xref: /openbmc/linux/arch/x86/kvm/mtrr.c (revision f125e2d4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * vMTRR implementation
4  *
5  * Copyright (C) 2006 Qumranet, Inc.
6  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
7  * Copyright(C) 2015 Intel Corporation.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Marcelo Tosatti <mtosatti@redhat.com>
13  *   Paolo Bonzini <pbonzini@redhat.com>
14  *   Xiao Guangrong <guangrong.xiao@linux.intel.com>
15  */
16 
17 #include <linux/kvm_host.h>
18 #include <asm/mtrr.h>
19 
20 #include "cpuid.h"
21 #include "mmu.h"
22 
23 #define IA32_MTRR_DEF_TYPE_E		(1ULL << 11)
24 #define IA32_MTRR_DEF_TYPE_FE		(1ULL << 10)
25 #define IA32_MTRR_DEF_TYPE_TYPE_MASK	(0xff)
26 
27 static bool msr_mtrr_valid(unsigned msr)
28 {
29 	switch (msr) {
30 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
31 	case MSR_MTRRfix64K_00000:
32 	case MSR_MTRRfix16K_80000:
33 	case MSR_MTRRfix16K_A0000:
34 	case MSR_MTRRfix4K_C0000:
35 	case MSR_MTRRfix4K_C8000:
36 	case MSR_MTRRfix4K_D0000:
37 	case MSR_MTRRfix4K_D8000:
38 	case MSR_MTRRfix4K_E0000:
39 	case MSR_MTRRfix4K_E8000:
40 	case MSR_MTRRfix4K_F0000:
41 	case MSR_MTRRfix4K_F8000:
42 	case MSR_MTRRdefType:
43 	case MSR_IA32_CR_PAT:
44 		return true;
45 	}
46 	return false;
47 }
48 
49 static bool valid_mtrr_type(unsigned t)
50 {
51 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
52 }
53 
54 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
55 {
56 	int i;
57 	u64 mask;
58 
59 	if (!msr_mtrr_valid(msr))
60 		return false;
61 
62 	if (msr == MSR_IA32_CR_PAT) {
63 		return kvm_pat_valid(data);
64 	} else if (msr == MSR_MTRRdefType) {
65 		if (data & ~0xcff)
66 			return false;
67 		return valid_mtrr_type(data & 0xff);
68 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
69 		for (i = 0; i < 8 ; i++)
70 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
71 				return false;
72 		return true;
73 	}
74 
75 	/* variable MTRRs */
76 	WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
77 
78 	mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
79 	if ((msr & 1) == 0) {
80 		/* MTRR base */
81 		if (!valid_mtrr_type(data & 0xff))
82 			return false;
83 		mask |= 0xf00;
84 	} else
85 		/* MTRR mask */
86 		mask |= 0x7ff;
87 	if (data & mask) {
88 		kvm_inject_gp(vcpu, 0);
89 		return false;
90 	}
91 
92 	return true;
93 }
94 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
95 
96 static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
97 {
98 	return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
99 }
100 
101 static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
102 {
103 	return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
104 }
105 
106 static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
107 {
108 	return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
109 }
110 
111 static u8 mtrr_disabled_type(struct kvm_vcpu *vcpu)
112 {
113 	/*
114 	 * Intel SDM 11.11.2.2: all MTRRs are disabled when
115 	 * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
116 	 * memory type is applied to all of physical memory.
117 	 *
118 	 * However, virtual machines can be run with CPUID such that
119 	 * there are no MTRRs.  In that case, the firmware will never
120 	 * enable MTRRs and it is obviously undesirable to run the
121 	 * guest entirely with UC memory and we use WB.
122 	 */
123 	if (guest_cpuid_has(vcpu, X86_FEATURE_MTRR))
124 		return MTRR_TYPE_UNCACHABLE;
125 	else
126 		return MTRR_TYPE_WRBACK;
127 }
128 
129 /*
130 * Three terms are used in the following code:
131 * - segment, it indicates the address segments covered by fixed MTRRs.
132 * - unit, it corresponds to the MSR entry in the segment.
133 * - range, a range is covered in one memory cache type.
134 */
135 struct fixed_mtrr_segment {
136 	u64 start;
137 	u64 end;
138 
139 	int range_shift;
140 
141 	/* the start position in kvm_mtrr.fixed_ranges[]. */
142 	int range_start;
143 };
144 
145 static struct fixed_mtrr_segment fixed_seg_table[] = {
146 	/* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
147 	{
148 		.start = 0x0,
149 		.end = 0x80000,
150 		.range_shift = 16, /* 64K */
151 		.range_start = 0,
152 	},
153 
154 	/*
155 	 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
156 	 * 16K fixed mtrr.
157 	 */
158 	{
159 		.start = 0x80000,
160 		.end = 0xc0000,
161 		.range_shift = 14, /* 16K */
162 		.range_start = 8,
163 	},
164 
165 	/*
166 	 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
167 	 * 4K fixed mtrr.
168 	 */
169 	{
170 		.start = 0xc0000,
171 		.end = 0x100000,
172 		.range_shift = 12, /* 12K */
173 		.range_start = 24,
174 	}
175 };
176 
177 /*
178  * The size of unit is covered in one MSR, one MSR entry contains
179  * 8 ranges so that unit size is always 8 * 2^range_shift.
180  */
181 static u64 fixed_mtrr_seg_unit_size(int seg)
182 {
183 	return 8 << fixed_seg_table[seg].range_shift;
184 }
185 
186 static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
187 {
188 	switch (msr) {
189 	case MSR_MTRRfix64K_00000:
190 		*seg = 0;
191 		*unit = 0;
192 		break;
193 	case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
194 		*seg = 1;
195 		*unit = array_index_nospec(
196 			msr - MSR_MTRRfix16K_80000,
197 			MSR_MTRRfix16K_A0000 - MSR_MTRRfix16K_80000 + 1);
198 		break;
199 	case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
200 		*seg = 2;
201 		*unit = array_index_nospec(
202 			msr - MSR_MTRRfix4K_C0000,
203 			MSR_MTRRfix4K_F8000 - MSR_MTRRfix4K_C0000 + 1);
204 		break;
205 	default:
206 		return false;
207 	}
208 
209 	return true;
210 }
211 
212 static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
213 {
214 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
215 	u64 unit_size = fixed_mtrr_seg_unit_size(seg);
216 
217 	*start = mtrr_seg->start + unit * unit_size;
218 	*end = *start + unit_size;
219 	WARN_ON(*end > mtrr_seg->end);
220 }
221 
222 static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
223 {
224 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
225 
226 	WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
227 		> mtrr_seg->end);
228 
229 	/* each unit has 8 ranges. */
230 	return mtrr_seg->range_start + 8 * unit;
231 }
232 
233 static int fixed_mtrr_seg_end_range_index(int seg)
234 {
235 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
236 	int n;
237 
238 	n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
239 	return mtrr_seg->range_start + n - 1;
240 }
241 
242 static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
243 {
244 	int seg, unit;
245 
246 	if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
247 		return false;
248 
249 	fixed_mtrr_seg_unit_range(seg, unit, start, end);
250 	return true;
251 }
252 
253 static int fixed_msr_to_range_index(u32 msr)
254 {
255 	int seg, unit;
256 
257 	if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
258 		return -1;
259 
260 	return fixed_mtrr_seg_unit_range_index(seg, unit);
261 }
262 
263 static int fixed_mtrr_addr_to_seg(u64 addr)
264 {
265 	struct fixed_mtrr_segment *mtrr_seg;
266 	int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
267 
268 	for (seg = 0; seg < seg_num; seg++) {
269 		mtrr_seg = &fixed_seg_table[seg];
270 		if (mtrr_seg->start <= addr && addr < mtrr_seg->end)
271 			return seg;
272 	}
273 
274 	return -1;
275 }
276 
277 static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
278 {
279 	struct fixed_mtrr_segment *mtrr_seg;
280 	int index;
281 
282 	mtrr_seg = &fixed_seg_table[seg];
283 	index = mtrr_seg->range_start;
284 	index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
285 	return index;
286 }
287 
288 static u64 fixed_mtrr_range_end_addr(int seg, int index)
289 {
290 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
291 	int pos = index - mtrr_seg->range_start;
292 
293 	return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
294 }
295 
296 static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
297 {
298 	u64 mask;
299 
300 	*start = range->base & PAGE_MASK;
301 
302 	mask = range->mask & PAGE_MASK;
303 
304 	/* This cannot overflow because writing to the reserved bits of
305 	 * variable MTRRs causes a #GP.
306 	 */
307 	*end = (*start | ~mask) + 1;
308 }
309 
310 static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
311 {
312 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
313 	gfn_t start, end;
314 	int index;
315 
316 	if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
317 	      !kvm_arch_has_noncoherent_dma(vcpu->kvm))
318 		return;
319 
320 	if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
321 		return;
322 
323 	/* fixed MTRRs. */
324 	if (fixed_msr_to_range(msr, &start, &end)) {
325 		if (!fixed_mtrr_is_enabled(mtrr_state))
326 			return;
327 	} else if (msr == MSR_MTRRdefType) {
328 		start = 0x0;
329 		end = ~0ULL;
330 	} else {
331 		/* variable range MTRRs. */
332 		index = (msr - 0x200) / 2;
333 		var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
334 	}
335 
336 	kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
337 }
338 
339 static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
340 {
341 	return (range->mask & (1 << 11)) != 0;
342 }
343 
344 static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
345 {
346 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
347 	struct kvm_mtrr_range *tmp, *cur;
348 	int index, is_mtrr_mask;
349 
350 	index = (msr - 0x200) / 2;
351 	is_mtrr_mask = msr - 0x200 - 2 * index;
352 	cur = &mtrr_state->var_ranges[index];
353 
354 	/* remove the entry if it's in the list. */
355 	if (var_mtrr_range_is_valid(cur))
356 		list_del(&mtrr_state->var_ranges[index].node);
357 
358 	/* Extend the mask with all 1 bits to the left, since those
359 	 * bits must implicitly be 0.  The bits are then cleared
360 	 * when reading them.
361 	 */
362 	if (!is_mtrr_mask)
363 		cur->base = data;
364 	else
365 		cur->mask = data | (-1LL << cpuid_maxphyaddr(vcpu));
366 
367 	/* add it to the list if it's enabled. */
368 	if (var_mtrr_range_is_valid(cur)) {
369 		list_for_each_entry(tmp, &mtrr_state->head, node)
370 			if (cur->base >= tmp->base)
371 				break;
372 		list_add_tail(&cur->node, &tmp->node);
373 	}
374 }
375 
376 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
377 {
378 	int index;
379 
380 	if (!kvm_mtrr_valid(vcpu, msr, data))
381 		return 1;
382 
383 	index = fixed_msr_to_range_index(msr);
384 	if (index >= 0)
385 		*(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
386 	else if (msr == MSR_MTRRdefType)
387 		vcpu->arch.mtrr_state.deftype = data;
388 	else if (msr == MSR_IA32_CR_PAT)
389 		vcpu->arch.pat = data;
390 	else
391 		set_var_mtrr_msr(vcpu, msr, data);
392 
393 	update_mtrr(vcpu, msr);
394 	return 0;
395 }
396 
397 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
398 {
399 	int index;
400 
401 	/* MSR_MTRRcap is a readonly MSR. */
402 	if (msr == MSR_MTRRcap) {
403 		/*
404 		 * SMRR = 0
405 		 * WC = 1
406 		 * FIX = 1
407 		 * VCNT = KVM_NR_VAR_MTRR
408 		 */
409 		*pdata = 0x500 | KVM_NR_VAR_MTRR;
410 		return 0;
411 	}
412 
413 	if (!msr_mtrr_valid(msr))
414 		return 1;
415 
416 	index = fixed_msr_to_range_index(msr);
417 	if (index >= 0)
418 		*pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
419 	else if (msr == MSR_MTRRdefType)
420 		*pdata = vcpu->arch.mtrr_state.deftype;
421 	else if (msr == MSR_IA32_CR_PAT)
422 		*pdata = vcpu->arch.pat;
423 	else {	/* Variable MTRRs */
424 		int is_mtrr_mask;
425 
426 		index = (msr - 0x200) / 2;
427 		is_mtrr_mask = msr - 0x200 - 2 * index;
428 		if (!is_mtrr_mask)
429 			*pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
430 		else
431 			*pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
432 
433 		*pdata &= (1ULL << cpuid_maxphyaddr(vcpu)) - 1;
434 	}
435 
436 	return 0;
437 }
438 
439 void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
440 {
441 	INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
442 }
443 
444 struct mtrr_iter {
445 	/* input fields. */
446 	struct kvm_mtrr *mtrr_state;
447 	u64 start;
448 	u64 end;
449 
450 	/* output fields. */
451 	int mem_type;
452 	/* mtrr is completely disabled? */
453 	bool mtrr_disabled;
454 	/* [start, end) is not fully covered in MTRRs? */
455 	bool partial_map;
456 
457 	/* private fields. */
458 	union {
459 		/* used for fixed MTRRs. */
460 		struct {
461 			int index;
462 			int seg;
463 		};
464 
465 		/* used for var MTRRs. */
466 		struct {
467 			struct kvm_mtrr_range *range;
468 			/* max address has been covered in var MTRRs. */
469 			u64 start_max;
470 		};
471 	};
472 
473 	bool fixed;
474 };
475 
476 static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
477 {
478 	int seg, index;
479 
480 	if (!fixed_mtrr_is_enabled(iter->mtrr_state))
481 		return false;
482 
483 	seg = fixed_mtrr_addr_to_seg(iter->start);
484 	if (seg < 0)
485 		return false;
486 
487 	iter->fixed = true;
488 	index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
489 	iter->index = index;
490 	iter->seg = seg;
491 	return true;
492 }
493 
494 static bool match_var_range(struct mtrr_iter *iter,
495 			    struct kvm_mtrr_range *range)
496 {
497 	u64 start, end;
498 
499 	var_mtrr_range(range, &start, &end);
500 	if (!(start >= iter->end || end <= iter->start)) {
501 		iter->range = range;
502 
503 		/*
504 		 * the function is called when we do kvm_mtrr.head walking.
505 		 * Range has the minimum base address which interleaves
506 		 * [looker->start_max, looker->end).
507 		 */
508 		iter->partial_map |= iter->start_max < start;
509 
510 		/* update the max address has been covered. */
511 		iter->start_max = max(iter->start_max, end);
512 		return true;
513 	}
514 
515 	return false;
516 }
517 
518 static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
519 {
520 	struct kvm_mtrr *mtrr_state = iter->mtrr_state;
521 
522 	list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
523 		if (match_var_range(iter, iter->range))
524 			return;
525 
526 	iter->range = NULL;
527 	iter->partial_map |= iter->start_max < iter->end;
528 }
529 
530 static void mtrr_lookup_var_start(struct mtrr_iter *iter)
531 {
532 	struct kvm_mtrr *mtrr_state = iter->mtrr_state;
533 
534 	iter->fixed = false;
535 	iter->start_max = iter->start;
536 	iter->range = NULL;
537 	iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
538 
539 	__mtrr_lookup_var_next(iter);
540 }
541 
542 static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
543 {
544 	/* terminate the lookup. */
545 	if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
546 		iter->fixed = false;
547 		iter->range = NULL;
548 		return;
549 	}
550 
551 	iter->index++;
552 
553 	/* have looked up for all fixed MTRRs. */
554 	if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
555 		return mtrr_lookup_var_start(iter);
556 
557 	/* switch to next segment. */
558 	if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
559 		iter->seg++;
560 }
561 
562 static void mtrr_lookup_var_next(struct mtrr_iter *iter)
563 {
564 	__mtrr_lookup_var_next(iter);
565 }
566 
567 static void mtrr_lookup_start(struct mtrr_iter *iter)
568 {
569 	if (!mtrr_is_enabled(iter->mtrr_state)) {
570 		iter->mtrr_disabled = true;
571 		return;
572 	}
573 
574 	if (!mtrr_lookup_fixed_start(iter))
575 		mtrr_lookup_var_start(iter);
576 }
577 
578 static void mtrr_lookup_init(struct mtrr_iter *iter,
579 			     struct kvm_mtrr *mtrr_state, u64 start, u64 end)
580 {
581 	iter->mtrr_state = mtrr_state;
582 	iter->start = start;
583 	iter->end = end;
584 	iter->mtrr_disabled = false;
585 	iter->partial_map = false;
586 	iter->fixed = false;
587 	iter->range = NULL;
588 
589 	mtrr_lookup_start(iter);
590 }
591 
592 static bool mtrr_lookup_okay(struct mtrr_iter *iter)
593 {
594 	if (iter->fixed) {
595 		iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
596 		return true;
597 	}
598 
599 	if (iter->range) {
600 		iter->mem_type = iter->range->base & 0xff;
601 		return true;
602 	}
603 
604 	return false;
605 }
606 
607 static void mtrr_lookup_next(struct mtrr_iter *iter)
608 {
609 	if (iter->fixed)
610 		mtrr_lookup_fixed_next(iter);
611 	else
612 		mtrr_lookup_var_next(iter);
613 }
614 
615 #define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
616 	for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
617 	     mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
618 
619 u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
620 {
621 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
622 	struct mtrr_iter iter;
623 	u64 start, end;
624 	int type = -1;
625 	const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
626 			       | (1 << MTRR_TYPE_WRTHROUGH);
627 
628 	start = gfn_to_gpa(gfn);
629 	end = start + PAGE_SIZE;
630 
631 	mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
632 		int curr_type = iter.mem_type;
633 
634 		/*
635 		 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
636 		 * Precedences.
637 		 */
638 
639 		if (type == -1) {
640 			type = curr_type;
641 			continue;
642 		}
643 
644 		/*
645 		 * If two or more variable memory ranges match and the
646 		 * memory types are identical, then that memory type is
647 		 * used.
648 		 */
649 		if (type == curr_type)
650 			continue;
651 
652 		/*
653 		 * If two or more variable memory ranges match and one of
654 		 * the memory types is UC, the UC memory type used.
655 		 */
656 		if (curr_type == MTRR_TYPE_UNCACHABLE)
657 			return MTRR_TYPE_UNCACHABLE;
658 
659 		/*
660 		 * If two or more variable memory ranges match and the
661 		 * memory types are WT and WB, the WT memory type is used.
662 		 */
663 		if (((1 << type) & wt_wb_mask) &&
664 		      ((1 << curr_type) & wt_wb_mask)) {
665 			type = MTRR_TYPE_WRTHROUGH;
666 			continue;
667 		}
668 
669 		/*
670 		 * For overlaps not defined by the above rules, processor
671 		 * behavior is undefined.
672 		 */
673 
674 		/* We use WB for this undefined behavior. :( */
675 		return MTRR_TYPE_WRBACK;
676 	}
677 
678 	if (iter.mtrr_disabled)
679 		return mtrr_disabled_type(vcpu);
680 
681 	/* not contained in any MTRRs. */
682 	if (type == -1)
683 		return mtrr_default_type(mtrr_state);
684 
685 	/*
686 	 * We just check one page, partially covered by MTRRs is
687 	 * impossible.
688 	 */
689 	WARN_ON(iter.partial_map);
690 
691 	return type;
692 }
693 EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
694 
695 bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
696 					  int page_num)
697 {
698 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
699 	struct mtrr_iter iter;
700 	u64 start, end;
701 	int type = -1;
702 
703 	start = gfn_to_gpa(gfn);
704 	end = gfn_to_gpa(gfn + page_num);
705 	mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
706 		if (type == -1) {
707 			type = iter.mem_type;
708 			continue;
709 		}
710 
711 		if (type != iter.mem_type)
712 			return false;
713 	}
714 
715 	if (iter.mtrr_disabled)
716 		return true;
717 
718 	if (!iter.partial_map)
719 		return true;
720 
721 	if (type == -1)
722 		return true;
723 
724 	return type == mtrr_default_type(mtrr_state);
725 }
726