config;
442 
443 	/*
444 	 * If reprogramming fails, e.g. due to contention, leave the counter's
445 	 * regprogram bit set, i.e. opportunistically try again on the next PMU
446 	 * refresh.  Don't make a new request as doing so can stall the guest
447 	 * if reprogramming repeatedly fails.
448 	 */
449 	if (pmc_reprogram_counter(pmc, PERF_TYPE_RAW,
450 				  (eventsel & pmu->raw_event_mask),
451 				  !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
452 				  !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
453 				  eventsel & ARCH_PERFMON_EVENTSEL_INT))
454 		return;
455 
456 reprogram_complete:
457 	clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
458 	pmc->prev_counter = 0;
459 }
460 
461 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
462 {
463 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
464 	int bit;
465 
466 	for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
467 		struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit);
468 
469 		if (unlikely(!pmc)) {
470 			clear_bit(bit, pmu->reprogram_pmi);
471 			continue;
472 		}
473 
474 		reprogram_counter(pmc);
475 	}
476 
477 	/*
478 	 * Unused perf_events are only released if the corresponding MSRs
479 	 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
480 	 * triggers KVM_REQ_PMU if cleanup is needed.
481 	 */
482 	if (unlikely(pmu->need_cleanup))
483 		kvm_pmu_cleanup(vcpu);
484 }
485 
486 /* check if idx is a valid index to access PMU */
487 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
488 {
489 	return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx);
490 }
491 
492 bool is_vmware_backdoor_pmc(u32 pmc_idx)
493 {
494 	switch (pmc_idx) {
495 	case VMWARE_BACKDOOR_PMC_HOST_TSC:
496 	case VMWARE_BACKDOOR_PMC_REAL_TIME:
497 	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
498 		return true;
499 	}
500 	return false;
501 }
502 
503 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
504 {
505 	u64 ctr_val;
506 
507 	switch (idx) {
508 	case VMWARE_BACKDOOR_PMC_HOST_TSC:
509 		ctr_val = rdtsc();
510 		break;
511 	case VMWARE_BACKDOOR_PMC_REAL_TIME:
512 		ctr_val = ktime_get_boottime_ns();
513 		break;
514 	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
515 		ctr_val = ktime_get_boottime_ns() +
516 			vcpu->kvm->arch.kvmclock_offset;
517 		break;
518 	default:
519 		return 1;
520 	}
521 
522 	*data = ctr_val;
523 	return 0;
524 }
525 
526 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
527 {
528 	bool fast_mode = idx & (1u << 31);
529 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
530 	struct kvm_pmc *pmc;
531 	u64 mask = fast_mode ? ~0u : ~0ull;
532 
533 	if (!pmu->version)
534 		return 1;
535 
536 	if (is_vmware_backdoor_pmc(idx))
537 		return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
538 
539 	pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
540 	if (!pmc)
541 		return 1;
542 
543 	if (!(kvm_read_cr4(vcpu) & X86_CR4_PCE) &&
544 	    (static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
545 	    (kvm_read_cr0(vcpu) & X86_CR0_PE))
546 		return 1;
547 
548 	*data = pmc_read_counter(pmc) & mask;
549 	return 0;
550 }
551 
552 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
553 {
554 	if (lapic_in_kernel(vcpu)) {
555 		static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu);
556 		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
557 	}
558 }
559 
560 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
561 {
562 	return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) ||
563 		static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr);
564 }
565 
566 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
567 {
568 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
569 	struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr);
570 
571 	if (pmc)
572 		__set_bit(pmc->idx, pmu->pmc_in_use);
573 }
574 
575 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
576 {
577 	return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info);
578 }
579 
580 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
581 {
582 	kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
583 	return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info);
584 }
585 
586 /* refresh PMU settings. This function generally is called when underlying
587  * settings are changed (such as changes of PMU CPUID by guest VMs), which
588  * should rarely happen.
589  */
590 void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
591 {
592 	static_call(kvm_x86_pmu_refresh)(vcpu);
593 }
594 
595 void kvm_pmu_reset(struct kvm_vcpu *vcpu)
596 {
597 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
598 
599 	irq_work_sync(&pmu->irq_work);
600 	static_call(kvm_x86_pmu_reset)(vcpu);
601 }
602 
603 void kvm_pmu_init(struct kvm_vcpu *vcpu)
604 {
605 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
606 
607 	memset(pmu, 0, sizeof(*pmu));
608 	static_call(kvm_x86_pmu_init)(vcpu);
609 	init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn);
610 	pmu->event_count = 0;
611 	pmu->need_cleanup = false;
612 	kvm_pmu_refresh(vcpu);
613 }
614 
615 /* Release perf_events for vPMCs that have been unused for a full time slice.  */
616 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
617 {
618 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
619 	struct kvm_pmc *pmc = NULL;
620 	DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
621 	int i;
622 
623 	pmu->need_cleanup = false;
624 
625 	bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
626 		      pmu->pmc_in_use, X86_PMC_IDX_MAX);
627 
628 	for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
629 		pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
630 
631 		if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
632 			pmc_stop_counter(pmc);
633 	}
634 
635 	static_call_cond(kvm_x86_pmu_cleanup)(vcpu);
636 
637 	bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
638 }
639 
640 void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
641 {
642 	kvm_pmu_reset(vcpu);
643 }
644 
645 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
646 {
647 	pmc->prev_counter = pmc->counter;
648 	pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc);
649 	kvm_pmu_request_counter_reprogam(pmc);
650 }
651 
652 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc,
653 	unsigned int perf_hw_id)
654 {
655 	return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) &
656 		AMD64_RAW_EVENT_MASK_NB);
657 }
658 
659 static inline bool cpl_is_matched(struct kvm_pmc *pmc)
660 {
661 	bool select_os, select_user;
662 	u64 config;
663 
664 	if (pmc_is_gp(pmc)) {
665 		config = pmc->eventsel;
666 		select_os = config & ARCH_PERFMON_EVENTSEL_OS;
667 		select_user = config & ARCH_PERFMON_EVENTSEL_USR;
668 	} else {
669 		config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl,
670 					  pmc->idx - INTEL_PMC_IDX_FIXED);
671 		select_os = config & 0x1;
672 		select_user = config & 0x2;
673 	}
674 
675 	return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
676 }
677 
678 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
679 {
680 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
681 	struct kvm_pmc *pmc;
682 	int i;
683 
684 	for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
685 		pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
686 
687 		if (!pmc || !pmc_is_enabled(pmc) || !pmc_speculative_in_use(pmc))
688 			continue;
689 
690 		/* Ignore checks for edge detect, pin control, invert and CMASK bits */
691 		if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc))
692 			kvm_pmu_incr_counter(pmc);
693 	}
694 }
695 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
696 
697 static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter)
698 {
699 	u64 mask = kvm_pmu_ops.EVENTSEL_EVENT |
700 		   KVM_PMU_MASKED_ENTRY_UMASK_MASK |
701 		   KVM_PMU_MASKED_ENTRY_UMASK_MATCH |
702 		   KVM_PMU_MASKED_ENTRY_EXCLUDE;
703 	int i;
704 
705 	for (i = 0; i < filter->nevents; i++) {
706 		if (filter->events[i] & ~mask)
707 			return false;
708 	}
709 
710 	return true;
711 }
712 
713 static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter)
714 {
715 	int i, j;
716 
717 	for (i = 0, j = 0; i < filter->nevents; i++) {
718 		/*
719 		 * Skip events that are impossible to match against a guest
720 		 * event.  When filtering, only the event select + unit mask
721 		 * of the guest event is used.  To maintain backwards
722 		 * compatibility, impossible filters can't be rejected :-(
723 		 */
724 		if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT |
725 					  ARCH_PERFMON_EVENTSEL_UMASK))
726 			continue;
727 		/*
728 		 * Convert userspace events to a common in-kernel event so
729 		 * only one code path is needed to support both events.  For
730 		 * the in-kernel events use masked events because they are
731 		 * flexible enough to handle both cases.  To convert to masked
732 		 * events all that's needed is to add an "all ones" umask_mask,
733 		 * (unmasked filter events don't support EXCLUDE).
734 		 */
735 		filter->events[j++] = filter->events[i] |
736 				      (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT);
737 	}
738 
739 	filter->nevents = j;
740 }
741 
742 static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter)
743 {
744 	int i;
745 
746 	if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS))
747 		convert_to_masked_filter(filter);
748 	else if (!is_masked_filter_valid(filter))
749 		return -EINVAL;
750 
751 	/*
752 	 * Sort entries by event select and includes vs. excludes so that all
753 	 * entries for a given event select can be processed efficiently during
754 	 * filtering.  The EXCLUDE flag uses a more significant bit than the
755 	 * event select, and so the sorted list is also effectively split into
756 	 * includes and excludes sub-lists.
757 	 */
758 	sort(&filter->events, filter->nevents, sizeof(filter->events[0]),
759 	     filter_sort_cmp, NULL);
760 
761 	i = filter->nevents;
762 	/* Find the first EXCLUDE event (only supported for masked events). */
763 	if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) {
764 		for (i = 0; i < filter->nevents; i++) {
765 			if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE)
766 				break;
767 		}
768 	}
769 
770 	filter->nr_includes = i;
771 	filter->nr_excludes = filter->nevents - filter->nr_includes;
772 	filter->includes = filter->events;
773 	filter->excludes = filter->events + filter->nr_includes;
774 
775 	return 0;
776 }
777 
778 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
779 {
780 	struct kvm_pmu_event_filter __user *user_filter = argp;
781 	struct kvm_x86_pmu_event_filter *filter;
782 	struct kvm_pmu_event_filter tmp;
783 	struct kvm_vcpu *vcpu;
784 	unsigned long i;
785 	size_t size;
786 	int r;
787 
788 	if (copy_from_user(&tmp, user_filter, sizeof(tmp)))
789 		return -EFAULT;
790 
791 	if (tmp.action != KVM_PMU_EVENT_ALLOW &&
792 	    tmp.action != KVM_PMU_EVENT_DENY)
793 		return -EINVAL;
794 
795 	if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK)
796 		return -EINVAL;
797 
798 	if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
799 		return -E2BIG;
800 
801 	size = struct_size(filter, events, tmp.nevents);
802 	filter = kzalloc(size, GFP_KERNEL_ACCOUNT);
803 	if (!filter)
804 		return -ENOMEM;
805 
806 	filter->action = tmp.action;
807 	filter->nevents = tmp.nevents;
808 	filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap;
809 	filter->flags = tmp.flags;
810 
811 	r = -EFAULT;
812 	if (copy_from_user(filter->events, user_filter->events,
813 			   sizeof(filter->events[0]) * filter->nevents))
814 		goto cleanup;
815 
816 	r = prepare_filter_lists(filter);
817 	if (r)
818 		goto cleanup;
819 
820 	mutex_lock(&kvm->lock);
821 	filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
822 				     mutex_is_locked(&kvm->lock));
823 	mutex_unlock(&kvm->lock);
824 	synchronize_srcu_expedited(&kvm->srcu);
825 
826 	BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) >
827 		     sizeof(((struct kvm_pmu *)0)->__reprogram_pmi));
828 
829 	kvm_for_each_vcpu(i, vcpu, kvm)
830 		atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull);
831 
832 	kvm_make_all_cpus_request(kvm, KVM_REQ_PMU);
833 
834 	r = 0;
835 cleanup:
836 	kfree(filter);
837 	return r;
838 }
839