xref: /openbmc/linux/arch/x86/kvm/mmu/tdp_mmu.c (revision c059ee9d)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "mmu.h"
4 #include "mmu_internal.h"
5 #include "mmutrace.h"
6 #include "tdp_iter.h"
7 #include "tdp_mmu.h"
8 #include "spte.h"
9 
10 #include <asm/cmpxchg.h>
11 #include <trace/events/kvm.h>
12 
13 static bool __read_mostly tdp_mmu_enabled = true;
14 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644);
15 
16 /* Initializes the TDP MMU for the VM, if enabled. */
17 int kvm_mmu_init_tdp_mmu(struct kvm *kvm)
18 {
19 	struct workqueue_struct *wq;
20 
21 	if (!tdp_enabled || !READ_ONCE(tdp_mmu_enabled))
22 		return 0;
23 
24 	wq = alloc_workqueue("kvm", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 0);
25 	if (!wq)
26 		return -ENOMEM;
27 
28 	/* This should not be changed for the lifetime of the VM. */
29 	kvm->arch.tdp_mmu_enabled = true;
30 	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
31 	spin_lock_init(&kvm->arch.tdp_mmu_pages_lock);
32 	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages);
33 	kvm->arch.tdp_mmu_zap_wq = wq;
34 	return 1;
35 }
36 
37 /* Arbitrarily returns true so that this may be used in if statements. */
38 static __always_inline bool kvm_lockdep_assert_mmu_lock_held(struct kvm *kvm,
39 							     bool shared)
40 {
41 	if (shared)
42 		lockdep_assert_held_read(&kvm->mmu_lock);
43 	else
44 		lockdep_assert_held_write(&kvm->mmu_lock);
45 
46 	return true;
47 }
48 
49 void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
50 {
51 	if (!kvm->arch.tdp_mmu_enabled)
52 		return;
53 
54 	/* Also waits for any queued work items.  */
55 	destroy_workqueue(kvm->arch.tdp_mmu_zap_wq);
56 
57 	WARN_ON(!list_empty(&kvm->arch.tdp_mmu_pages));
58 	WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
59 
60 	/*
61 	 * Ensure that all the outstanding RCU callbacks to free shadow pages
62 	 * can run before the VM is torn down.  Work items on tdp_mmu_zap_wq
63 	 * can call kvm_tdp_mmu_put_root and create new callbacks.
64 	 */
65 	rcu_barrier();
66 }
67 
68 static void tdp_mmu_free_sp(struct kvm_mmu_page *sp)
69 {
70 	free_page((unsigned long)sp->spt);
71 	kmem_cache_free(mmu_page_header_cache, sp);
72 }
73 
74 /*
75  * This is called through call_rcu in order to free TDP page table memory
76  * safely with respect to other kernel threads that may be operating on
77  * the memory.
78  * By only accessing TDP MMU page table memory in an RCU read critical
79  * section, and freeing it after a grace period, lockless access to that
80  * memory won't use it after it is freed.
81  */
82 static void tdp_mmu_free_sp_rcu_callback(struct rcu_head *head)
83 {
84 	struct kvm_mmu_page *sp = container_of(head, struct kvm_mmu_page,
85 					       rcu_head);
86 
87 	tdp_mmu_free_sp(sp);
88 }
89 
90 static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
91 			     bool shared);
92 
93 static void tdp_mmu_zap_root_work(struct work_struct *work)
94 {
95 	struct kvm_mmu_page *root = container_of(work, struct kvm_mmu_page,
96 						 tdp_mmu_async_work);
97 	struct kvm *kvm = root->tdp_mmu_async_data;
98 
99 	read_lock(&kvm->mmu_lock);
100 
101 	/*
102 	 * A TLB flush is not necessary as KVM performs a local TLB flush when
103 	 * allocating a new root (see kvm_mmu_load()), and when migrating vCPU
104 	 * to a different pCPU.  Note, the local TLB flush on reuse also
105 	 * invalidates any paging-structure-cache entries, i.e. TLB entries for
106 	 * intermediate paging structures, that may be zapped, as such entries
107 	 * are associated with the ASID on both VMX and SVM.
108 	 */
109 	tdp_mmu_zap_root(kvm, root, true);
110 
111 	/*
112 	 * Drop the refcount using kvm_tdp_mmu_put_root() to test its logic for
113 	 * avoiding an infinite loop.  By design, the root is reachable while
114 	 * it's being asynchronously zapped, thus a different task can put its
115 	 * last reference, i.e. flowing through kvm_tdp_mmu_put_root() for an
116 	 * asynchronously zapped root is unavoidable.
117 	 */
118 	kvm_tdp_mmu_put_root(kvm, root, true);
119 
120 	read_unlock(&kvm->mmu_lock);
121 }
122 
123 static void tdp_mmu_schedule_zap_root(struct kvm *kvm, struct kvm_mmu_page *root)
124 {
125 	root->tdp_mmu_async_data = kvm;
126 	INIT_WORK(&root->tdp_mmu_async_work, tdp_mmu_zap_root_work);
127 	queue_work(kvm->arch.tdp_mmu_zap_wq, &root->tdp_mmu_async_work);
128 }
129 
130 static inline bool kvm_tdp_root_mark_invalid(struct kvm_mmu_page *page)
131 {
132 	union kvm_mmu_page_role role = page->role;
133 	role.invalid = true;
134 
135 	/* No need to use cmpxchg, only the invalid bit can change.  */
136 	role.word = xchg(&page->role.word, role.word);
137 	return role.invalid;
138 }
139 
140 void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root,
141 			  bool shared)
142 {
143 	kvm_lockdep_assert_mmu_lock_held(kvm, shared);
144 
145 	if (!refcount_dec_and_test(&root->tdp_mmu_root_count))
146 		return;
147 
148 	WARN_ON(!root->tdp_mmu_page);
149 
150 	/*
151 	 * The root now has refcount=0.  It is valid, but readers already
152 	 * cannot acquire a reference to it because kvm_tdp_mmu_get_root()
153 	 * rejects it.  This remains true for the rest of the execution
154 	 * of this function, because readers visit valid roots only
155 	 * (except for tdp_mmu_zap_root_work(), which however
156 	 * does not acquire any reference itself).
157 	 *
158 	 * Even though there are flows that need to visit all roots for
159 	 * correctness, they all take mmu_lock for write, so they cannot yet
160 	 * run concurrently. The same is true after kvm_tdp_root_mark_invalid,
161 	 * since the root still has refcount=0.
162 	 *
163 	 * However, tdp_mmu_zap_root can yield, and writers do not expect to
164 	 * see refcount=0 (see for example kvm_tdp_mmu_invalidate_all_roots()).
165 	 * So the root temporarily gets an extra reference, going to refcount=1
166 	 * while staying invalid.  Readers still cannot acquire any reference;
167 	 * but writers are now allowed to run if tdp_mmu_zap_root yields and
168 	 * they might take an extra reference if they themselves yield.
169 	 * Therefore, when the reference is given back by the worker,
170 	 * there is no guarantee that the refcount is still 1.  If not, whoever
171 	 * puts the last reference will free the page, but they will not have to
172 	 * zap the root because a root cannot go from invalid to valid.
173 	 */
174 	if (!kvm_tdp_root_mark_invalid(root)) {
175 		refcount_set(&root->tdp_mmu_root_count, 1);
176 
177 		/*
178 		 * Zapping the root in a worker is not just "nice to have";
179 		 * it is required because kvm_tdp_mmu_invalidate_all_roots()
180 		 * skips already-invalid roots.  If kvm_tdp_mmu_put_root() did
181 		 * not add the root to the workqueue, kvm_tdp_mmu_zap_all_fast()
182 		 * might return with some roots not zapped yet.
183 		 */
184 		tdp_mmu_schedule_zap_root(kvm, root);
185 		return;
186 	}
187 
188 	spin_lock(&kvm->arch.tdp_mmu_pages_lock);
189 	list_del_rcu(&root->link);
190 	spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
191 	call_rcu(&root->rcu_head, tdp_mmu_free_sp_rcu_callback);
192 }
193 
194 /*
195  * Returns the next root after @prev_root (or the first root if @prev_root is
196  * NULL).  A reference to the returned root is acquired, and the reference to
197  * @prev_root is released (the caller obviously must hold a reference to
198  * @prev_root if it's non-NULL).
199  *
200  * If @only_valid is true, invalid roots are skipped.
201  *
202  * Returns NULL if the end of tdp_mmu_roots was reached.
203  */
204 static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm,
205 					      struct kvm_mmu_page *prev_root,
206 					      bool shared, bool only_valid)
207 {
208 	struct kvm_mmu_page *next_root;
209 
210 	rcu_read_lock();
211 
212 	if (prev_root)
213 		next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
214 						  &prev_root->link,
215 						  typeof(*prev_root), link);
216 	else
217 		next_root = list_first_or_null_rcu(&kvm->arch.tdp_mmu_roots,
218 						   typeof(*next_root), link);
219 
220 	while (next_root) {
221 		if ((!only_valid || !next_root->role.invalid) &&
222 		    kvm_tdp_mmu_get_root(next_root))
223 			break;
224 
225 		next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
226 				&next_root->link, typeof(*next_root), link);
227 	}
228 
229 	rcu_read_unlock();
230 
231 	if (prev_root)
232 		kvm_tdp_mmu_put_root(kvm, prev_root, shared);
233 
234 	return next_root;
235 }
236 
237 /*
238  * Note: this iterator gets and puts references to the roots it iterates over.
239  * This makes it safe to release the MMU lock and yield within the loop, but
240  * if exiting the loop early, the caller must drop the reference to the most
241  * recent root. (Unless keeping a live reference is desirable.)
242  *
243  * If shared is set, this function is operating under the MMU lock in read
244  * mode. In the unlikely event that this thread must free a root, the lock
245  * will be temporarily dropped and reacquired in write mode.
246  */
247 #define __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared, _only_valid)\
248 	for (_root = tdp_mmu_next_root(_kvm, NULL, _shared, _only_valid);	\
249 	     _root;								\
250 	     _root = tdp_mmu_next_root(_kvm, _root, _shared, _only_valid))	\
251 		if (kvm_lockdep_assert_mmu_lock_held(_kvm, _shared) &&		\
252 		    kvm_mmu_page_as_id(_root) != _as_id) {			\
253 		} else
254 
255 #define for_each_valid_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared)	\
256 	__for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared, true)
257 
258 #define for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id)			\
259 	__for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, false, false)
260 
261 /*
262  * Iterate over all TDP MMU roots.  Requires that mmu_lock be held for write,
263  * the implication being that any flow that holds mmu_lock for read is
264  * inherently yield-friendly and should use the yield-safe variant above.
265  * Holding mmu_lock for write obviates the need for RCU protection as the list
266  * is guaranteed to be stable.
267  */
268 #define for_each_tdp_mmu_root(_kvm, _root, _as_id)			\
269 	list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link)	\
270 		if (kvm_lockdep_assert_mmu_lock_held(_kvm, false) &&	\
271 		    kvm_mmu_page_as_id(_root) != _as_id) {		\
272 		} else
273 
274 static struct kvm_mmu_page *tdp_mmu_alloc_sp(struct kvm_vcpu *vcpu)
275 {
276 	struct kvm_mmu_page *sp;
277 
278 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
279 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
280 
281 	return sp;
282 }
283 
284 static void tdp_mmu_init_sp(struct kvm_mmu_page *sp, tdp_ptep_t sptep,
285 			    gfn_t gfn, union kvm_mmu_page_role role)
286 {
287 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
288 
289 	sp->role = role;
290 	sp->gfn = gfn;
291 	sp->ptep = sptep;
292 	sp->tdp_mmu_page = true;
293 
294 	trace_kvm_mmu_get_page(sp, true);
295 }
296 
297 static void tdp_mmu_init_child_sp(struct kvm_mmu_page *child_sp,
298 				  struct tdp_iter *iter)
299 {
300 	struct kvm_mmu_page *parent_sp;
301 	union kvm_mmu_page_role role;
302 
303 	parent_sp = sptep_to_sp(rcu_dereference(iter->sptep));
304 
305 	role = parent_sp->role;
306 	role.level--;
307 
308 	tdp_mmu_init_sp(child_sp, iter->sptep, iter->gfn, role);
309 }
310 
311 hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu)
312 {
313 	union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
314 	struct kvm *kvm = vcpu->kvm;
315 	struct kvm_mmu_page *root;
316 
317 	lockdep_assert_held_write(&kvm->mmu_lock);
318 
319 	/*
320 	 * Check for an existing root before allocating a new one.  Note, the
321 	 * role check prevents consuming an invalid root.
322 	 */
323 	for_each_tdp_mmu_root(kvm, root, kvm_mmu_role_as_id(role)) {
324 		if (root->role.word == role.word &&
325 		    kvm_tdp_mmu_get_root(root))
326 			goto out;
327 	}
328 
329 	root = tdp_mmu_alloc_sp(vcpu);
330 	tdp_mmu_init_sp(root, NULL, 0, role);
331 
332 	refcount_set(&root->tdp_mmu_root_count, 1);
333 
334 	spin_lock(&kvm->arch.tdp_mmu_pages_lock);
335 	list_add_rcu(&root->link, &kvm->arch.tdp_mmu_roots);
336 	spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
337 
338 out:
339 	return __pa(root->spt);
340 }
341 
342 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
343 				u64 old_spte, u64 new_spte, int level,
344 				bool shared);
345 
346 static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level)
347 {
348 	if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level))
349 		return;
350 
351 	if (is_accessed_spte(old_spte) &&
352 	    (!is_shadow_present_pte(new_spte) || !is_accessed_spte(new_spte) ||
353 	     spte_to_pfn(old_spte) != spte_to_pfn(new_spte)))
354 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
355 }
356 
357 static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn,
358 					  u64 old_spte, u64 new_spte, int level)
359 {
360 	bool pfn_changed;
361 	struct kvm_memory_slot *slot;
362 
363 	if (level > PG_LEVEL_4K)
364 		return;
365 
366 	pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
367 
368 	if ((!is_writable_pte(old_spte) || pfn_changed) &&
369 	    is_writable_pte(new_spte)) {
370 		slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn);
371 		mark_page_dirty_in_slot(kvm, slot, gfn);
372 	}
373 }
374 
375 /**
376  * tdp_mmu_unlink_sp() - Remove a shadow page from the list of used pages
377  *
378  * @kvm: kvm instance
379  * @sp: the page to be removed
380  * @shared: This operation may not be running under the exclusive use of
381  *	    the MMU lock and the operation must synchronize with other
382  *	    threads that might be adding or removing pages.
383  */
384 static void tdp_mmu_unlink_sp(struct kvm *kvm, struct kvm_mmu_page *sp,
385 			      bool shared)
386 {
387 	if (shared)
388 		spin_lock(&kvm->arch.tdp_mmu_pages_lock);
389 	else
390 		lockdep_assert_held_write(&kvm->mmu_lock);
391 
392 	list_del(&sp->link);
393 	if (sp->lpage_disallowed)
394 		unaccount_huge_nx_page(kvm, sp);
395 
396 	if (shared)
397 		spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
398 }
399 
400 /**
401  * handle_removed_pt() - handle a page table removed from the TDP structure
402  *
403  * @kvm: kvm instance
404  * @pt: the page removed from the paging structure
405  * @shared: This operation may not be running under the exclusive use
406  *	    of the MMU lock and the operation must synchronize with other
407  *	    threads that might be modifying SPTEs.
408  *
409  * Given a page table that has been removed from the TDP paging structure,
410  * iterates through the page table to clear SPTEs and free child page tables.
411  *
412  * Note that pt is passed in as a tdp_ptep_t, but it does not need RCU
413  * protection. Since this thread removed it from the paging structure,
414  * this thread will be responsible for ensuring the page is freed. Hence the
415  * early rcu_dereferences in the function.
416  */
417 static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared)
418 {
419 	struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(pt));
420 	int level = sp->role.level;
421 	gfn_t base_gfn = sp->gfn;
422 	int i;
423 
424 	trace_kvm_mmu_prepare_zap_page(sp);
425 
426 	tdp_mmu_unlink_sp(kvm, sp, shared);
427 
428 	for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
429 		tdp_ptep_t sptep = pt + i;
430 		gfn_t gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level);
431 		u64 old_spte;
432 
433 		if (shared) {
434 			/*
435 			 * Set the SPTE to a nonpresent value that other
436 			 * threads will not overwrite. If the SPTE was
437 			 * already marked as removed then another thread
438 			 * handling a page fault could overwrite it, so
439 			 * set the SPTE until it is set from some other
440 			 * value to the removed SPTE value.
441 			 */
442 			for (;;) {
443 				old_spte = kvm_tdp_mmu_write_spte_atomic(sptep, REMOVED_SPTE);
444 				if (!is_removed_spte(old_spte))
445 					break;
446 				cpu_relax();
447 			}
448 		} else {
449 			/*
450 			 * If the SPTE is not MMU-present, there is no backing
451 			 * page associated with the SPTE and so no side effects
452 			 * that need to be recorded, and exclusive ownership of
453 			 * mmu_lock ensures the SPTE can't be made present.
454 			 * Note, zapping MMIO SPTEs is also unnecessary as they
455 			 * are guarded by the memslots generation, not by being
456 			 * unreachable.
457 			 */
458 			old_spte = kvm_tdp_mmu_read_spte(sptep);
459 			if (!is_shadow_present_pte(old_spte))
460 				continue;
461 
462 			/*
463 			 * Use the common helper instead of a raw WRITE_ONCE as
464 			 * the SPTE needs to be updated atomically if it can be
465 			 * modified by a different vCPU outside of mmu_lock.
466 			 * Even though the parent SPTE is !PRESENT, the TLB
467 			 * hasn't yet been flushed, and both Intel and AMD
468 			 * document that A/D assists can use upper-level PxE
469 			 * entries that are cached in the TLB, i.e. the CPU can
470 			 * still access the page and mark it dirty.
471 			 *
472 			 * No retry is needed in the atomic update path as the
473 			 * sole concern is dropping a Dirty bit, i.e. no other
474 			 * task can zap/remove the SPTE as mmu_lock is held for
475 			 * write.  Marking the SPTE as a removed SPTE is not
476 			 * strictly necessary for the same reason, but using
477 			 * the remove SPTE value keeps the shared/exclusive
478 			 * paths consistent and allows the handle_changed_spte()
479 			 * call below to hardcode the new value to REMOVED_SPTE.
480 			 *
481 			 * Note, even though dropping a Dirty bit is the only
482 			 * scenario where a non-atomic update could result in a
483 			 * functional bug, simply checking the Dirty bit isn't
484 			 * sufficient as a fast page fault could read the upper
485 			 * level SPTE before it is zapped, and then make this
486 			 * target SPTE writable, resume the guest, and set the
487 			 * Dirty bit between reading the SPTE above and writing
488 			 * it here.
489 			 */
490 			old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte,
491 							  REMOVED_SPTE, level);
492 		}
493 		handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn,
494 				    old_spte, REMOVED_SPTE, level, shared);
495 	}
496 
497 	call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback);
498 }
499 
500 /**
501  * __handle_changed_spte - handle bookkeeping associated with an SPTE change
502  * @kvm: kvm instance
503  * @as_id: the address space of the paging structure the SPTE was a part of
504  * @gfn: the base GFN that was mapped by the SPTE
505  * @old_spte: The value of the SPTE before the change
506  * @new_spte: The value of the SPTE after the change
507  * @level: the level of the PT the SPTE is part of in the paging structure
508  * @shared: This operation may not be running under the exclusive use of
509  *	    the MMU lock and the operation must synchronize with other
510  *	    threads that might be modifying SPTEs.
511  *
512  * Handle bookkeeping that might result from the modification of a SPTE.
513  * This function must be called for all TDP SPTE modifications.
514  */
515 static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
516 				  u64 old_spte, u64 new_spte, int level,
517 				  bool shared)
518 {
519 	bool was_present = is_shadow_present_pte(old_spte);
520 	bool is_present = is_shadow_present_pte(new_spte);
521 	bool was_leaf = was_present && is_last_spte(old_spte, level);
522 	bool is_leaf = is_present && is_last_spte(new_spte, level);
523 	bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
524 
525 	WARN_ON(level > PT64_ROOT_MAX_LEVEL);
526 	WARN_ON(level < PG_LEVEL_4K);
527 	WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
528 
529 	/*
530 	 * If this warning were to trigger it would indicate that there was a
531 	 * missing MMU notifier or a race with some notifier handler.
532 	 * A present, leaf SPTE should never be directly replaced with another
533 	 * present leaf SPTE pointing to a different PFN. A notifier handler
534 	 * should be zapping the SPTE before the main MM's page table is
535 	 * changed, or the SPTE should be zeroed, and the TLBs flushed by the
536 	 * thread before replacement.
537 	 */
538 	if (was_leaf && is_leaf && pfn_changed) {
539 		pr_err("Invalid SPTE change: cannot replace a present leaf\n"
540 		       "SPTE with another present leaf SPTE mapping a\n"
541 		       "different PFN!\n"
542 		       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
543 		       as_id, gfn, old_spte, new_spte, level);
544 
545 		/*
546 		 * Crash the host to prevent error propagation and guest data
547 		 * corruption.
548 		 */
549 		BUG();
550 	}
551 
552 	if (old_spte == new_spte)
553 		return;
554 
555 	trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte);
556 
557 	if (is_leaf)
558 		check_spte_writable_invariants(new_spte);
559 
560 	/*
561 	 * The only times a SPTE should be changed from a non-present to
562 	 * non-present state is when an MMIO entry is installed/modified/
563 	 * removed. In that case, there is nothing to do here.
564 	 */
565 	if (!was_present && !is_present) {
566 		/*
567 		 * If this change does not involve a MMIO SPTE or removed SPTE,
568 		 * it is unexpected. Log the change, though it should not
569 		 * impact the guest since both the former and current SPTEs
570 		 * are nonpresent.
571 		 */
572 		if (WARN_ON(!is_mmio_spte(old_spte) &&
573 			    !is_mmio_spte(new_spte) &&
574 			    !is_removed_spte(new_spte)))
575 			pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
576 			       "should not be replaced with another,\n"
577 			       "different nonpresent SPTE, unless one or both\n"
578 			       "are MMIO SPTEs, or the new SPTE is\n"
579 			       "a temporary removed SPTE.\n"
580 			       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
581 			       as_id, gfn, old_spte, new_spte, level);
582 		return;
583 	}
584 
585 	if (is_leaf != was_leaf)
586 		kvm_update_page_stats(kvm, level, is_leaf ? 1 : -1);
587 
588 	if (was_leaf && is_dirty_spte(old_spte) &&
589 	    (!is_present || !is_dirty_spte(new_spte) || pfn_changed))
590 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
591 
592 	/*
593 	 * Recursively handle child PTs if the change removed a subtree from
594 	 * the paging structure.  Note the WARN on the PFN changing without the
595 	 * SPTE being converted to a hugepage (leaf) or being zapped.  Shadow
596 	 * pages are kernel allocations and should never be migrated.
597 	 */
598 	if (was_present && !was_leaf &&
599 	    (is_leaf || !is_present || WARN_ON_ONCE(pfn_changed)))
600 		handle_removed_pt(kvm, spte_to_child_pt(old_spte, level), shared);
601 }
602 
603 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
604 				u64 old_spte, u64 new_spte, int level,
605 				bool shared)
606 {
607 	__handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level,
608 			      shared);
609 	handle_changed_spte_acc_track(old_spte, new_spte, level);
610 	handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
611 				      new_spte, level);
612 }
613 
614 /*
615  * tdp_mmu_set_spte_atomic - Set a TDP MMU SPTE atomically
616  * and handle the associated bookkeeping.  Do not mark the page dirty
617  * in KVM's dirty bitmaps.
618  *
619  * If setting the SPTE fails because it has changed, iter->old_spte will be
620  * refreshed to the current value of the spte.
621  *
622  * @kvm: kvm instance
623  * @iter: a tdp_iter instance currently on the SPTE that should be set
624  * @new_spte: The value the SPTE should be set to
625  * Return:
626  * * 0      - If the SPTE was set.
627  * * -EBUSY - If the SPTE cannot be set. In this case this function will have
628  *            no side-effects other than setting iter->old_spte to the last
629  *            known value of the spte.
630  */
631 static inline int tdp_mmu_set_spte_atomic(struct kvm *kvm,
632 					  struct tdp_iter *iter,
633 					  u64 new_spte)
634 {
635 	u64 *sptep = rcu_dereference(iter->sptep);
636 	u64 old_spte;
637 
638 	/*
639 	 * The caller is responsible for ensuring the old SPTE is not a REMOVED
640 	 * SPTE.  KVM should never attempt to zap or manipulate a REMOVED SPTE,
641 	 * and pre-checking before inserting a new SPTE is advantageous as it
642 	 * avoids unnecessary work.
643 	 */
644 	WARN_ON_ONCE(iter->yielded || is_removed_spte(iter->old_spte));
645 
646 	lockdep_assert_held_read(&kvm->mmu_lock);
647 
648 	/*
649 	 * Note, fast_pf_fix_direct_spte() can also modify TDP MMU SPTEs and
650 	 * does not hold the mmu_lock.
651 	 */
652 	old_spte = cmpxchg64(sptep, iter->old_spte, new_spte);
653 	if (old_spte != iter->old_spte) {
654 		/*
655 		 * The page table entry was modified by a different logical
656 		 * CPU. Refresh iter->old_spte with the current value so the
657 		 * caller operates on fresh data, e.g. if it retries
658 		 * tdp_mmu_set_spte_atomic().
659 		 */
660 		iter->old_spte = old_spte;
661 		return -EBUSY;
662 	}
663 
664 	__handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte,
665 			      new_spte, iter->level, true);
666 	handle_changed_spte_acc_track(iter->old_spte, new_spte, iter->level);
667 
668 	return 0;
669 }
670 
671 static inline int tdp_mmu_zap_spte_atomic(struct kvm *kvm,
672 					  struct tdp_iter *iter)
673 {
674 	int ret;
675 
676 	/*
677 	 * Freeze the SPTE by setting it to a special,
678 	 * non-present value. This will stop other threads from
679 	 * immediately installing a present entry in its place
680 	 * before the TLBs are flushed.
681 	 */
682 	ret = tdp_mmu_set_spte_atomic(kvm, iter, REMOVED_SPTE);
683 	if (ret)
684 		return ret;
685 
686 	kvm_flush_remote_tlbs_with_address(kvm, iter->gfn,
687 					   KVM_PAGES_PER_HPAGE(iter->level));
688 
689 	/*
690 	 * No other thread can overwrite the removed SPTE as they must either
691 	 * wait on the MMU lock or use tdp_mmu_set_spte_atomic() which will not
692 	 * overwrite the special removed SPTE value. No bookkeeping is needed
693 	 * here since the SPTE is going from non-present to non-present.  Use
694 	 * the raw write helper to avoid an unnecessary check on volatile bits.
695 	 */
696 	__kvm_tdp_mmu_write_spte(iter->sptep, 0);
697 
698 	return 0;
699 }
700 
701 
702 /*
703  * __tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping
704  * @kvm:	      KVM instance
705  * @as_id:	      Address space ID, i.e. regular vs. SMM
706  * @sptep:	      Pointer to the SPTE
707  * @old_spte:	      The current value of the SPTE
708  * @new_spte:	      The new value that will be set for the SPTE
709  * @gfn:	      The base GFN that was (or will be) mapped by the SPTE
710  * @level:	      The level _containing_ the SPTE (its parent PT's level)
711  * @record_acc_track: Notify the MM subsystem of changes to the accessed state
712  *		      of the page. Should be set unless handling an MMU
713  *		      notifier for access tracking. Leaving record_acc_track
714  *		      unset in that case prevents page accesses from being
715  *		      double counted.
716  * @record_dirty_log: Record the page as dirty in the dirty bitmap if
717  *		      appropriate for the change being made. Should be set
718  *		      unless performing certain dirty logging operations.
719  *		      Leaving record_dirty_log unset in that case prevents page
720  *		      writes from being double counted.
721  *
722  * Returns the old SPTE value, which _may_ be different than @old_spte if the
723  * SPTE had voldatile bits.
724  */
725 static u64 __tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
726 			      u64 old_spte, u64 new_spte, gfn_t gfn, int level,
727 			      bool record_acc_track, bool record_dirty_log)
728 {
729 	lockdep_assert_held_write(&kvm->mmu_lock);
730 
731 	/*
732 	 * No thread should be using this function to set SPTEs to or from the
733 	 * temporary removed SPTE value.
734 	 * If operating under the MMU lock in read mode, tdp_mmu_set_spte_atomic
735 	 * should be used. If operating under the MMU lock in write mode, the
736 	 * use of the removed SPTE should not be necessary.
737 	 */
738 	WARN_ON(is_removed_spte(old_spte) || is_removed_spte(new_spte));
739 
740 	old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, new_spte, level);
741 
742 	__handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false);
743 
744 	if (record_acc_track)
745 		handle_changed_spte_acc_track(old_spte, new_spte, level);
746 	if (record_dirty_log)
747 		handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
748 					      new_spte, level);
749 	return old_spte;
750 }
751 
752 static inline void _tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
753 				     u64 new_spte, bool record_acc_track,
754 				     bool record_dirty_log)
755 {
756 	WARN_ON_ONCE(iter->yielded);
757 
758 	iter->old_spte = __tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep,
759 					    iter->old_spte, new_spte,
760 					    iter->gfn, iter->level,
761 					    record_acc_track, record_dirty_log);
762 }
763 
764 static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
765 				    u64 new_spte)
766 {
767 	_tdp_mmu_set_spte(kvm, iter, new_spte, true, true);
768 }
769 
770 static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm,
771 						 struct tdp_iter *iter,
772 						 u64 new_spte)
773 {
774 	_tdp_mmu_set_spte(kvm, iter, new_spte, false, true);
775 }
776 
777 static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm,
778 						 struct tdp_iter *iter,
779 						 u64 new_spte)
780 {
781 	_tdp_mmu_set_spte(kvm, iter, new_spte, true, false);
782 }
783 
784 #define tdp_root_for_each_pte(_iter, _root, _start, _end) \
785 	for_each_tdp_pte(_iter, _root, _start, _end)
786 
787 #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end)	\
788 	tdp_root_for_each_pte(_iter, _root, _start, _end)		\
789 		if (!is_shadow_present_pte(_iter.old_spte) ||		\
790 		    !is_last_spte(_iter.old_spte, _iter.level))		\
791 			continue;					\
792 		else
793 
794 #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end)		\
795 	for_each_tdp_pte(_iter, to_shadow_page(_mmu->root.hpa), _start, _end)
796 
797 /*
798  * Yield if the MMU lock is contended or this thread needs to return control
799  * to the scheduler.
800  *
801  * If this function should yield and flush is set, it will perform a remote
802  * TLB flush before yielding.
803  *
804  * If this function yields, iter->yielded is set and the caller must skip to
805  * the next iteration, where tdp_iter_next() will reset the tdp_iter's walk
806  * over the paging structures to allow the iterator to continue its traversal
807  * from the paging structure root.
808  *
809  * Returns true if this function yielded.
810  */
811 static inline bool __must_check tdp_mmu_iter_cond_resched(struct kvm *kvm,
812 							  struct tdp_iter *iter,
813 							  bool flush, bool shared)
814 {
815 	WARN_ON(iter->yielded);
816 
817 	/* Ensure forward progress has been made before yielding. */
818 	if (iter->next_last_level_gfn == iter->yielded_gfn)
819 		return false;
820 
821 	if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
822 		if (flush)
823 			kvm_flush_remote_tlbs(kvm);
824 
825 		rcu_read_unlock();
826 
827 		if (shared)
828 			cond_resched_rwlock_read(&kvm->mmu_lock);
829 		else
830 			cond_resched_rwlock_write(&kvm->mmu_lock);
831 
832 		rcu_read_lock();
833 
834 		WARN_ON(iter->gfn > iter->next_last_level_gfn);
835 
836 		iter->yielded = true;
837 	}
838 
839 	return iter->yielded;
840 }
841 
842 static inline gfn_t tdp_mmu_max_gfn_exclusive(void)
843 {
844 	/*
845 	 * Bound TDP MMU walks at host.MAXPHYADDR.  KVM disallows memslots with
846 	 * a gpa range that would exceed the max gfn, and KVM does not create
847 	 * MMIO SPTEs for "impossible" gfns, instead sending such accesses down
848 	 * the slow emulation path every time.
849 	 */
850 	return kvm_mmu_max_gfn() + 1;
851 }
852 
853 static void __tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
854 			       bool shared, int zap_level)
855 {
856 	struct tdp_iter iter;
857 
858 	gfn_t end = tdp_mmu_max_gfn_exclusive();
859 	gfn_t start = 0;
860 
861 	for_each_tdp_pte_min_level(iter, root, zap_level, start, end) {
862 retry:
863 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared))
864 			continue;
865 
866 		if (!is_shadow_present_pte(iter.old_spte))
867 			continue;
868 
869 		if (iter.level > zap_level)
870 			continue;
871 
872 		if (!shared)
873 			tdp_mmu_set_spte(kvm, &iter, 0);
874 		else if (tdp_mmu_set_spte_atomic(kvm, &iter, 0))
875 			goto retry;
876 	}
877 }
878 
879 static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
880 			     bool shared)
881 {
882 
883 	/*
884 	 * The root must have an elevated refcount so that it's reachable via
885 	 * mmu_notifier callbacks, which allows this path to yield and drop
886 	 * mmu_lock.  When handling an unmap/release mmu_notifier command, KVM
887 	 * must drop all references to relevant pages prior to completing the
888 	 * callback.  Dropping mmu_lock with an unreachable root would result
889 	 * in zapping SPTEs after a relevant mmu_notifier callback completes
890 	 * and lead to use-after-free as zapping a SPTE triggers "writeback" of
891 	 * dirty accessed bits to the SPTE's associated struct page.
892 	 */
893 	WARN_ON_ONCE(!refcount_read(&root->tdp_mmu_root_count));
894 
895 	kvm_lockdep_assert_mmu_lock_held(kvm, shared);
896 
897 	rcu_read_lock();
898 
899 	/*
900 	 * To avoid RCU stalls due to recursively removing huge swaths of SPs,
901 	 * split the zap into two passes.  On the first pass, zap at the 1gb
902 	 * level, and then zap top-level SPs on the second pass.  "1gb" is not
903 	 * arbitrary, as KVM must be able to zap a 1gb shadow page without
904 	 * inducing a stall to allow in-place replacement with a 1gb hugepage.
905 	 *
906 	 * Because zapping a SP recurses on its children, stepping down to
907 	 * PG_LEVEL_4K in the iterator itself is unnecessary.
908 	 */
909 	__tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_1G);
910 	__tdp_mmu_zap_root(kvm, root, shared, root->role.level);
911 
912 	rcu_read_unlock();
913 }
914 
915 bool kvm_tdp_mmu_zap_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
916 {
917 	u64 old_spte;
918 
919 	/*
920 	 * This helper intentionally doesn't allow zapping a root shadow page,
921 	 * which doesn't have a parent page table and thus no associated entry.
922 	 */
923 	if (WARN_ON_ONCE(!sp->ptep))
924 		return false;
925 
926 	old_spte = kvm_tdp_mmu_read_spte(sp->ptep);
927 	if (WARN_ON_ONCE(!is_shadow_present_pte(old_spte)))
928 		return false;
929 
930 	__tdp_mmu_set_spte(kvm, kvm_mmu_page_as_id(sp), sp->ptep, old_spte, 0,
931 			   sp->gfn, sp->role.level + 1, true, true);
932 
933 	return true;
934 }
935 
936 /*
937  * Zap leafs SPTEs for the range of gfns, [start, end). Returns true if SPTEs
938  * have been cleared and a TLB flush is needed before releasing the MMU lock.
939  *
940  * If can_yield is true, will release the MMU lock and reschedule if the
941  * scheduler needs the CPU or there is contention on the MMU lock. If this
942  * function cannot yield, it will not release the MMU lock or reschedule and
943  * the caller must ensure it does not supply too large a GFN range, or the
944  * operation can cause a soft lockup.
945  */
946 static bool tdp_mmu_zap_leafs(struct kvm *kvm, struct kvm_mmu_page *root,
947 			      gfn_t start, gfn_t end, bool can_yield, bool flush)
948 {
949 	struct tdp_iter iter;
950 
951 	end = min(end, tdp_mmu_max_gfn_exclusive());
952 
953 	lockdep_assert_held_write(&kvm->mmu_lock);
954 
955 	rcu_read_lock();
956 
957 	for_each_tdp_pte_min_level(iter, root, PG_LEVEL_4K, start, end) {
958 		if (can_yield &&
959 		    tdp_mmu_iter_cond_resched(kvm, &iter, flush, false)) {
960 			flush = false;
961 			continue;
962 		}
963 
964 		if (!is_shadow_present_pte(iter.old_spte) ||
965 		    !is_last_spte(iter.old_spte, iter.level))
966 			continue;
967 
968 		tdp_mmu_set_spte(kvm, &iter, 0);
969 		flush = true;
970 	}
971 
972 	rcu_read_unlock();
973 
974 	/*
975 	 * Because this flow zaps _only_ leaf SPTEs, the caller doesn't need
976 	 * to provide RCU protection as no 'struct kvm_mmu_page' will be freed.
977 	 */
978 	return flush;
979 }
980 
981 /*
982  * Tears down the mappings for the range of gfns, [start, end), and frees the
983  * non-root pages mapping GFNs strictly within that range. Returns true if
984  * SPTEs have been cleared and a TLB flush is needed before releasing the
985  * MMU lock.
986  */
987 bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, int as_id, gfn_t start, gfn_t end,
988 			   bool can_yield, bool flush)
989 {
990 	struct kvm_mmu_page *root;
991 
992 	for_each_tdp_mmu_root_yield_safe(kvm, root, as_id)
993 		flush = tdp_mmu_zap_leafs(kvm, root, start, end, can_yield, flush);
994 
995 	return flush;
996 }
997 
998 void kvm_tdp_mmu_zap_all(struct kvm *kvm)
999 {
1000 	struct kvm_mmu_page *root;
1001 	int i;
1002 
1003 	/*
1004 	 * Zap all roots, including invalid roots, as all SPTEs must be dropped
1005 	 * before returning to the caller.  Zap directly even if the root is
1006 	 * also being zapped by a worker.  Walking zapped top-level SPTEs isn't
1007 	 * all that expensive and mmu_lock is already held, which means the
1008 	 * worker has yielded, i.e. flushing the work instead of zapping here
1009 	 * isn't guaranteed to be any faster.
1010 	 *
1011 	 * A TLB flush is unnecessary, KVM zaps everything if and only the VM
1012 	 * is being destroyed or the userspace VMM has exited.  In both cases,
1013 	 * KVM_RUN is unreachable, i.e. no vCPUs will ever service the request.
1014 	 */
1015 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1016 		for_each_tdp_mmu_root_yield_safe(kvm, root, i)
1017 			tdp_mmu_zap_root(kvm, root, false);
1018 	}
1019 }
1020 
1021 /*
1022  * Zap all invalidated roots to ensure all SPTEs are dropped before the "fast
1023  * zap" completes.
1024  */
1025 void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm)
1026 {
1027 	flush_workqueue(kvm->arch.tdp_mmu_zap_wq);
1028 }
1029 
1030 /*
1031  * Mark each TDP MMU root as invalid to prevent vCPUs from reusing a root that
1032  * is about to be zapped, e.g. in response to a memslots update.  The actual
1033  * zapping is performed asynchronously, so a reference is taken on all roots.
1034  * Using a separate workqueue makes it easy to ensure that the destruction is
1035  * performed before the "fast zap" completes, without keeping a separate list
1036  * of invalidated roots; the list is effectively the list of work items in
1037  * the workqueue.
1038  *
1039  * Get a reference even if the root is already invalid, the asynchronous worker
1040  * assumes it was gifted a reference to the root it processes.  Because mmu_lock
1041  * is held for write, it should be impossible to observe a root with zero refcount,
1042  * i.e. the list of roots cannot be stale.
1043  *
1044  * This has essentially the same effect for the TDP MMU
1045  * as updating mmu_valid_gen does for the shadow MMU.
1046  */
1047 void kvm_tdp_mmu_invalidate_all_roots(struct kvm *kvm)
1048 {
1049 	struct kvm_mmu_page *root;
1050 
1051 	lockdep_assert_held_write(&kvm->mmu_lock);
1052 	list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) {
1053 		if (!root->role.invalid &&
1054 		    !WARN_ON_ONCE(!kvm_tdp_mmu_get_root(root))) {
1055 			root->role.invalid = true;
1056 			tdp_mmu_schedule_zap_root(kvm, root);
1057 		}
1058 	}
1059 }
1060 
1061 /*
1062  * Installs a last-level SPTE to handle a TDP page fault.
1063  * (NPT/EPT violation/misconfiguration)
1064  */
1065 static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu,
1066 					  struct kvm_page_fault *fault,
1067 					  struct tdp_iter *iter)
1068 {
1069 	struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(iter->sptep));
1070 	u64 new_spte;
1071 	int ret = RET_PF_FIXED;
1072 	bool wrprot = false;
1073 
1074 	WARN_ON(sp->role.level != fault->goal_level);
1075 	if (unlikely(!fault->slot))
1076 		new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
1077 	else
1078 		wrprot = make_spte(vcpu, sp, fault->slot, ACC_ALL, iter->gfn,
1079 					 fault->pfn, iter->old_spte, fault->prefetch, true,
1080 					 fault->map_writable, &new_spte);
1081 
1082 	if (new_spte == iter->old_spte)
1083 		ret = RET_PF_SPURIOUS;
1084 	else if (tdp_mmu_set_spte_atomic(vcpu->kvm, iter, new_spte))
1085 		return RET_PF_RETRY;
1086 	else if (is_shadow_present_pte(iter->old_spte) &&
1087 		 !is_last_spte(iter->old_spte, iter->level))
1088 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1089 						   KVM_PAGES_PER_HPAGE(iter->level + 1));
1090 
1091 	/*
1092 	 * If the page fault was caused by a write but the page is write
1093 	 * protected, emulation is needed. If the emulation was skipped,
1094 	 * the vCPU would have the same fault again.
1095 	 */
1096 	if (wrprot) {
1097 		if (fault->write)
1098 			ret = RET_PF_EMULATE;
1099 	}
1100 
1101 	/* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
1102 	if (unlikely(is_mmio_spte(new_spte))) {
1103 		vcpu->stat.pf_mmio_spte_created++;
1104 		trace_mark_mmio_spte(rcu_dereference(iter->sptep), iter->gfn,
1105 				     new_spte);
1106 		ret = RET_PF_EMULATE;
1107 	} else {
1108 		trace_kvm_mmu_set_spte(iter->level, iter->gfn,
1109 				       rcu_dereference(iter->sptep));
1110 	}
1111 
1112 	return ret;
1113 }
1114 
1115 /*
1116  * tdp_mmu_link_sp - Replace the given spte with an spte pointing to the
1117  * provided page table.
1118  *
1119  * @kvm: kvm instance
1120  * @iter: a tdp_iter instance currently on the SPTE that should be set
1121  * @sp: The new TDP page table to install.
1122  * @account_nx: True if this page table is being installed to split a
1123  *              non-executable huge page.
1124  * @shared: This operation is running under the MMU lock in read mode.
1125  *
1126  * Returns: 0 if the new page table was installed. Non-0 if the page table
1127  *          could not be installed (e.g. the atomic compare-exchange failed).
1128  */
1129 static int tdp_mmu_link_sp(struct kvm *kvm, struct tdp_iter *iter,
1130 			   struct kvm_mmu_page *sp, bool account_nx,
1131 			   bool shared)
1132 {
1133 	u64 spte = make_nonleaf_spte(sp->spt, !kvm_ad_enabled());
1134 	int ret = 0;
1135 
1136 	if (shared) {
1137 		ret = tdp_mmu_set_spte_atomic(kvm, iter, spte);
1138 		if (ret)
1139 			return ret;
1140 	} else {
1141 		tdp_mmu_set_spte(kvm, iter, spte);
1142 	}
1143 
1144 	spin_lock(&kvm->arch.tdp_mmu_pages_lock);
1145 	list_add(&sp->link, &kvm->arch.tdp_mmu_pages);
1146 	if (account_nx)
1147 		account_huge_nx_page(kvm, sp);
1148 	spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
1149 
1150 	return 0;
1151 }
1152 
1153 /*
1154  * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
1155  * page tables and SPTEs to translate the faulting guest physical address.
1156  */
1157 int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
1158 {
1159 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1160 	struct tdp_iter iter;
1161 	struct kvm_mmu_page *sp;
1162 	int ret;
1163 
1164 	kvm_mmu_hugepage_adjust(vcpu, fault);
1165 
1166 	trace_kvm_mmu_spte_requested(fault);
1167 
1168 	rcu_read_lock();
1169 
1170 	tdp_mmu_for_each_pte(iter, mmu, fault->gfn, fault->gfn + 1) {
1171 		if (fault->nx_huge_page_workaround_enabled)
1172 			disallowed_hugepage_adjust(fault, iter.old_spte, iter.level);
1173 
1174 		if (iter.level == fault->goal_level)
1175 			break;
1176 
1177 		/*
1178 		 * If there is an SPTE mapping a large page at a higher level
1179 		 * than the target, that SPTE must be cleared and replaced
1180 		 * with a non-leaf SPTE.
1181 		 */
1182 		if (is_shadow_present_pte(iter.old_spte) &&
1183 		    is_large_pte(iter.old_spte)) {
1184 			if (tdp_mmu_zap_spte_atomic(vcpu->kvm, &iter))
1185 				break;
1186 
1187 			/*
1188 			 * The iter must explicitly re-read the spte here
1189 			 * because the new value informs the !present
1190 			 * path below.
1191 			 */
1192 			iter.old_spte = kvm_tdp_mmu_read_spte(iter.sptep);
1193 		}
1194 
1195 		if (!is_shadow_present_pte(iter.old_spte)) {
1196 			bool account_nx = fault->huge_page_disallowed &&
1197 					  fault->req_level >= iter.level;
1198 
1199 			/*
1200 			 * If SPTE has been frozen by another thread, just
1201 			 * give up and retry, avoiding unnecessary page table
1202 			 * allocation and free.
1203 			 */
1204 			if (is_removed_spte(iter.old_spte))
1205 				break;
1206 
1207 			sp = tdp_mmu_alloc_sp(vcpu);
1208 			tdp_mmu_init_child_sp(sp, &iter);
1209 
1210 			if (tdp_mmu_link_sp(vcpu->kvm, &iter, sp, account_nx, true)) {
1211 				tdp_mmu_free_sp(sp);
1212 				break;
1213 			}
1214 		}
1215 	}
1216 
1217 	/*
1218 	 * Force the guest to retry the access if the upper level SPTEs aren't
1219 	 * in place, or if the target leaf SPTE is frozen by another CPU.
1220 	 */
1221 	if (iter.level != fault->goal_level || is_removed_spte(iter.old_spte)) {
1222 		rcu_read_unlock();
1223 		return RET_PF_RETRY;
1224 	}
1225 
1226 	ret = tdp_mmu_map_handle_target_level(vcpu, fault, &iter);
1227 	rcu_read_unlock();
1228 
1229 	return ret;
1230 }
1231 
1232 bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range,
1233 				 bool flush)
1234 {
1235 	return kvm_tdp_mmu_zap_leafs(kvm, range->slot->as_id, range->start,
1236 				     range->end, range->may_block, flush);
1237 }
1238 
1239 typedef bool (*tdp_handler_t)(struct kvm *kvm, struct tdp_iter *iter,
1240 			      struct kvm_gfn_range *range);
1241 
1242 static __always_inline bool kvm_tdp_mmu_handle_gfn(struct kvm *kvm,
1243 						   struct kvm_gfn_range *range,
1244 						   tdp_handler_t handler)
1245 {
1246 	struct kvm_mmu_page *root;
1247 	struct tdp_iter iter;
1248 	bool ret = false;
1249 
1250 	/*
1251 	 * Don't support rescheduling, none of the MMU notifiers that funnel
1252 	 * into this helper allow blocking; it'd be dead, wasteful code.
1253 	 */
1254 	for_each_tdp_mmu_root(kvm, root, range->slot->as_id) {
1255 		rcu_read_lock();
1256 
1257 		tdp_root_for_each_leaf_pte(iter, root, range->start, range->end)
1258 			ret |= handler(kvm, &iter, range);
1259 
1260 		rcu_read_unlock();
1261 	}
1262 
1263 	return ret;
1264 }
1265 
1266 /*
1267  * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
1268  * if any of the GFNs in the range have been accessed.
1269  */
1270 static bool age_gfn_range(struct kvm *kvm, struct tdp_iter *iter,
1271 			  struct kvm_gfn_range *range)
1272 {
1273 	u64 new_spte = 0;
1274 
1275 	/* If we have a non-accessed entry we don't need to change the pte. */
1276 	if (!is_accessed_spte(iter->old_spte))
1277 		return false;
1278 
1279 	new_spte = iter->old_spte;
1280 
1281 	if (spte_ad_enabled(new_spte)) {
1282 		new_spte &= ~shadow_accessed_mask;
1283 	} else {
1284 		/*
1285 		 * Capture the dirty status of the page, so that it doesn't get
1286 		 * lost when the SPTE is marked for access tracking.
1287 		 */
1288 		if (is_writable_pte(new_spte))
1289 			kvm_set_pfn_dirty(spte_to_pfn(new_spte));
1290 
1291 		new_spte = mark_spte_for_access_track(new_spte);
1292 	}
1293 
1294 	tdp_mmu_set_spte_no_acc_track(kvm, iter, new_spte);
1295 
1296 	return true;
1297 }
1298 
1299 bool kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1300 {
1301 	return kvm_tdp_mmu_handle_gfn(kvm, range, age_gfn_range);
1302 }
1303 
1304 static bool test_age_gfn(struct kvm *kvm, struct tdp_iter *iter,
1305 			 struct kvm_gfn_range *range)
1306 {
1307 	return is_accessed_spte(iter->old_spte);
1308 }
1309 
1310 bool kvm_tdp_mmu_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1311 {
1312 	return kvm_tdp_mmu_handle_gfn(kvm, range, test_age_gfn);
1313 }
1314 
1315 static bool set_spte_gfn(struct kvm *kvm, struct tdp_iter *iter,
1316 			 struct kvm_gfn_range *range)
1317 {
1318 	u64 new_spte;
1319 
1320 	/* Huge pages aren't expected to be modified without first being zapped. */
1321 	WARN_ON(pte_huge(range->pte) || range->start + 1 != range->end);
1322 
1323 	if (iter->level != PG_LEVEL_4K ||
1324 	    !is_shadow_present_pte(iter->old_spte))
1325 		return false;
1326 
1327 	/*
1328 	 * Note, when changing a read-only SPTE, it's not strictly necessary to
1329 	 * zero the SPTE before setting the new PFN, but doing so preserves the
1330 	 * invariant that the PFN of a present * leaf SPTE can never change.
1331 	 * See __handle_changed_spte().
1332 	 */
1333 	tdp_mmu_set_spte(kvm, iter, 0);
1334 
1335 	if (!pte_write(range->pte)) {
1336 		new_spte = kvm_mmu_changed_pte_notifier_make_spte(iter->old_spte,
1337 								  pte_pfn(range->pte));
1338 
1339 		tdp_mmu_set_spte(kvm, iter, new_spte);
1340 	}
1341 
1342 	return true;
1343 }
1344 
1345 /*
1346  * Handle the changed_pte MMU notifier for the TDP MMU.
1347  * data is a pointer to the new pte_t mapping the HVA specified by the MMU
1348  * notifier.
1349  * Returns non-zero if a flush is needed before releasing the MMU lock.
1350  */
1351 bool kvm_tdp_mmu_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1352 {
1353 	/*
1354 	 * No need to handle the remote TLB flush under RCU protection, the
1355 	 * target SPTE _must_ be a leaf SPTE, i.e. cannot result in freeing a
1356 	 * shadow page.  See the WARN on pfn_changed in __handle_changed_spte().
1357 	 */
1358 	return kvm_tdp_mmu_handle_gfn(kvm, range, set_spte_gfn);
1359 }
1360 
1361 /*
1362  * Remove write access from all SPTEs at or above min_level that map GFNs
1363  * [start, end). Returns true if an SPTE has been changed and the TLBs need to
1364  * be flushed.
1365  */
1366 static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1367 			     gfn_t start, gfn_t end, int min_level)
1368 {
1369 	struct tdp_iter iter;
1370 	u64 new_spte;
1371 	bool spte_set = false;
1372 
1373 	rcu_read_lock();
1374 
1375 	BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
1376 
1377 	for_each_tdp_pte_min_level(iter, root, min_level, start, end) {
1378 retry:
1379 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1380 			continue;
1381 
1382 		if (!is_shadow_present_pte(iter.old_spte) ||
1383 		    !is_last_spte(iter.old_spte, iter.level) ||
1384 		    !(iter.old_spte & PT_WRITABLE_MASK))
1385 			continue;
1386 
1387 		new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
1388 
1389 		if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte))
1390 			goto retry;
1391 
1392 		spte_set = true;
1393 	}
1394 
1395 	rcu_read_unlock();
1396 	return spte_set;
1397 }
1398 
1399 /*
1400  * Remove write access from all the SPTEs mapping GFNs in the memslot. Will
1401  * only affect leaf SPTEs down to min_level.
1402  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1403  */
1404 bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm,
1405 			     const struct kvm_memory_slot *slot, int min_level)
1406 {
1407 	struct kvm_mmu_page *root;
1408 	bool spte_set = false;
1409 
1410 	lockdep_assert_held_read(&kvm->mmu_lock);
1411 
1412 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true)
1413 		spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
1414 			     slot->base_gfn + slot->npages, min_level);
1415 
1416 	return spte_set;
1417 }
1418 
1419 static struct kvm_mmu_page *__tdp_mmu_alloc_sp_for_split(gfp_t gfp)
1420 {
1421 	struct kvm_mmu_page *sp;
1422 
1423 	gfp |= __GFP_ZERO;
1424 
1425 	sp = kmem_cache_alloc(mmu_page_header_cache, gfp);
1426 	if (!sp)
1427 		return NULL;
1428 
1429 	sp->spt = (void *)__get_free_page(gfp);
1430 	if (!sp->spt) {
1431 		kmem_cache_free(mmu_page_header_cache, sp);
1432 		return NULL;
1433 	}
1434 
1435 	return sp;
1436 }
1437 
1438 static struct kvm_mmu_page *tdp_mmu_alloc_sp_for_split(struct kvm *kvm,
1439 						       struct tdp_iter *iter,
1440 						       bool shared)
1441 {
1442 	struct kvm_mmu_page *sp;
1443 
1444 	/*
1445 	 * Since we are allocating while under the MMU lock we have to be
1446 	 * careful about GFP flags. Use GFP_NOWAIT to avoid blocking on direct
1447 	 * reclaim and to avoid making any filesystem callbacks (which can end
1448 	 * up invoking KVM MMU notifiers, resulting in a deadlock).
1449 	 *
1450 	 * If this allocation fails we drop the lock and retry with reclaim
1451 	 * allowed.
1452 	 */
1453 	sp = __tdp_mmu_alloc_sp_for_split(GFP_NOWAIT | __GFP_ACCOUNT);
1454 	if (sp)
1455 		return sp;
1456 
1457 	rcu_read_unlock();
1458 
1459 	if (shared)
1460 		read_unlock(&kvm->mmu_lock);
1461 	else
1462 		write_unlock(&kvm->mmu_lock);
1463 
1464 	iter->yielded = true;
1465 	sp = __tdp_mmu_alloc_sp_for_split(GFP_KERNEL_ACCOUNT);
1466 
1467 	if (shared)
1468 		read_lock(&kvm->mmu_lock);
1469 	else
1470 		write_lock(&kvm->mmu_lock);
1471 
1472 	rcu_read_lock();
1473 
1474 	return sp;
1475 }
1476 
1477 static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter,
1478 				   struct kvm_mmu_page *sp, bool shared)
1479 {
1480 	const u64 huge_spte = iter->old_spte;
1481 	const int level = iter->level;
1482 	int ret, i;
1483 
1484 	tdp_mmu_init_child_sp(sp, iter);
1485 
1486 	/*
1487 	 * No need for atomics when writing to sp->spt since the page table has
1488 	 * not been linked in yet and thus is not reachable from any other CPU.
1489 	 */
1490 	for (i = 0; i < PT64_ENT_PER_PAGE; i++)
1491 		sp->spt[i] = make_huge_page_split_spte(huge_spte, level, i);
1492 
1493 	/*
1494 	 * Replace the huge spte with a pointer to the populated lower level
1495 	 * page table. Since we are making this change without a TLB flush vCPUs
1496 	 * will see a mix of the split mappings and the original huge mapping,
1497 	 * depending on what's currently in their TLB. This is fine from a
1498 	 * correctness standpoint since the translation will be the same either
1499 	 * way.
1500 	 */
1501 	ret = tdp_mmu_link_sp(kvm, iter, sp, false, shared);
1502 	if (ret)
1503 		goto out;
1504 
1505 	/*
1506 	 * tdp_mmu_link_sp_atomic() will handle subtracting the huge page we
1507 	 * are overwriting from the page stats. But we have to manually update
1508 	 * the page stats with the new present child pages.
1509 	 */
1510 	kvm_update_page_stats(kvm, level - 1, PT64_ENT_PER_PAGE);
1511 
1512 out:
1513 	trace_kvm_mmu_split_huge_page(iter->gfn, huge_spte, level, ret);
1514 	return ret;
1515 }
1516 
1517 static int tdp_mmu_split_huge_pages_root(struct kvm *kvm,
1518 					 struct kvm_mmu_page *root,
1519 					 gfn_t start, gfn_t end,
1520 					 int target_level, bool shared)
1521 {
1522 	struct kvm_mmu_page *sp = NULL;
1523 	struct tdp_iter iter;
1524 	int ret = 0;
1525 
1526 	rcu_read_lock();
1527 
1528 	/*
1529 	 * Traverse the page table splitting all huge pages above the target
1530 	 * level into one lower level. For example, if we encounter a 1GB page
1531 	 * we split it into 512 2MB pages.
1532 	 *
1533 	 * Since the TDP iterator uses a pre-order traversal, we are guaranteed
1534 	 * to visit an SPTE before ever visiting its children, which means we
1535 	 * will correctly recursively split huge pages that are more than one
1536 	 * level above the target level (e.g. splitting a 1GB to 512 2MB pages,
1537 	 * and then splitting each of those to 512 4KB pages).
1538 	 */
1539 	for_each_tdp_pte_min_level(iter, root, target_level + 1, start, end) {
1540 retry:
1541 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared))
1542 			continue;
1543 
1544 		if (!is_shadow_present_pte(iter.old_spte) || !is_large_pte(iter.old_spte))
1545 			continue;
1546 
1547 		if (!sp) {
1548 			sp = tdp_mmu_alloc_sp_for_split(kvm, &iter, shared);
1549 			if (!sp) {
1550 				ret = -ENOMEM;
1551 				trace_kvm_mmu_split_huge_page(iter.gfn,
1552 							      iter.old_spte,
1553 							      iter.level, ret);
1554 				break;
1555 			}
1556 
1557 			if (iter.yielded)
1558 				continue;
1559 		}
1560 
1561 		if (tdp_mmu_split_huge_page(kvm, &iter, sp, shared))
1562 			goto retry;
1563 
1564 		sp = NULL;
1565 	}
1566 
1567 	rcu_read_unlock();
1568 
1569 	/*
1570 	 * It's possible to exit the loop having never used the last sp if, for
1571 	 * example, a vCPU doing HugePage NX splitting wins the race and
1572 	 * installs its own sp in place of the last sp we tried to split.
1573 	 */
1574 	if (sp)
1575 		tdp_mmu_free_sp(sp);
1576 
1577 	return ret;
1578 }
1579 
1580 
1581 /*
1582  * Try to split all huge pages mapped by the TDP MMU down to the target level.
1583  */
1584 void kvm_tdp_mmu_try_split_huge_pages(struct kvm *kvm,
1585 				      const struct kvm_memory_slot *slot,
1586 				      gfn_t start, gfn_t end,
1587 				      int target_level, bool shared)
1588 {
1589 	struct kvm_mmu_page *root;
1590 	int r = 0;
1591 
1592 	kvm_lockdep_assert_mmu_lock_held(kvm, shared);
1593 
1594 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, shared) {
1595 		r = tdp_mmu_split_huge_pages_root(kvm, root, start, end, target_level, shared);
1596 		if (r) {
1597 			kvm_tdp_mmu_put_root(kvm, root, shared);
1598 			break;
1599 		}
1600 	}
1601 }
1602 
1603 /*
1604  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
1605  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
1606  * If AD bits are not enabled, this will require clearing the writable bit on
1607  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
1608  * be flushed.
1609  */
1610 static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1611 			   gfn_t start, gfn_t end)
1612 {
1613 	struct tdp_iter iter;
1614 	u64 new_spte;
1615 	bool spte_set = false;
1616 
1617 	rcu_read_lock();
1618 
1619 	tdp_root_for_each_leaf_pte(iter, root, start, end) {
1620 retry:
1621 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1622 			continue;
1623 
1624 		if (!is_shadow_present_pte(iter.old_spte))
1625 			continue;
1626 
1627 		if (spte_ad_need_write_protect(iter.old_spte)) {
1628 			if (is_writable_pte(iter.old_spte))
1629 				new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
1630 			else
1631 				continue;
1632 		} else {
1633 			if (iter.old_spte & shadow_dirty_mask)
1634 				new_spte = iter.old_spte & ~shadow_dirty_mask;
1635 			else
1636 				continue;
1637 		}
1638 
1639 		if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte))
1640 			goto retry;
1641 
1642 		spte_set = true;
1643 	}
1644 
1645 	rcu_read_unlock();
1646 	return spte_set;
1647 }
1648 
1649 /*
1650  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
1651  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
1652  * If AD bits are not enabled, this will require clearing the writable bit on
1653  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
1654  * be flushed.
1655  */
1656 bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm,
1657 				  const struct kvm_memory_slot *slot)
1658 {
1659 	struct kvm_mmu_page *root;
1660 	bool spte_set = false;
1661 
1662 	lockdep_assert_held_read(&kvm->mmu_lock);
1663 
1664 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true)
1665 		spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
1666 				slot->base_gfn + slot->npages);
1667 
1668 	return spte_set;
1669 }
1670 
1671 /*
1672  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
1673  * set in mask, starting at gfn. The given memslot is expected to contain all
1674  * the GFNs represented by set bits in the mask. If AD bits are enabled,
1675  * clearing the dirty status will involve clearing the dirty bit on each SPTE
1676  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
1677  */
1678 static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
1679 				  gfn_t gfn, unsigned long mask, bool wrprot)
1680 {
1681 	struct tdp_iter iter;
1682 	u64 new_spte;
1683 
1684 	rcu_read_lock();
1685 
1686 	tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
1687 				    gfn + BITS_PER_LONG) {
1688 		if (!mask)
1689 			break;
1690 
1691 		if (iter.level > PG_LEVEL_4K ||
1692 		    !(mask & (1UL << (iter.gfn - gfn))))
1693 			continue;
1694 
1695 		mask &= ~(1UL << (iter.gfn - gfn));
1696 
1697 		if (wrprot || spte_ad_need_write_protect(iter.old_spte)) {
1698 			if (is_writable_pte(iter.old_spte))
1699 				new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
1700 			else
1701 				continue;
1702 		} else {
1703 			if (iter.old_spte & shadow_dirty_mask)
1704 				new_spte = iter.old_spte & ~shadow_dirty_mask;
1705 			else
1706 				continue;
1707 		}
1708 
1709 		tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
1710 	}
1711 
1712 	rcu_read_unlock();
1713 }
1714 
1715 /*
1716  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
1717  * set in mask, starting at gfn. The given memslot is expected to contain all
1718  * the GFNs represented by set bits in the mask. If AD bits are enabled,
1719  * clearing the dirty status will involve clearing the dirty bit on each SPTE
1720  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
1721  */
1722 void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1723 				       struct kvm_memory_slot *slot,
1724 				       gfn_t gfn, unsigned long mask,
1725 				       bool wrprot)
1726 {
1727 	struct kvm_mmu_page *root;
1728 
1729 	lockdep_assert_held_write(&kvm->mmu_lock);
1730 	for_each_tdp_mmu_root(kvm, root, slot->as_id)
1731 		clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
1732 }
1733 
1734 /*
1735  * Clear leaf entries which could be replaced by large mappings, for
1736  * GFNs within the slot.
1737  */
1738 static void zap_collapsible_spte_range(struct kvm *kvm,
1739 				       struct kvm_mmu_page *root,
1740 				       const struct kvm_memory_slot *slot)
1741 {
1742 	gfn_t start = slot->base_gfn;
1743 	gfn_t end = start + slot->npages;
1744 	struct tdp_iter iter;
1745 	int max_mapping_level;
1746 	kvm_pfn_t pfn;
1747 
1748 	rcu_read_lock();
1749 
1750 	tdp_root_for_each_pte(iter, root, start, end) {
1751 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1752 			continue;
1753 
1754 		if (!is_shadow_present_pte(iter.old_spte) ||
1755 		    !is_last_spte(iter.old_spte, iter.level))
1756 			continue;
1757 
1758 		/*
1759 		 * This is a leaf SPTE. Check if the PFN it maps can
1760 		 * be mapped at a higher level.
1761 		 */
1762 		pfn = spte_to_pfn(iter.old_spte);
1763 
1764 		if (kvm_is_reserved_pfn(pfn))
1765 			continue;
1766 
1767 		max_mapping_level = kvm_mmu_max_mapping_level(kvm, slot,
1768 				iter.gfn, pfn, PG_LEVEL_NUM);
1769 
1770 		WARN_ON(max_mapping_level < iter.level);
1771 
1772 		/*
1773 		 * If this page is already mapped at the highest
1774 		 * viable level, there's nothing more to do.
1775 		 */
1776 		if (max_mapping_level == iter.level)
1777 			continue;
1778 
1779 		/*
1780 		 * The page can be remapped at a higher level, so step
1781 		 * up to zap the parent SPTE.
1782 		 */
1783 		while (max_mapping_level > iter.level)
1784 			tdp_iter_step_up(&iter);
1785 
1786 		/* Note, a successful atomic zap also does a remote TLB flush. */
1787 		tdp_mmu_zap_spte_atomic(kvm, &iter);
1788 
1789 		/*
1790 		 * If the atomic zap fails, the iter will recurse back into
1791 		 * the same subtree to retry.
1792 		 */
1793 	}
1794 
1795 	rcu_read_unlock();
1796 }
1797 
1798 /*
1799  * Clear non-leaf entries (and free associated page tables) which could
1800  * be replaced by large mappings, for GFNs within the slot.
1801  */
1802 void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm,
1803 				       const struct kvm_memory_slot *slot)
1804 {
1805 	struct kvm_mmu_page *root;
1806 
1807 	lockdep_assert_held_read(&kvm->mmu_lock);
1808 
1809 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true)
1810 		zap_collapsible_spte_range(kvm, root, slot);
1811 }
1812 
1813 /*
1814  * Removes write access on the last level SPTE mapping this GFN and unsets the
1815  * MMU-writable bit to ensure future writes continue to be intercepted.
1816  * Returns true if an SPTE was set and a TLB flush is needed.
1817  */
1818 static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
1819 			      gfn_t gfn, int min_level)
1820 {
1821 	struct tdp_iter iter;
1822 	u64 new_spte;
1823 	bool spte_set = false;
1824 
1825 	BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
1826 
1827 	rcu_read_lock();
1828 
1829 	for_each_tdp_pte_min_level(iter, root, min_level, gfn, gfn + 1) {
1830 		if (!is_shadow_present_pte(iter.old_spte) ||
1831 		    !is_last_spte(iter.old_spte, iter.level))
1832 			continue;
1833 
1834 		new_spte = iter.old_spte &
1835 			~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
1836 
1837 		if (new_spte == iter.old_spte)
1838 			break;
1839 
1840 		tdp_mmu_set_spte(kvm, &iter, new_spte);
1841 		spte_set = true;
1842 	}
1843 
1844 	rcu_read_unlock();
1845 
1846 	return spte_set;
1847 }
1848 
1849 /*
1850  * Removes write access on the last level SPTE mapping this GFN and unsets the
1851  * MMU-writable bit to ensure future writes continue to be intercepted.
1852  * Returns true if an SPTE was set and a TLB flush is needed.
1853  */
1854 bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
1855 				   struct kvm_memory_slot *slot, gfn_t gfn,
1856 				   int min_level)
1857 {
1858 	struct kvm_mmu_page *root;
1859 	bool spte_set = false;
1860 
1861 	lockdep_assert_held_write(&kvm->mmu_lock);
1862 	for_each_tdp_mmu_root(kvm, root, slot->as_id)
1863 		spte_set |= write_protect_gfn(kvm, root, gfn, min_level);
1864 
1865 	return spte_set;
1866 }
1867 
1868 /*
1869  * Return the level of the lowest level SPTE added to sptes.
1870  * That SPTE may be non-present.
1871  *
1872  * Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}.
1873  */
1874 int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
1875 			 int *root_level)
1876 {
1877 	struct tdp_iter iter;
1878 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1879 	gfn_t gfn = addr >> PAGE_SHIFT;
1880 	int leaf = -1;
1881 
1882 	*root_level = vcpu->arch.mmu->root_role.level;
1883 
1884 	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1885 		leaf = iter.level;
1886 		sptes[leaf] = iter.old_spte;
1887 	}
1888 
1889 	return leaf;
1890 }
1891 
1892 /*
1893  * Returns the last level spte pointer of the shadow page walk for the given
1894  * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
1895  * walk could be performed, returns NULL and *spte does not contain valid data.
1896  *
1897  * Contract:
1898  *  - Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}.
1899  *  - The returned sptep must not be used after kvm_tdp_mmu_walk_lockless_end.
1900  *
1901  * WARNING: This function is only intended to be called during fast_page_fault.
1902  */
1903 u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, u64 addr,
1904 					u64 *spte)
1905 {
1906 	struct tdp_iter iter;
1907 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1908 	gfn_t gfn = addr >> PAGE_SHIFT;
1909 	tdp_ptep_t sptep = NULL;
1910 
1911 	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1912 		*spte = iter.old_spte;
1913 		sptep = iter.sptep;
1914 	}
1915 
1916 	/*
1917 	 * Perform the rcu_dereference to get the raw spte pointer value since
1918 	 * we are passing it up to fast_page_fault, which is shared with the
1919 	 * legacy MMU and thus does not retain the TDP MMU-specific __rcu
1920 	 * annotation.
1921 	 *
1922 	 * This is safe since fast_page_fault obeys the contracts of this
1923 	 * function as well as all TDP MMU contracts around modifying SPTEs
1924 	 * outside of mmu_lock.
1925 	 */
1926 	return rcu_dereference(sptep);
1927 }
1928