xref: /openbmc/linux/arch/x86/kvm/mtrr.c (revision c0ecca6604b80e438b032578634c6e133c7028f6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * vMTRR implementation
4  *
5  * Copyright (C) 2006 Qumranet, Inc.
6  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
7  * Copyright(C) 2015 Intel Corporation.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Marcelo Tosatti <mtosatti@redhat.com>
13  *   Paolo Bonzini <pbonzini@redhat.com>
14  *   Xiao Guangrong <guangrong.xiao@linux.intel.com>
15  */
16 
17 #include <linux/kvm_host.h>
18 #include <asm/mtrr.h>
19 
20 #include "cpuid.h"
21 #include "mmu.h"
22 
23 #define IA32_MTRR_DEF_TYPE_E		(1ULL << 11)
24 #define IA32_MTRR_DEF_TYPE_FE		(1ULL << 10)
25 #define IA32_MTRR_DEF_TYPE_TYPE_MASK	(0xff)
26 
27 static bool msr_mtrr_valid(unsigned msr)
28 {
29 	switch (msr) {
30 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
31 	case MSR_MTRRfix64K_00000:
32 	case MSR_MTRRfix16K_80000:
33 	case MSR_MTRRfix16K_A0000:
34 	case MSR_MTRRfix4K_C0000:
35 	case MSR_MTRRfix4K_C8000:
36 	case MSR_MTRRfix4K_D0000:
37 	case MSR_MTRRfix4K_D8000:
38 	case MSR_MTRRfix4K_E0000:
39 	case MSR_MTRRfix4K_E8000:
40 	case MSR_MTRRfix4K_F0000:
41 	case MSR_MTRRfix4K_F8000:
42 	case MSR_MTRRdefType:
43 	case MSR_IA32_CR_PAT:
44 		return true;
45 	}
46 	return false;
47 }
48 
49 static bool valid_mtrr_type(unsigned t)
50 {
51 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
52 }
53 
54 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
55 {
56 	int i;
57 	u64 mask;
58 
59 	if (!msr_mtrr_valid(msr))
60 		return false;
61 
62 	if (msr == MSR_IA32_CR_PAT) {
63 		return kvm_pat_valid(data);
64 	} else if (msr == MSR_MTRRdefType) {
65 		if (data & ~0xcff)
66 			return false;
67 		return valid_mtrr_type(data & 0xff);
68 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
69 		for (i = 0; i < 8 ; i++)
70 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
71 				return false;
72 		return true;
73 	}
74 
75 	/* variable MTRRs */
76 	WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
77 
78 	mask = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
79 	if ((msr & 1) == 0) {
80 		/* MTRR base */
81 		if (!valid_mtrr_type(data & 0xff))
82 			return false;
83 		mask |= 0xf00;
84 	} else
85 		/* MTRR mask */
86 		mask |= 0x7ff;
87 
88 	return (data & mask) == 0;
89 }
90 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
91 
92 static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
93 {
94 	return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
95 }
96 
97 static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
98 {
99 	return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
100 }
101 
102 static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
103 {
104 	return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
105 }
106 
107 static u8 mtrr_disabled_type(struct kvm_vcpu *vcpu)
108 {
109 	/*
110 	 * Intel SDM 11.11.2.2: all MTRRs are disabled when
111 	 * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
112 	 * memory type is applied to all of physical memory.
113 	 *
114 	 * However, virtual machines can be run with CPUID such that
115 	 * there are no MTRRs.  In that case, the firmware will never
116 	 * enable MTRRs and it is obviously undesirable to run the
117 	 * guest entirely with UC memory and we use WB.
118 	 */
119 	if (guest_cpuid_has(vcpu, X86_FEATURE_MTRR))
120 		return MTRR_TYPE_UNCACHABLE;
121 	else
122 		return MTRR_TYPE_WRBACK;
123 }
124 
125 /*
126 * Three terms are used in the following code:
127 * - segment, it indicates the address segments covered by fixed MTRRs.
128 * - unit, it corresponds to the MSR entry in the segment.
129 * - range, a range is covered in one memory cache type.
130 */
131 struct fixed_mtrr_segment {
132 	u64 start;
133 	u64 end;
134 
135 	int range_shift;
136 
137 	/* the start position in kvm_mtrr.fixed_ranges[]. */
138 	int range_start;
139 };
140 
141 static struct fixed_mtrr_segment fixed_seg_table[] = {
142 	/* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
143 	{
144 		.start = 0x0,
145 		.end = 0x80000,
146 		.range_shift = 16, /* 64K */
147 		.range_start = 0,
148 	},
149 
150 	/*
151 	 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
152 	 * 16K fixed mtrr.
153 	 */
154 	{
155 		.start = 0x80000,
156 		.end = 0xc0000,
157 		.range_shift = 14, /* 16K */
158 		.range_start = 8,
159 	},
160 
161 	/*
162 	 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
163 	 * 4K fixed mtrr.
164 	 */
165 	{
166 		.start = 0xc0000,
167 		.end = 0x100000,
168 		.range_shift = 12, /* 12K */
169 		.range_start = 24,
170 	}
171 };
172 
173 /*
174  * The size of unit is covered in one MSR, one MSR entry contains
175  * 8 ranges so that unit size is always 8 * 2^range_shift.
176  */
177 static u64 fixed_mtrr_seg_unit_size(int seg)
178 {
179 	return 8 << fixed_seg_table[seg].range_shift;
180 }
181 
182 static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
183 {
184 	switch (msr) {
185 	case MSR_MTRRfix64K_00000:
186 		*seg = 0;
187 		*unit = 0;
188 		break;
189 	case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
190 		*seg = 1;
191 		*unit = array_index_nospec(
192 			msr - MSR_MTRRfix16K_80000,
193 			MSR_MTRRfix16K_A0000 - MSR_MTRRfix16K_80000 + 1);
194 		break;
195 	case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
196 		*seg = 2;
197 		*unit = array_index_nospec(
198 			msr - MSR_MTRRfix4K_C0000,
199 			MSR_MTRRfix4K_F8000 - MSR_MTRRfix4K_C0000 + 1);
200 		break;
201 	default:
202 		return false;
203 	}
204 
205 	return true;
206 }
207 
208 static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
209 {
210 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
211 	u64 unit_size = fixed_mtrr_seg_unit_size(seg);
212 
213 	*start = mtrr_seg->start + unit * unit_size;
214 	*end = *start + unit_size;
215 	WARN_ON(*end > mtrr_seg->end);
216 }
217 
218 static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
219 {
220 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
221 
222 	WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
223 		> mtrr_seg->end);
224 
225 	/* each unit has 8 ranges. */
226 	return mtrr_seg->range_start + 8 * unit;
227 }
228 
229 static int fixed_mtrr_seg_end_range_index(int seg)
230 {
231 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
232 	int n;
233 
234 	n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
235 	return mtrr_seg->range_start + n - 1;
236 }
237 
238 static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
239 {
240 	int seg, unit;
241 
242 	if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
243 		return false;
244 
245 	fixed_mtrr_seg_unit_range(seg, unit, start, end);
246 	return true;
247 }
248 
249 static int fixed_msr_to_range_index(u32 msr)
250 {
251 	int seg, unit;
252 
253 	if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
254 		return -1;
255 
256 	return fixed_mtrr_seg_unit_range_index(seg, unit);
257 }
258 
259 static int fixed_mtrr_addr_to_seg(u64 addr)
260 {
261 	struct fixed_mtrr_segment *mtrr_seg;
262 	int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
263 
264 	for (seg = 0; seg < seg_num; seg++) {
265 		mtrr_seg = &fixed_seg_table[seg];
266 		if (mtrr_seg->start <= addr && addr < mtrr_seg->end)
267 			return seg;
268 	}
269 
270 	return -1;
271 }
272 
273 static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
274 {
275 	struct fixed_mtrr_segment *mtrr_seg;
276 	int index;
277 
278 	mtrr_seg = &fixed_seg_table[seg];
279 	index = mtrr_seg->range_start;
280 	index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
281 	return index;
282 }
283 
284 static u64 fixed_mtrr_range_end_addr(int seg, int index)
285 {
286 	struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
287 	int pos = index - mtrr_seg->range_start;
288 
289 	return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
290 }
291 
292 static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
293 {
294 	u64 mask;
295 
296 	*start = range->base & PAGE_MASK;
297 
298 	mask = range->mask & PAGE_MASK;
299 
300 	/* This cannot overflow because writing to the reserved bits of
301 	 * variable MTRRs causes a #GP.
302 	 */
303 	*end = (*start | ~mask) + 1;
304 }
305 
306 static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
307 {
308 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
309 	gfn_t start, end;
310 	int index;
311 
312 	if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
313 	      !kvm_arch_has_noncoherent_dma(vcpu->kvm))
314 		return;
315 
316 	if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
317 		return;
318 
319 	/* fixed MTRRs. */
320 	if (fixed_msr_to_range(msr, &start, &end)) {
321 		if (!fixed_mtrr_is_enabled(mtrr_state))
322 			return;
323 	} else if (msr == MSR_MTRRdefType) {
324 		start = 0x0;
325 		end = ~0ULL;
326 	} else {
327 		/* variable range MTRRs. */
328 		index = (msr - 0x200) / 2;
329 		var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
330 	}
331 
332 	kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
333 }
334 
335 static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
336 {
337 	return (range->mask & (1 << 11)) != 0;
338 }
339 
340 static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
341 {
342 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
343 	struct kvm_mtrr_range *tmp, *cur;
344 	int index, is_mtrr_mask;
345 
346 	index = (msr - 0x200) / 2;
347 	is_mtrr_mask = msr - 0x200 - 2 * index;
348 	cur = &mtrr_state->var_ranges[index];
349 
350 	/* remove the entry if it's in the list. */
351 	if (var_mtrr_range_is_valid(cur))
352 		list_del(&mtrr_state->var_ranges[index].node);
353 
354 	/*
355 	 * Set all illegal GPA bits in the mask, since those bits must
356 	 * implicitly be 0.  The bits are then cleared when reading them.
357 	 */
358 	if (!is_mtrr_mask)
359 		cur->base = data;
360 	else
361 		cur->mask = data | kvm_vcpu_reserved_gpa_bits_raw(vcpu);
362 
363 	/* add it to the list if it's enabled. */
364 	if (var_mtrr_range_is_valid(cur)) {
365 		list_for_each_entry(tmp, &mtrr_state->head, node)
366 			if (cur->base >= tmp->base)
367 				break;
368 		list_add_tail(&cur->node, &tmp->node);
369 	}
370 }
371 
372 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
373 {
374 	int index;
375 
376 	if (!kvm_mtrr_valid(vcpu, msr, data))
377 		return 1;
378 
379 	index = fixed_msr_to_range_index(msr);
380 	if (index >= 0)
381 		*(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
382 	else if (msr == MSR_MTRRdefType)
383 		vcpu->arch.mtrr_state.deftype = data;
384 	else if (msr == MSR_IA32_CR_PAT)
385 		vcpu->arch.pat = data;
386 	else
387 		set_var_mtrr_msr(vcpu, msr, data);
388 
389 	update_mtrr(vcpu, msr);
390 	return 0;
391 }
392 
393 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
394 {
395 	int index;
396 
397 	/* MSR_MTRRcap is a readonly MSR. */
398 	if (msr == MSR_MTRRcap) {
399 		/*
400 		 * SMRR = 0
401 		 * WC = 1
402 		 * FIX = 1
403 		 * VCNT = KVM_NR_VAR_MTRR
404 		 */
405 		*pdata = 0x500 | KVM_NR_VAR_MTRR;
406 		return 0;
407 	}
408 
409 	if (!msr_mtrr_valid(msr))
410 		return 1;
411 
412 	index = fixed_msr_to_range_index(msr);
413 	if (index >= 0)
414 		*pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
415 	else if (msr == MSR_MTRRdefType)
416 		*pdata = vcpu->arch.mtrr_state.deftype;
417 	else if (msr == MSR_IA32_CR_PAT)
418 		*pdata = vcpu->arch.pat;
419 	else {	/* Variable MTRRs */
420 		int is_mtrr_mask;
421 
422 		index = (msr - 0x200) / 2;
423 		is_mtrr_mask = msr - 0x200 - 2 * index;
424 		if (!is_mtrr_mask)
425 			*pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
426 		else
427 			*pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
428 
429 		*pdata &= ~kvm_vcpu_reserved_gpa_bits_raw(vcpu);
430 	}
431 
432 	return 0;
433 }
434 
435 void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
436 {
437 	INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
438 }
439 
440 struct mtrr_iter {
441 	/* input fields. */
442 	struct kvm_mtrr *mtrr_state;
443 	u64 start;
444 	u64 end;
445 
446 	/* output fields. */
447 	int mem_type;
448 	/* mtrr is completely disabled? */
449 	bool mtrr_disabled;
450 	/* [start, end) is not fully covered in MTRRs? */
451 	bool partial_map;
452 
453 	/* private fields. */
454 	union {
455 		/* used for fixed MTRRs. */
456 		struct {
457 			int index;
458 			int seg;
459 		};
460 
461 		/* used for var MTRRs. */
462 		struct {
463 			struct kvm_mtrr_range *range;
464 			/* max address has been covered in var MTRRs. */
465 			u64 start_max;
466 		};
467 	};
468 
469 	bool fixed;
470 };
471 
472 static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
473 {
474 	int seg, index;
475 
476 	if (!fixed_mtrr_is_enabled(iter->mtrr_state))
477 		return false;
478 
479 	seg = fixed_mtrr_addr_to_seg(iter->start);
480 	if (seg < 0)
481 		return false;
482 
483 	iter->fixed = true;
484 	index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
485 	iter->index = index;
486 	iter->seg = seg;
487 	return true;
488 }
489 
490 static bool match_var_range(struct mtrr_iter *iter,
491 			    struct kvm_mtrr_range *range)
492 {
493 	u64 start, end;
494 
495 	var_mtrr_range(range, &start, &end);
496 	if (!(start >= iter->end || end <= iter->start)) {
497 		iter->range = range;
498 
499 		/*
500 		 * the function is called when we do kvm_mtrr.head walking.
501 		 * Range has the minimum base address which interleaves
502 		 * [looker->start_max, looker->end).
503 		 */
504 		iter->partial_map |= iter->start_max < start;
505 
506 		/* update the max address has been covered. */
507 		iter->start_max = max(iter->start_max, end);
508 		return true;
509 	}
510 
511 	return false;
512 }
513 
514 static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
515 {
516 	struct kvm_mtrr *mtrr_state = iter->mtrr_state;
517 
518 	list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
519 		if (match_var_range(iter, iter->range))
520 			return;
521 
522 	iter->range = NULL;
523 	iter->partial_map |= iter->start_max < iter->end;
524 }
525 
526 static void mtrr_lookup_var_start(struct mtrr_iter *iter)
527 {
528 	struct kvm_mtrr *mtrr_state = iter->mtrr_state;
529 
530 	iter->fixed = false;
531 	iter->start_max = iter->start;
532 	iter->range = NULL;
533 	iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
534 
535 	__mtrr_lookup_var_next(iter);
536 }
537 
538 static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
539 {
540 	/* terminate the lookup. */
541 	if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
542 		iter->fixed = false;
543 		iter->range = NULL;
544 		return;
545 	}
546 
547 	iter->index++;
548 
549 	/* have looked up for all fixed MTRRs. */
550 	if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
551 		return mtrr_lookup_var_start(iter);
552 
553 	/* switch to next segment. */
554 	if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
555 		iter->seg++;
556 }
557 
558 static void mtrr_lookup_var_next(struct mtrr_iter *iter)
559 {
560 	__mtrr_lookup_var_next(iter);
561 }
562 
563 static void mtrr_lookup_start(struct mtrr_iter *iter)
564 {
565 	if (!mtrr_is_enabled(iter->mtrr_state)) {
566 		iter->mtrr_disabled = true;
567 		return;
568 	}
569 
570 	if (!mtrr_lookup_fixed_start(iter))
571 		mtrr_lookup_var_start(iter);
572 }
573 
574 static void mtrr_lookup_init(struct mtrr_iter *iter,
575 			     struct kvm_mtrr *mtrr_state, u64 start, u64 end)
576 {
577 	iter->mtrr_state = mtrr_state;
578 	iter->start = start;
579 	iter->end = end;
580 	iter->mtrr_disabled = false;
581 	iter->partial_map = false;
582 	iter->fixed = false;
583 	iter->range = NULL;
584 
585 	mtrr_lookup_start(iter);
586 }
587 
588 static bool mtrr_lookup_okay(struct mtrr_iter *iter)
589 {
590 	if (iter->fixed) {
591 		iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
592 		return true;
593 	}
594 
595 	if (iter->range) {
596 		iter->mem_type = iter->range->base & 0xff;
597 		return true;
598 	}
599 
600 	return false;
601 }
602 
603 static void mtrr_lookup_next(struct mtrr_iter *iter)
604 {
605 	if (iter->fixed)
606 		mtrr_lookup_fixed_next(iter);
607 	else
608 		mtrr_lookup_var_next(iter);
609 }
610 
611 #define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
612 	for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
613 	     mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
614 
615 u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
616 {
617 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
618 	struct mtrr_iter iter;
619 	u64 start, end;
620 	int type = -1;
621 	const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
622 			       | (1 << MTRR_TYPE_WRTHROUGH);
623 
624 	start = gfn_to_gpa(gfn);
625 	end = start + PAGE_SIZE;
626 
627 	mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
628 		int curr_type = iter.mem_type;
629 
630 		/*
631 		 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
632 		 * Precedences.
633 		 */
634 
635 		if (type == -1) {
636 			type = curr_type;
637 			continue;
638 		}
639 
640 		/*
641 		 * If two or more variable memory ranges match and the
642 		 * memory types are identical, then that memory type is
643 		 * used.
644 		 */
645 		if (type == curr_type)
646 			continue;
647 
648 		/*
649 		 * If two or more variable memory ranges match and one of
650 		 * the memory types is UC, the UC memory type used.
651 		 */
652 		if (curr_type == MTRR_TYPE_UNCACHABLE)
653 			return MTRR_TYPE_UNCACHABLE;
654 
655 		/*
656 		 * If two or more variable memory ranges match and the
657 		 * memory types are WT and WB, the WT memory type is used.
658 		 */
659 		if (((1 << type) & wt_wb_mask) &&
660 		      ((1 << curr_type) & wt_wb_mask)) {
661 			type = MTRR_TYPE_WRTHROUGH;
662 			continue;
663 		}
664 
665 		/*
666 		 * For overlaps not defined by the above rules, processor
667 		 * behavior is undefined.
668 		 */
669 
670 		/* We use WB for this undefined behavior. :( */
671 		return MTRR_TYPE_WRBACK;
672 	}
673 
674 	if (iter.mtrr_disabled)
675 		return mtrr_disabled_type(vcpu);
676 
677 	/* not contained in any MTRRs. */
678 	if (type == -1)
679 		return mtrr_default_type(mtrr_state);
680 
681 	/*
682 	 * We just check one page, partially covered by MTRRs is
683 	 * impossible.
684 	 */
685 	WARN_ON(iter.partial_map);
686 
687 	return type;
688 }
689 EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
690 
691 bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
692 					  int page_num)
693 {
694 	struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
695 	struct mtrr_iter iter;
696 	u64 start, end;
697 	int type = -1;
698 
699 	start = gfn_to_gpa(gfn);
700 	end = gfn_to_gpa(gfn + page_num);
701 	mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
702 		if (type == -1) {
703 			type = iter.mem_type;
704 			continue;
705 		}
706 
707 		if (type != iter.mem_type)
708 			return false;
709 	}
710 
711 	if (iter.mtrr_disabled)
712 		return true;
713 
714 	if (!iter.partial_map)
715 		return true;
716 
717 	if (type == -1)
718 		return true;
719 
720 	return type == mtrr_default_type(mtrr_state);
721 }
722