1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine -- Performance Monitoring Unit support 4 * 5 * Copyright 2015 Red Hat, Inc. and/or its affiliates. 6 * 7 * Authors: 8 * Avi Kivity <avi@redhat.com> 9 * Gleb Natapov <gleb@redhat.com> 10 * Wei Huang <wei@redhat.com> 11 */ 12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 13 14 #include <linux/types.h> 15 #include <linux/kvm_host.h> 16 #include <linux/perf_event.h> 17 #include <linux/bsearch.h> 18 #include <linux/sort.h> 19 #include <asm/perf_event.h> 20 #include <asm/cpu_device_id.h> 21 #include "x86.h" 22 #include "cpuid.h" 23 #include "lapic.h" 24 #include "pmu.h" 25 26 /* This is enough to filter the vast majority of currently defined events. */ 27 #define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300 28 29 struct x86_pmu_capability __read_mostly kvm_pmu_cap; 30 EXPORT_SYMBOL_GPL(kvm_pmu_cap); 31 32 /* Precise Distribution of Instructions Retired (PDIR) */ 33 static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = { 34 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL), 35 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL), 36 /* Instruction-Accurate PDIR (PDIR++) */ 37 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL), 38 {} 39 }; 40 41 /* Precise Distribution (PDist) */ 42 static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = { 43 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL), 44 {} 45 }; 46 47 /* NOTE: 48 * - Each perf counter is defined as "struct kvm_pmc"; 49 * - There are two types of perf counters: general purpose (gp) and fixed. 50 * gp counters are stored in gp_counters[] and fixed counters are stored 51 * in fixed_counters[] respectively. Both of them are part of "struct 52 * kvm_pmu"; 53 * - pmu.c understands the difference between gp counters and fixed counters. 54 * However AMD doesn't support fixed-counters; 55 * - There are three types of index to access perf counters (PMC): 56 * 1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD 57 * has MSR_K7_PERFCTRn and, for families 15H and later, 58 * MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are 59 * aliased to MSR_K7_PERFCTRn. 60 * 2. MSR Index (named idx): This normally is used by RDPMC instruction. 61 * For instance AMD RDPMC instruction uses 0000_0003h in ECX to access 62 * C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except 63 * that it also supports fixed counters. idx can be used to as index to 64 * gp and fixed counters. 65 * 3. Global PMC Index (named pmc): pmc is an index specific to PMU 66 * code. Each pmc, stored in kvm_pmc.idx field, is unique across 67 * all perf counters (both gp and fixed). The mapping relationship 68 * between pmc and perf counters is as the following: 69 * * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters 70 * [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed 71 * * AMD: [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H 72 * and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters 73 */ 74 75 static struct kvm_pmu_ops kvm_pmu_ops __read_mostly; 76 77 #define KVM_X86_PMU_OP(func) \ 78 DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func, \ 79 *(((struct kvm_pmu_ops *)0)->func)); 80 #define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP 81 #include <asm/kvm-x86-pmu-ops.h> 82 83 void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops) 84 { 85 memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops)); 86 87 #define __KVM_X86_PMU_OP(func) \ 88 static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func); 89 #define KVM_X86_PMU_OP(func) \ 90 WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func) 91 #define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP 92 #include <asm/kvm-x86-pmu-ops.h> 93 #undef __KVM_X86_PMU_OP 94 } 95 96 static inline bool pmc_is_globally_enabled(struct kvm_pmc *pmc) 97 { 98 return static_call(kvm_x86_pmu_pmc_is_enabled)(pmc); 99 } 100 101 static void kvm_pmi_trigger_fn(struct irq_work *irq_work) 102 { 103 struct kvm_pmu *pmu = container_of(irq_work, struct kvm_pmu, irq_work); 104 struct kvm_vcpu *vcpu = pmu_to_vcpu(pmu); 105 106 kvm_pmu_deliver_pmi(vcpu); 107 } 108 109 static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi) 110 { 111 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 112 bool skip_pmi = false; 113 114 if (pmc->perf_event && pmc->perf_event->attr.precise_ip) { 115 if (!in_pmi) { 116 /* 117 * TODO: KVM is currently _choosing_ to not generate records 118 * for emulated instructions, avoiding BUFFER_OVF PMI when 119 * there are no records. Strictly speaking, it should be done 120 * as well in the right context to improve sampling accuracy. 121 */ 122 skip_pmi = true; 123 } else { 124 /* Indicate PEBS overflow PMI to guest. */ 125 skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, 126 (unsigned long *)&pmu->global_status); 127 } 128 } else { 129 __set_bit(pmc->idx, (unsigned long *)&pmu->global_status); 130 } 131 132 if (!pmc->intr || skip_pmi) 133 return; 134 135 /* 136 * Inject PMI. If vcpu was in a guest mode during NMI PMI 137 * can be ejected on a guest mode re-entry. Otherwise we can't 138 * be sure that vcpu wasn't executing hlt instruction at the 139 * time of vmexit and is not going to re-enter guest mode until 140 * woken up. So we should wake it, but this is impossible from 141 * NMI context. Do it from irq work instead. 142 */ 143 if (in_pmi && !kvm_handling_nmi_from_guest(pmc->vcpu)) 144 irq_work_queue(&pmc_to_pmu(pmc)->irq_work); 145 else 146 kvm_make_request(KVM_REQ_PMI, pmc->vcpu); 147 } 148 149 static void kvm_perf_overflow(struct perf_event *perf_event, 150 struct perf_sample_data *data, 151 struct pt_regs *regs) 152 { 153 struct kvm_pmc *pmc = perf_event->overflow_handler_context; 154 155 /* 156 * Ignore overflow events for counters that are scheduled to be 157 * reprogrammed, e.g. if a PMI for the previous event races with KVM's 158 * handling of a related guest WRMSR. 159 */ 160 if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi)) 161 return; 162 163 __kvm_perf_overflow(pmc, true); 164 165 kvm_make_request(KVM_REQ_PMU, pmc->vcpu); 166 } 167 168 static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc) 169 { 170 /* 171 * For some model specific pebs counters with special capabilities 172 * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise 173 * level to the maximum value (currently 3, backwards compatible) 174 * so that the perf subsystem would assign specific hardware counter 175 * with that capability for vPMC. 176 */ 177 if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) || 178 (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu))) 179 return 3; 180 181 /* 182 * The non-zero precision level of guest event makes the ordinary 183 * guest event becomes a guest PEBS event and triggers the host 184 * PEBS PMI handler to determine whether the PEBS overflow PMI 185 * comes from the host counters or the guest. 186 */ 187 return 1; 188 } 189 190 static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config, 191 bool exclude_user, bool exclude_kernel, 192 bool intr) 193 { 194 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 195 struct perf_event *event; 196 struct perf_event_attr attr = { 197 .type = type, 198 .size = sizeof(attr), 199 .pinned = true, 200 .exclude_idle = true, 201 .exclude_host = 1, 202 .exclude_user = exclude_user, 203 .exclude_kernel = exclude_kernel, 204 .config = config, 205 }; 206 bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable); 207 208 attr.sample_period = get_sample_period(pmc, pmc->counter); 209 210 if ((attr.config & HSW_IN_TX_CHECKPOINTED) && 211 guest_cpuid_is_intel(pmc->vcpu)) { 212 /* 213 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero 214 * period. Just clear the sample period so at least 215 * allocating the counter doesn't fail. 216 */ 217 attr.sample_period = 0; 218 } 219 if (pebs) { 220 /* 221 * For most PEBS hardware events, the difference in the software 222 * precision levels of guest and host PEBS events will not affect 223 * the accuracy of the PEBS profiling result, because the "event IP" 224 * in the PEBS record is calibrated on the guest side. 225 */ 226 attr.precise_ip = pmc_get_pebs_precise_level(pmc); 227 } 228 229 event = perf_event_create_kernel_counter(&attr, -1, current, 230 kvm_perf_overflow, pmc); 231 if (IS_ERR(event)) { 232 pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n", 233 PTR_ERR(event), pmc->idx); 234 return PTR_ERR(event); 235 } 236 237 pmc->perf_event = event; 238 pmc_to_pmu(pmc)->event_count++; 239 pmc->is_paused = false; 240 pmc->intr = intr || pebs; 241 return 0; 242 } 243 244 static void pmc_pause_counter(struct kvm_pmc *pmc) 245 { 246 u64 counter = pmc->counter; 247 248 if (!pmc->perf_event || pmc->is_paused) 249 return; 250 251 /* update counter, reset event value to avoid redundant accumulation */ 252 counter += perf_event_pause(pmc->perf_event, true); 253 pmc->counter = counter & pmc_bitmask(pmc); 254 pmc->is_paused = true; 255 } 256 257 static bool pmc_resume_counter(struct kvm_pmc *pmc) 258 { 259 if (!pmc->perf_event) 260 return false; 261 262 /* recalibrate sample period and check if it's accepted by perf core */ 263 if (is_sampling_event(pmc->perf_event) && 264 perf_event_period(pmc->perf_event, 265 get_sample_period(pmc, pmc->counter))) 266 return false; 267 268 if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) != 269 (!!pmc->perf_event->attr.precise_ip)) 270 return false; 271 272 /* reuse perf_event to serve as pmc_reprogram_counter() does*/ 273 perf_event_enable(pmc->perf_event); 274 pmc->is_paused = false; 275 276 return true; 277 } 278 279 static int filter_cmp(const void *pa, const void *pb, u64 mask) 280 { 281 u64 a = *(u64 *)pa & mask; 282 u64 b = *(u64 *)pb & mask; 283 284 return (a > b) - (a < b); 285 } 286 287 288 static int filter_sort_cmp(const void *pa, const void *pb) 289 { 290 return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT | 291 KVM_PMU_MASKED_ENTRY_EXCLUDE)); 292 } 293 294 /* 295 * For the event filter, searching is done on the 'includes' list and 296 * 'excludes' list separately rather than on the 'events' list (which 297 * has both). As a result the exclude bit can be ignored. 298 */ 299 static int filter_event_cmp(const void *pa, const void *pb) 300 { 301 return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT)); 302 } 303 304 static int find_filter_index(u64 *events, u64 nevents, u64 key) 305 { 306 u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]), 307 filter_event_cmp); 308 309 if (!fe) 310 return -1; 311 312 return fe - events; 313 } 314 315 static bool is_filter_entry_match(u64 filter_event, u64 umask) 316 { 317 u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8); 318 u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH; 319 320 BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >> 321 (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) != 322 ARCH_PERFMON_EVENTSEL_UMASK); 323 324 return (umask & mask) == match; 325 } 326 327 static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel) 328 { 329 u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT; 330 u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK; 331 int i, index; 332 333 index = find_filter_index(events, nevents, event_select); 334 if (index < 0) 335 return false; 336 337 /* 338 * Entries are sorted by the event select. Walk the list in both 339 * directions to process all entries with the targeted event select. 340 */ 341 for (i = index; i < nevents; i++) { 342 if (filter_event_cmp(&events[i], &event_select)) 343 break; 344 345 if (is_filter_entry_match(events[i], umask)) 346 return true; 347 } 348 349 for (i = index - 1; i >= 0; i--) { 350 if (filter_event_cmp(&events[i], &event_select)) 351 break; 352 353 if (is_filter_entry_match(events[i], umask)) 354 return true; 355 } 356 357 return false; 358 } 359 360 static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f, 361 u64 eventsel) 362 { 363 if (filter_contains_match(f->includes, f->nr_includes, eventsel) && 364 !filter_contains_match(f->excludes, f->nr_excludes, eventsel)) 365 return f->action == KVM_PMU_EVENT_ALLOW; 366 367 return f->action == KVM_PMU_EVENT_DENY; 368 } 369 370 static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter, 371 int idx) 372 { 373 int fixed_idx = idx - INTEL_PMC_IDX_FIXED; 374 375 if (filter->action == KVM_PMU_EVENT_DENY && 376 test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap)) 377 return false; 378 if (filter->action == KVM_PMU_EVENT_ALLOW && 379 !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap)) 380 return false; 381 382 return true; 383 } 384 385 static bool check_pmu_event_filter(struct kvm_pmc *pmc) 386 { 387 struct kvm_x86_pmu_event_filter *filter; 388 struct kvm *kvm = pmc->vcpu->kvm; 389 390 if (!static_call(kvm_x86_pmu_hw_event_available)(pmc)) 391 return false; 392 393 filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu); 394 if (!filter) 395 return true; 396 397 if (pmc_is_gp(pmc)) 398 return is_gp_event_allowed(filter, pmc->eventsel); 399 400 return is_fixed_event_allowed(filter, pmc->idx); 401 } 402 403 static bool pmc_event_is_allowed(struct kvm_pmc *pmc) 404 { 405 return pmc_is_globally_enabled(pmc) && pmc_speculative_in_use(pmc) && 406 check_pmu_event_filter(pmc); 407 } 408 409 static void reprogram_counter(struct kvm_pmc *pmc) 410 { 411 struct kvm_pmu *pmu = pmc_to_pmu(pmc); 412 u64 eventsel = pmc->eventsel; 413 u64 new_config = eventsel; 414 u8 fixed_ctr_ctrl; 415 416 pmc_pause_counter(pmc); 417 418 if (!pmc_event_is_allowed(pmc)) 419 goto reprogram_complete; 420 421 if (pmc->counter < pmc->prev_counter) 422 __kvm_perf_overflow(pmc, false); 423 424 if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL) 425 printk_once("kvm pmu: pin control bit is ignored\n"); 426 427 if (pmc_is_fixed(pmc)) { 428 fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl, 429 pmc->idx - INTEL_PMC_IDX_FIXED); 430 if (fixed_ctr_ctrl & 0x1) 431 eventsel |= ARCH_PERFMON_EVENTSEL_OS; 432 if (fixed_ctr_ctrl & 0x2) 433 eventsel |= ARCH_PERFMON_EVENTSEL_USR; 434 if (fixed_ctr_ctrl & 0x8) 435 eventsel |= ARCH_PERFMON_EVENTSEL_INT; 436 new_config = (u64)fixed_ctr_ctrl; 437 } 438 439 if (pmc->current_config == new_config && pmc_resume_counter(pmc)) 440 goto reprogram_complete; 441 442 pmc_release_perf_event(pmc); 443 444 pmc->current_config = new_config; 445 446 /* 447 * If reprogramming fails, e.g. due to contention, leave the counter's 448 * regprogram bit set, i.e. opportunistically try again on the next PMU 449 * refresh. Don't make a new request as doing so can stall the guest 450 * if reprogramming repeatedly fails. 451 */ 452 if (pmc_reprogram_counter(pmc, PERF_TYPE_RAW, 453 (eventsel & pmu->raw_event_mask), 454 !(eventsel & ARCH_PERFMON_EVENTSEL_USR), 455 !(eventsel & ARCH_PERFMON_EVENTSEL_OS), 456 eventsel & ARCH_PERFMON_EVENTSEL_INT)) 457 return; 458 459 reprogram_complete: 460 clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi); 461 pmc->prev_counter = 0; 462 } 463 464 void kvm_pmu_handle_event(struct kvm_vcpu *vcpu) 465 { 466 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 467 int bit; 468 469 for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) { 470 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit); 471 472 if (unlikely(!pmc)) { 473 clear_bit(bit, pmu->reprogram_pmi); 474 continue; 475 } 476 477 reprogram_counter(pmc); 478 } 479 480 /* 481 * Unused perf_events are only released if the corresponding MSRs 482 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in 483 * triggers KVM_REQ_PMU if cleanup is needed. 484 */ 485 if (unlikely(pmu->need_cleanup)) 486 kvm_pmu_cleanup(vcpu); 487 } 488 489 /* check if idx is a valid index to access PMU */ 490 bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx) 491 { 492 return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx); 493 } 494 495 bool is_vmware_backdoor_pmc(u32 pmc_idx) 496 { 497 switch (pmc_idx) { 498 case VMWARE_BACKDOOR_PMC_HOST_TSC: 499 case VMWARE_BACKDOOR_PMC_REAL_TIME: 500 case VMWARE_BACKDOOR_PMC_APPARENT_TIME: 501 return true; 502 } 503 return false; 504 } 505 506 static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) 507 { 508 u64 ctr_val; 509 510 switch (idx) { 511 case VMWARE_BACKDOOR_PMC_HOST_TSC: 512 ctr_val = rdtsc(); 513 break; 514 case VMWARE_BACKDOOR_PMC_REAL_TIME: 515 ctr_val = ktime_get_boottime_ns(); 516 break; 517 case VMWARE_BACKDOOR_PMC_APPARENT_TIME: 518 ctr_val = ktime_get_boottime_ns() + 519 vcpu->kvm->arch.kvmclock_offset; 520 break; 521 default: 522 return 1; 523 } 524 525 *data = ctr_val; 526 return 0; 527 } 528 529 int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data) 530 { 531 bool fast_mode = idx & (1u << 31); 532 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 533 struct kvm_pmc *pmc; 534 u64 mask = fast_mode ? ~0u : ~0ull; 535 536 if (!pmu->version) 537 return 1; 538 539 if (is_vmware_backdoor_pmc(idx)) 540 return kvm_pmu_rdpmc_vmware(vcpu, idx, data); 541 542 pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask); 543 if (!pmc) 544 return 1; 545 546 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCE) && 547 (static_call(kvm_x86_get_cpl)(vcpu) != 0) && 548 kvm_is_cr0_bit_set(vcpu, X86_CR0_PE)) 549 return 1; 550 551 *data = pmc_read_counter(pmc) & mask; 552 return 0; 553 } 554 555 void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu) 556 { 557 if (lapic_in_kernel(vcpu)) { 558 static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu); 559 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC); 560 } 561 } 562 563 bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr) 564 { 565 return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) || 566 static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr); 567 } 568 569 static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr) 570 { 571 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 572 struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr); 573 574 if (pmc) 575 __set_bit(pmc->idx, pmu->pmc_in_use); 576 } 577 578 int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 579 { 580 return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info); 581 } 582 583 int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 584 { 585 kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index); 586 return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info); 587 } 588 589 /* refresh PMU settings. This function generally is called when underlying 590 * settings are changed (such as changes of PMU CPUID by guest VMs), which 591 * should rarely happen. 592 */ 593 void kvm_pmu_refresh(struct kvm_vcpu *vcpu) 594 { 595 if (KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm)) 596 return; 597 598 bitmap_zero(vcpu_to_pmu(vcpu)->all_valid_pmc_idx, X86_PMC_IDX_MAX); 599 static_call(kvm_x86_pmu_refresh)(vcpu); 600 } 601 602 void kvm_pmu_reset(struct kvm_vcpu *vcpu) 603 { 604 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 605 606 irq_work_sync(&pmu->irq_work); 607 static_call(kvm_x86_pmu_reset)(vcpu); 608 } 609 610 void kvm_pmu_init(struct kvm_vcpu *vcpu) 611 { 612 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 613 614 memset(pmu, 0, sizeof(*pmu)); 615 static_call(kvm_x86_pmu_init)(vcpu); 616 init_irq_work(&pmu->irq_work, kvm_pmi_trigger_fn); 617 pmu->event_count = 0; 618 pmu->need_cleanup = false; 619 kvm_pmu_refresh(vcpu); 620 } 621 622 /* Release perf_events for vPMCs that have been unused for a full time slice. */ 623 void kvm_pmu_cleanup(struct kvm_vcpu *vcpu) 624 { 625 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 626 struct kvm_pmc *pmc = NULL; 627 DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX); 628 int i; 629 630 pmu->need_cleanup = false; 631 632 bitmap_andnot(bitmask, pmu->all_valid_pmc_idx, 633 pmu->pmc_in_use, X86_PMC_IDX_MAX); 634 635 for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) { 636 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i); 637 638 if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc)) 639 pmc_stop_counter(pmc); 640 } 641 642 static_call_cond(kvm_x86_pmu_cleanup)(vcpu); 643 644 bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX); 645 } 646 647 void kvm_pmu_destroy(struct kvm_vcpu *vcpu) 648 { 649 kvm_pmu_reset(vcpu); 650 } 651 652 static void kvm_pmu_incr_counter(struct kvm_pmc *pmc) 653 { 654 pmc->prev_counter = pmc->counter; 655 pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc); 656 kvm_pmu_request_counter_reprogram(pmc); 657 } 658 659 static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc, 660 unsigned int perf_hw_id) 661 { 662 return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) & 663 AMD64_RAW_EVENT_MASK_NB); 664 } 665 666 static inline bool cpl_is_matched(struct kvm_pmc *pmc) 667 { 668 bool select_os, select_user; 669 u64 config; 670 671 if (pmc_is_gp(pmc)) { 672 config = pmc->eventsel; 673 select_os = config & ARCH_PERFMON_EVENTSEL_OS; 674 select_user = config & ARCH_PERFMON_EVENTSEL_USR; 675 } else { 676 config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl, 677 pmc->idx - INTEL_PMC_IDX_FIXED); 678 select_os = config & 0x1; 679 select_user = config & 0x2; 680 } 681 682 return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user; 683 } 684 685 void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id) 686 { 687 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 688 struct kvm_pmc *pmc; 689 int i; 690 691 for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) { 692 pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i); 693 694 if (!pmc || !pmc_event_is_allowed(pmc)) 695 continue; 696 697 /* Ignore checks for edge detect, pin control, invert and CMASK bits */ 698 if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc)) 699 kvm_pmu_incr_counter(pmc); 700 } 701 } 702 EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event); 703 704 static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter) 705 { 706 u64 mask = kvm_pmu_ops.EVENTSEL_EVENT | 707 KVM_PMU_MASKED_ENTRY_UMASK_MASK | 708 KVM_PMU_MASKED_ENTRY_UMASK_MATCH | 709 KVM_PMU_MASKED_ENTRY_EXCLUDE; 710 int i; 711 712 for (i = 0; i < filter->nevents; i++) { 713 if (filter->events[i] & ~mask) 714 return false; 715 } 716 717 return true; 718 } 719 720 static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter) 721 { 722 int i, j; 723 724 for (i = 0, j = 0; i < filter->nevents; i++) { 725 /* 726 * Skip events that are impossible to match against a guest 727 * event. When filtering, only the event select + unit mask 728 * of the guest event is used. To maintain backwards 729 * compatibility, impossible filters can't be rejected :-( 730 */ 731 if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT | 732 ARCH_PERFMON_EVENTSEL_UMASK)) 733 continue; 734 /* 735 * Convert userspace events to a common in-kernel event so 736 * only one code path is needed to support both events. For 737 * the in-kernel events use masked events because they are 738 * flexible enough to handle both cases. To convert to masked 739 * events all that's needed is to add an "all ones" umask_mask, 740 * (unmasked filter events don't support EXCLUDE). 741 */ 742 filter->events[j++] = filter->events[i] | 743 (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT); 744 } 745 746 filter->nevents = j; 747 } 748 749 static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter) 750 { 751 int i; 752 753 if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS)) 754 convert_to_masked_filter(filter); 755 else if (!is_masked_filter_valid(filter)) 756 return -EINVAL; 757 758 /* 759 * Sort entries by event select and includes vs. excludes so that all 760 * entries for a given event select can be processed efficiently during 761 * filtering. The EXCLUDE flag uses a more significant bit than the 762 * event select, and so the sorted list is also effectively split into 763 * includes and excludes sub-lists. 764 */ 765 sort(&filter->events, filter->nevents, sizeof(filter->events[0]), 766 filter_sort_cmp, NULL); 767 768 i = filter->nevents; 769 /* Find the first EXCLUDE event (only supported for masked events). */ 770 if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) { 771 for (i = 0; i < filter->nevents; i++) { 772 if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE) 773 break; 774 } 775 } 776 777 filter->nr_includes = i; 778 filter->nr_excludes = filter->nevents - filter->nr_includes; 779 filter->includes = filter->events; 780 filter->excludes = filter->events + filter->nr_includes; 781 782 return 0; 783 } 784 785 int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp) 786 { 787 struct kvm_pmu_event_filter __user *user_filter = argp; 788 struct kvm_x86_pmu_event_filter *filter; 789 struct kvm_pmu_event_filter tmp; 790 struct kvm_vcpu *vcpu; 791 unsigned long i; 792 size_t size; 793 int r; 794 795 if (copy_from_user(&tmp, user_filter, sizeof(tmp))) 796 return -EFAULT; 797 798 if (tmp.action != KVM_PMU_EVENT_ALLOW && 799 tmp.action != KVM_PMU_EVENT_DENY) 800 return -EINVAL; 801 802 if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK) 803 return -EINVAL; 804 805 if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS) 806 return -E2BIG; 807 808 size = struct_size(filter, events, tmp.nevents); 809 filter = kzalloc(size, GFP_KERNEL_ACCOUNT); 810 if (!filter) 811 return -ENOMEM; 812 813 filter->action = tmp.action; 814 filter->nevents = tmp.nevents; 815 filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap; 816 filter->flags = tmp.flags; 817 818 r = -EFAULT; 819 if (copy_from_user(filter->events, user_filter->events, 820 sizeof(filter->events[0]) * filter->nevents)) 821 goto cleanup; 822 823 r = prepare_filter_lists(filter); 824 if (r) 825 goto cleanup; 826 827 mutex_lock(&kvm->lock); 828 filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter, 829 mutex_is_locked(&kvm->lock)); 830 mutex_unlock(&kvm->lock); 831 synchronize_srcu_expedited(&kvm->srcu); 832 833 BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) > 834 sizeof(((struct kvm_pmu *)0)->__reprogram_pmi)); 835 836 kvm_for_each_vcpu(i, vcpu, kvm) 837 atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull); 838 839 kvm_make_all_cpus_request(kvm, KVM_REQ_PMU); 840 841 r = 0; 842 cleanup: 843 kfree(filter); 844 return r; 845 } 846