1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "mmu.h" 4 #include "mmu_internal.h" 5 #include "mmutrace.h" 6 #include "tdp_iter.h" 7 #include "tdp_mmu.h" 8 #include "spte.h" 9 10 #include <asm/cmpxchg.h> 11 #include <trace/events/kvm.h> 12 13 static bool __read_mostly tdp_mmu_enabled = true; 14 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644); 15 16 /* Initializes the TDP MMU for the VM, if enabled. */ 17 int kvm_mmu_init_tdp_mmu(struct kvm *kvm) 18 { 19 struct workqueue_struct *wq; 20 21 if (!tdp_enabled || !READ_ONCE(tdp_mmu_enabled)) 22 return 0; 23 24 wq = alloc_workqueue("kvm", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 0); 25 if (!wq) 26 return -ENOMEM; 27 28 /* This should not be changed for the lifetime of the VM. */ 29 kvm->arch.tdp_mmu_enabled = true; 30 INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots); 31 spin_lock_init(&kvm->arch.tdp_mmu_pages_lock); 32 INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages); 33 kvm->arch.tdp_mmu_zap_wq = wq; 34 return 1; 35 } 36 37 /* Arbitrarily returns true so that this may be used in if statements. */ 38 static __always_inline bool kvm_lockdep_assert_mmu_lock_held(struct kvm *kvm, 39 bool shared) 40 { 41 if (shared) 42 lockdep_assert_held_read(&kvm->mmu_lock); 43 else 44 lockdep_assert_held_write(&kvm->mmu_lock); 45 46 return true; 47 } 48 49 void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm) 50 { 51 if (!kvm->arch.tdp_mmu_enabled) 52 return; 53 54 /* Also waits for any queued work items. */ 55 destroy_workqueue(kvm->arch.tdp_mmu_zap_wq); 56 57 WARN_ON(!list_empty(&kvm->arch.tdp_mmu_pages)); 58 WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots)); 59 60 /* 61 * Ensure that all the outstanding RCU callbacks to free shadow pages 62 * can run before the VM is torn down. Work items on tdp_mmu_zap_wq 63 * can call kvm_tdp_mmu_put_root and create new callbacks. 64 */ 65 rcu_barrier(); 66 } 67 68 static void tdp_mmu_free_sp(struct kvm_mmu_page *sp) 69 { 70 free_page((unsigned long)sp->spt); 71 kmem_cache_free(mmu_page_header_cache, sp); 72 } 73 74 /* 75 * This is called through call_rcu in order to free TDP page table memory 76 * safely with respect to other kernel threads that may be operating on 77 * the memory. 78 * By only accessing TDP MMU page table memory in an RCU read critical 79 * section, and freeing it after a grace period, lockless access to that 80 * memory won't use it after it is freed. 81 */ 82 static void tdp_mmu_free_sp_rcu_callback(struct rcu_head *head) 83 { 84 struct kvm_mmu_page *sp = container_of(head, struct kvm_mmu_page, 85 rcu_head); 86 87 tdp_mmu_free_sp(sp); 88 } 89 90 static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root, 91 bool shared); 92 93 static void tdp_mmu_zap_root_work(struct work_struct *work) 94 { 95 struct kvm_mmu_page *root = container_of(work, struct kvm_mmu_page, 96 tdp_mmu_async_work); 97 struct kvm *kvm = root->tdp_mmu_async_data; 98 99 read_lock(&kvm->mmu_lock); 100 101 /* 102 * A TLB flush is not necessary as KVM performs a local TLB flush when 103 * allocating a new root (see kvm_mmu_load()), and when migrating vCPU 104 * to a different pCPU. Note, the local TLB flush on reuse also 105 * invalidates any paging-structure-cache entries, i.e. TLB entries for 106 * intermediate paging structures, that may be zapped, as such entries 107 * are associated with the ASID on both VMX and SVM. 108 */ 109 tdp_mmu_zap_root(kvm, root, true); 110 111 /* 112 * Drop the refcount using kvm_tdp_mmu_put_root() to test its logic for 113 * avoiding an infinite loop. By design, the root is reachable while 114 * it's being asynchronously zapped, thus a different task can put its 115 * last reference, i.e. flowing through kvm_tdp_mmu_put_root() for an 116 * asynchronously zapped root is unavoidable. 117 */ 118 kvm_tdp_mmu_put_root(kvm, root, true); 119 120 read_unlock(&kvm->mmu_lock); 121 } 122 123 static void tdp_mmu_schedule_zap_root(struct kvm *kvm, struct kvm_mmu_page *root) 124 { 125 root->tdp_mmu_async_data = kvm; 126 INIT_WORK(&root->tdp_mmu_async_work, tdp_mmu_zap_root_work); 127 queue_work(kvm->arch.tdp_mmu_zap_wq, &root->tdp_mmu_async_work); 128 } 129 130 static inline bool kvm_tdp_root_mark_invalid(struct kvm_mmu_page *page) 131 { 132 union kvm_mmu_page_role role = page->role; 133 role.invalid = true; 134 135 /* No need to use cmpxchg, only the invalid bit can change. */ 136 role.word = xchg(&page->role.word, role.word); 137 return role.invalid; 138 } 139 140 void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root, 141 bool shared) 142 { 143 kvm_lockdep_assert_mmu_lock_held(kvm, shared); 144 145 if (!refcount_dec_and_test(&root->tdp_mmu_root_count)) 146 return; 147 148 WARN_ON(!root->tdp_mmu_page); 149 150 /* 151 * The root now has refcount=0. It is valid, but readers already 152 * cannot acquire a reference to it because kvm_tdp_mmu_get_root() 153 * rejects it. This remains true for the rest of the execution 154 * of this function, because readers visit valid roots only 155 * (except for tdp_mmu_zap_root_work(), which however 156 * does not acquire any reference itself). 157 * 158 * Even though there are flows that need to visit all roots for 159 * correctness, they all take mmu_lock for write, so they cannot yet 160 * run concurrently. The same is true after kvm_tdp_root_mark_invalid, 161 * since the root still has refcount=0. 162 * 163 * However, tdp_mmu_zap_root can yield, and writers do not expect to 164 * see refcount=0 (see for example kvm_tdp_mmu_invalidate_all_roots()). 165 * So the root temporarily gets an extra reference, going to refcount=1 166 * while staying invalid. Readers still cannot acquire any reference; 167 * but writers are now allowed to run if tdp_mmu_zap_root yields and 168 * they might take an extra reference if they themselves yield. 169 * Therefore, when the reference is given back by the worker, 170 * there is no guarantee that the refcount is still 1. If not, whoever 171 * puts the last reference will free the page, but they will not have to 172 * zap the root because a root cannot go from invalid to valid. 173 */ 174 if (!kvm_tdp_root_mark_invalid(root)) { 175 refcount_set(&root->tdp_mmu_root_count, 1); 176 177 /* 178 * Zapping the root in a worker is not just "nice to have"; 179 * it is required because kvm_tdp_mmu_invalidate_all_roots() 180 * skips already-invalid roots. If kvm_tdp_mmu_put_root() did 181 * not add the root to the workqueue, kvm_tdp_mmu_zap_all_fast() 182 * might return with some roots not zapped yet. 183 */ 184 tdp_mmu_schedule_zap_root(kvm, root); 185 return; 186 } 187 188 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 189 list_del_rcu(&root->link); 190 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 191 call_rcu(&root->rcu_head, tdp_mmu_free_sp_rcu_callback); 192 } 193 194 /* 195 * Returns the next root after @prev_root (or the first root if @prev_root is 196 * NULL). A reference to the returned root is acquired, and the reference to 197 * @prev_root is released (the caller obviously must hold a reference to 198 * @prev_root if it's non-NULL). 199 * 200 * If @only_valid is true, invalid roots are skipped. 201 * 202 * Returns NULL if the end of tdp_mmu_roots was reached. 203 */ 204 static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm, 205 struct kvm_mmu_page *prev_root, 206 bool shared, bool only_valid) 207 { 208 struct kvm_mmu_page *next_root; 209 210 rcu_read_lock(); 211 212 if (prev_root) 213 next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots, 214 &prev_root->link, 215 typeof(*prev_root), link); 216 else 217 next_root = list_first_or_null_rcu(&kvm->arch.tdp_mmu_roots, 218 typeof(*next_root), link); 219 220 while (next_root) { 221 if ((!only_valid || !next_root->role.invalid) && 222 kvm_tdp_mmu_get_root(next_root)) 223 break; 224 225 next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots, 226 &next_root->link, typeof(*next_root), link); 227 } 228 229 rcu_read_unlock(); 230 231 if (prev_root) 232 kvm_tdp_mmu_put_root(kvm, prev_root, shared); 233 234 return next_root; 235 } 236 237 /* 238 * Note: this iterator gets and puts references to the roots it iterates over. 239 * This makes it safe to release the MMU lock and yield within the loop, but 240 * if exiting the loop early, the caller must drop the reference to the most 241 * recent root. (Unless keeping a live reference is desirable.) 242 * 243 * If shared is set, this function is operating under the MMU lock in read 244 * mode. In the unlikely event that this thread must free a root, the lock 245 * will be temporarily dropped and reacquired in write mode. 246 */ 247 #define __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared, _only_valid)\ 248 for (_root = tdp_mmu_next_root(_kvm, NULL, _shared, _only_valid); \ 249 _root; \ 250 _root = tdp_mmu_next_root(_kvm, _root, _shared, _only_valid)) \ 251 if (kvm_lockdep_assert_mmu_lock_held(_kvm, _shared) && \ 252 kvm_mmu_page_as_id(_root) != _as_id) { \ 253 } else 254 255 #define for_each_valid_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared) \ 256 __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared, true) 257 258 #define for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id) \ 259 __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, false, false) 260 261 /* 262 * Iterate over all TDP MMU roots. Requires that mmu_lock be held for write, 263 * the implication being that any flow that holds mmu_lock for read is 264 * inherently yield-friendly and should use the yield-safe variant above. 265 * Holding mmu_lock for write obviates the need for RCU protection as the list 266 * is guaranteed to be stable. 267 */ 268 #define for_each_tdp_mmu_root(_kvm, _root, _as_id) \ 269 list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link) \ 270 if (kvm_lockdep_assert_mmu_lock_held(_kvm, false) && \ 271 kvm_mmu_page_as_id(_root) != _as_id) { \ 272 } else 273 274 static struct kvm_mmu_page *tdp_mmu_alloc_sp(struct kvm_vcpu *vcpu) 275 { 276 struct kvm_mmu_page *sp; 277 278 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 279 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); 280 281 return sp; 282 } 283 284 static void tdp_mmu_init_sp(struct kvm_mmu_page *sp, tdp_ptep_t sptep, 285 gfn_t gfn, union kvm_mmu_page_role role) 286 { 287 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 288 289 sp->role = role; 290 sp->gfn = gfn; 291 sp->ptep = sptep; 292 sp->tdp_mmu_page = true; 293 294 trace_kvm_mmu_get_page(sp, true); 295 } 296 297 static void tdp_mmu_init_child_sp(struct kvm_mmu_page *child_sp, 298 struct tdp_iter *iter) 299 { 300 struct kvm_mmu_page *parent_sp; 301 union kvm_mmu_page_role role; 302 303 parent_sp = sptep_to_sp(rcu_dereference(iter->sptep)); 304 305 role = parent_sp->role; 306 role.level--; 307 308 tdp_mmu_init_sp(child_sp, iter->sptep, iter->gfn, role); 309 } 310 311 hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu) 312 { 313 union kvm_mmu_page_role role = vcpu->arch.mmu->mmu_role.base; 314 struct kvm *kvm = vcpu->kvm; 315 struct kvm_mmu_page *root; 316 317 lockdep_assert_held_write(&kvm->mmu_lock); 318 319 /* 320 * Check for an existing root before allocating a new one. Note, the 321 * role check prevents consuming an invalid root. 322 */ 323 for_each_tdp_mmu_root(kvm, root, kvm_mmu_role_as_id(role)) { 324 if (root->role.word == role.word && 325 kvm_tdp_mmu_get_root(root)) 326 goto out; 327 } 328 329 root = tdp_mmu_alloc_sp(vcpu); 330 tdp_mmu_init_sp(root, NULL, 0, role); 331 332 refcount_set(&root->tdp_mmu_root_count, 1); 333 334 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 335 list_add_rcu(&root->link, &kvm->arch.tdp_mmu_roots); 336 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 337 338 out: 339 return __pa(root->spt); 340 } 341 342 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, 343 u64 old_spte, u64 new_spte, int level, 344 bool shared); 345 346 static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level) 347 { 348 if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level)) 349 return; 350 351 if (is_accessed_spte(old_spte) && 352 (!is_shadow_present_pte(new_spte) || !is_accessed_spte(new_spte) || 353 spte_to_pfn(old_spte) != spte_to_pfn(new_spte))) 354 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 355 } 356 357 static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn, 358 u64 old_spte, u64 new_spte, int level) 359 { 360 bool pfn_changed; 361 struct kvm_memory_slot *slot; 362 363 if (level > PG_LEVEL_4K) 364 return; 365 366 pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte); 367 368 if ((!is_writable_pte(old_spte) || pfn_changed) && 369 is_writable_pte(new_spte)) { 370 slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn); 371 mark_page_dirty_in_slot(kvm, slot, gfn); 372 } 373 } 374 375 /** 376 * tdp_mmu_unlink_sp() - Remove a shadow page from the list of used pages 377 * 378 * @kvm: kvm instance 379 * @sp: the page to be removed 380 * @shared: This operation may not be running under the exclusive use of 381 * the MMU lock and the operation must synchronize with other 382 * threads that might be adding or removing pages. 383 */ 384 static void tdp_mmu_unlink_sp(struct kvm *kvm, struct kvm_mmu_page *sp, 385 bool shared) 386 { 387 if (shared) 388 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 389 else 390 lockdep_assert_held_write(&kvm->mmu_lock); 391 392 list_del(&sp->link); 393 if (sp->lpage_disallowed) 394 unaccount_huge_nx_page(kvm, sp); 395 396 if (shared) 397 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 398 } 399 400 /** 401 * handle_removed_pt() - handle a page table removed from the TDP structure 402 * 403 * @kvm: kvm instance 404 * @pt: the page removed from the paging structure 405 * @shared: This operation may not be running under the exclusive use 406 * of the MMU lock and the operation must synchronize with other 407 * threads that might be modifying SPTEs. 408 * 409 * Given a page table that has been removed from the TDP paging structure, 410 * iterates through the page table to clear SPTEs and free child page tables. 411 * 412 * Note that pt is passed in as a tdp_ptep_t, but it does not need RCU 413 * protection. Since this thread removed it from the paging structure, 414 * this thread will be responsible for ensuring the page is freed. Hence the 415 * early rcu_dereferences in the function. 416 */ 417 static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared) 418 { 419 struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(pt)); 420 int level = sp->role.level; 421 gfn_t base_gfn = sp->gfn; 422 int i; 423 424 trace_kvm_mmu_prepare_zap_page(sp); 425 426 tdp_mmu_unlink_sp(kvm, sp, shared); 427 428 for (i = 0; i < PT64_ENT_PER_PAGE; i++) { 429 u64 *sptep = rcu_dereference(pt) + i; 430 gfn_t gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level); 431 u64 old_child_spte; 432 433 if (shared) { 434 /* 435 * Set the SPTE to a nonpresent value that other 436 * threads will not overwrite. If the SPTE was 437 * already marked as removed then another thread 438 * handling a page fault could overwrite it, so 439 * set the SPTE until it is set from some other 440 * value to the removed SPTE value. 441 */ 442 for (;;) { 443 old_child_spte = xchg(sptep, REMOVED_SPTE); 444 if (!is_removed_spte(old_child_spte)) 445 break; 446 cpu_relax(); 447 } 448 } else { 449 /* 450 * If the SPTE is not MMU-present, there is no backing 451 * page associated with the SPTE and so no side effects 452 * that need to be recorded, and exclusive ownership of 453 * mmu_lock ensures the SPTE can't be made present. 454 * Note, zapping MMIO SPTEs is also unnecessary as they 455 * are guarded by the memslots generation, not by being 456 * unreachable. 457 */ 458 old_child_spte = READ_ONCE(*sptep); 459 if (!is_shadow_present_pte(old_child_spte)) 460 continue; 461 462 /* 463 * Marking the SPTE as a removed SPTE is not 464 * strictly necessary here as the MMU lock will 465 * stop other threads from concurrently modifying 466 * this SPTE. Using the removed SPTE value keeps 467 * the two branches consistent and simplifies 468 * the function. 469 */ 470 WRITE_ONCE(*sptep, REMOVED_SPTE); 471 } 472 handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn, 473 old_child_spte, REMOVED_SPTE, level, 474 shared); 475 } 476 477 call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback); 478 } 479 480 /** 481 * __handle_changed_spte - handle bookkeeping associated with an SPTE change 482 * @kvm: kvm instance 483 * @as_id: the address space of the paging structure the SPTE was a part of 484 * @gfn: the base GFN that was mapped by the SPTE 485 * @old_spte: The value of the SPTE before the change 486 * @new_spte: The value of the SPTE after the change 487 * @level: the level of the PT the SPTE is part of in the paging structure 488 * @shared: This operation may not be running under the exclusive use of 489 * the MMU lock and the operation must synchronize with other 490 * threads that might be modifying SPTEs. 491 * 492 * Handle bookkeeping that might result from the modification of a SPTE. 493 * This function must be called for all TDP SPTE modifications. 494 */ 495 static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, 496 u64 old_spte, u64 new_spte, int level, 497 bool shared) 498 { 499 bool was_present = is_shadow_present_pte(old_spte); 500 bool is_present = is_shadow_present_pte(new_spte); 501 bool was_leaf = was_present && is_last_spte(old_spte, level); 502 bool is_leaf = is_present && is_last_spte(new_spte, level); 503 bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte); 504 505 WARN_ON(level > PT64_ROOT_MAX_LEVEL); 506 WARN_ON(level < PG_LEVEL_4K); 507 WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1)); 508 509 /* 510 * If this warning were to trigger it would indicate that there was a 511 * missing MMU notifier or a race with some notifier handler. 512 * A present, leaf SPTE should never be directly replaced with another 513 * present leaf SPTE pointing to a different PFN. A notifier handler 514 * should be zapping the SPTE before the main MM's page table is 515 * changed, or the SPTE should be zeroed, and the TLBs flushed by the 516 * thread before replacement. 517 */ 518 if (was_leaf && is_leaf && pfn_changed) { 519 pr_err("Invalid SPTE change: cannot replace a present leaf\n" 520 "SPTE with another present leaf SPTE mapping a\n" 521 "different PFN!\n" 522 "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d", 523 as_id, gfn, old_spte, new_spte, level); 524 525 /* 526 * Crash the host to prevent error propagation and guest data 527 * corruption. 528 */ 529 BUG(); 530 } 531 532 if (old_spte == new_spte) 533 return; 534 535 trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte); 536 537 if (is_leaf) 538 check_spte_writable_invariants(new_spte); 539 540 /* 541 * The only times a SPTE should be changed from a non-present to 542 * non-present state is when an MMIO entry is installed/modified/ 543 * removed. In that case, there is nothing to do here. 544 */ 545 if (!was_present && !is_present) { 546 /* 547 * If this change does not involve a MMIO SPTE or removed SPTE, 548 * it is unexpected. Log the change, though it should not 549 * impact the guest since both the former and current SPTEs 550 * are nonpresent. 551 */ 552 if (WARN_ON(!is_mmio_spte(old_spte) && 553 !is_mmio_spte(new_spte) && 554 !is_removed_spte(new_spte))) 555 pr_err("Unexpected SPTE change! Nonpresent SPTEs\n" 556 "should not be replaced with another,\n" 557 "different nonpresent SPTE, unless one or both\n" 558 "are MMIO SPTEs, or the new SPTE is\n" 559 "a temporary removed SPTE.\n" 560 "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d", 561 as_id, gfn, old_spte, new_spte, level); 562 return; 563 } 564 565 if (is_leaf != was_leaf) 566 kvm_update_page_stats(kvm, level, is_leaf ? 1 : -1); 567 568 if (was_leaf && is_dirty_spte(old_spte) && 569 (!is_present || !is_dirty_spte(new_spte) || pfn_changed)) 570 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 571 572 /* 573 * Recursively handle child PTs if the change removed a subtree from 574 * the paging structure. Note the WARN on the PFN changing without the 575 * SPTE being converted to a hugepage (leaf) or being zapped. Shadow 576 * pages are kernel allocations and should never be migrated. 577 */ 578 if (was_present && !was_leaf && 579 (is_leaf || !is_present || WARN_ON_ONCE(pfn_changed))) 580 handle_removed_pt(kvm, spte_to_child_pt(old_spte, level), shared); 581 } 582 583 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, 584 u64 old_spte, u64 new_spte, int level, 585 bool shared) 586 { 587 __handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, 588 shared); 589 handle_changed_spte_acc_track(old_spte, new_spte, level); 590 handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte, 591 new_spte, level); 592 } 593 594 /* 595 * tdp_mmu_set_spte_atomic - Set a TDP MMU SPTE atomically 596 * and handle the associated bookkeeping. Do not mark the page dirty 597 * in KVM's dirty bitmaps. 598 * 599 * If setting the SPTE fails because it has changed, iter->old_spte will be 600 * refreshed to the current value of the spte. 601 * 602 * @kvm: kvm instance 603 * @iter: a tdp_iter instance currently on the SPTE that should be set 604 * @new_spte: The value the SPTE should be set to 605 * Return: 606 * * 0 - If the SPTE was set. 607 * * -EBUSY - If the SPTE cannot be set. In this case this function will have 608 * no side-effects other than setting iter->old_spte to the last 609 * known value of the spte. 610 */ 611 static inline int tdp_mmu_set_spte_atomic(struct kvm *kvm, 612 struct tdp_iter *iter, 613 u64 new_spte) 614 { 615 u64 *sptep = rcu_dereference(iter->sptep); 616 u64 old_spte; 617 618 /* 619 * The caller is responsible for ensuring the old SPTE is not a REMOVED 620 * SPTE. KVM should never attempt to zap or manipulate a REMOVED SPTE, 621 * and pre-checking before inserting a new SPTE is advantageous as it 622 * avoids unnecessary work. 623 */ 624 WARN_ON_ONCE(iter->yielded || is_removed_spte(iter->old_spte)); 625 626 lockdep_assert_held_read(&kvm->mmu_lock); 627 628 /* 629 * Note, fast_pf_fix_direct_spte() can also modify TDP MMU SPTEs and 630 * does not hold the mmu_lock. 631 */ 632 old_spte = cmpxchg64(sptep, iter->old_spte, new_spte); 633 if (old_spte != iter->old_spte) { 634 /* 635 * The page table entry was modified by a different logical 636 * CPU. Refresh iter->old_spte with the current value so the 637 * caller operates on fresh data, e.g. if it retries 638 * tdp_mmu_set_spte_atomic(). 639 */ 640 iter->old_spte = old_spte; 641 return -EBUSY; 642 } 643 644 __handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte, 645 new_spte, iter->level, true); 646 handle_changed_spte_acc_track(iter->old_spte, new_spte, iter->level); 647 648 return 0; 649 } 650 651 static inline int tdp_mmu_zap_spte_atomic(struct kvm *kvm, 652 struct tdp_iter *iter) 653 { 654 int ret; 655 656 /* 657 * Freeze the SPTE by setting it to a special, 658 * non-present value. This will stop other threads from 659 * immediately installing a present entry in its place 660 * before the TLBs are flushed. 661 */ 662 ret = tdp_mmu_set_spte_atomic(kvm, iter, REMOVED_SPTE); 663 if (ret) 664 return ret; 665 666 kvm_flush_remote_tlbs_with_address(kvm, iter->gfn, 667 KVM_PAGES_PER_HPAGE(iter->level)); 668 669 /* 670 * No other thread can overwrite the removed SPTE as they 671 * must either wait on the MMU lock or use 672 * tdp_mmu_set_spte_atomic which will not overwrite the 673 * special removed SPTE value. No bookkeeping is needed 674 * here since the SPTE is going from non-present 675 * to non-present. 676 */ 677 kvm_tdp_mmu_write_spte(iter->sptep, 0); 678 679 return 0; 680 } 681 682 683 /* 684 * __tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping 685 * @kvm: KVM instance 686 * @as_id: Address space ID, i.e. regular vs. SMM 687 * @sptep: Pointer to the SPTE 688 * @old_spte: The current value of the SPTE 689 * @new_spte: The new value that will be set for the SPTE 690 * @gfn: The base GFN that was (or will be) mapped by the SPTE 691 * @level: The level _containing_ the SPTE (its parent PT's level) 692 * @record_acc_track: Notify the MM subsystem of changes to the accessed state 693 * of the page. Should be set unless handling an MMU 694 * notifier for access tracking. Leaving record_acc_track 695 * unset in that case prevents page accesses from being 696 * double counted. 697 * @record_dirty_log: Record the page as dirty in the dirty bitmap if 698 * appropriate for the change being made. Should be set 699 * unless performing certain dirty logging operations. 700 * Leaving record_dirty_log unset in that case prevents page 701 * writes from being double counted. 702 */ 703 static void __tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep, 704 u64 old_spte, u64 new_spte, gfn_t gfn, int level, 705 bool record_acc_track, bool record_dirty_log) 706 { 707 lockdep_assert_held_write(&kvm->mmu_lock); 708 709 /* 710 * No thread should be using this function to set SPTEs to or from the 711 * temporary removed SPTE value. 712 * If operating under the MMU lock in read mode, tdp_mmu_set_spte_atomic 713 * should be used. If operating under the MMU lock in write mode, the 714 * use of the removed SPTE should not be necessary. 715 */ 716 WARN_ON(is_removed_spte(old_spte) || is_removed_spte(new_spte)); 717 718 kvm_tdp_mmu_write_spte(sptep, new_spte); 719 720 __handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false); 721 722 if (record_acc_track) 723 handle_changed_spte_acc_track(old_spte, new_spte, level); 724 if (record_dirty_log) 725 handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte, 726 new_spte, level); 727 } 728 729 static inline void _tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter, 730 u64 new_spte, bool record_acc_track, 731 bool record_dirty_log) 732 { 733 WARN_ON_ONCE(iter->yielded); 734 735 __tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep, iter->old_spte, 736 new_spte, iter->gfn, iter->level, 737 record_acc_track, record_dirty_log); 738 } 739 740 static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter, 741 u64 new_spte) 742 { 743 _tdp_mmu_set_spte(kvm, iter, new_spte, true, true); 744 } 745 746 static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm, 747 struct tdp_iter *iter, 748 u64 new_spte) 749 { 750 _tdp_mmu_set_spte(kvm, iter, new_spte, false, true); 751 } 752 753 static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm, 754 struct tdp_iter *iter, 755 u64 new_spte) 756 { 757 _tdp_mmu_set_spte(kvm, iter, new_spte, true, false); 758 } 759 760 #define tdp_root_for_each_pte(_iter, _root, _start, _end) \ 761 for_each_tdp_pte(_iter, _root, _start, _end) 762 763 #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end) \ 764 tdp_root_for_each_pte(_iter, _root, _start, _end) \ 765 if (!is_shadow_present_pte(_iter.old_spte) || \ 766 !is_last_spte(_iter.old_spte, _iter.level)) \ 767 continue; \ 768 else 769 770 #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end) \ 771 for_each_tdp_pte(_iter, to_shadow_page(_mmu->root.hpa), _start, _end) 772 773 /* 774 * Yield if the MMU lock is contended or this thread needs to return control 775 * to the scheduler. 776 * 777 * If this function should yield and flush is set, it will perform a remote 778 * TLB flush before yielding. 779 * 780 * If this function yields, iter->yielded is set and the caller must skip to 781 * the next iteration, where tdp_iter_next() will reset the tdp_iter's walk 782 * over the paging structures to allow the iterator to continue its traversal 783 * from the paging structure root. 784 * 785 * Returns true if this function yielded. 786 */ 787 static inline bool __must_check tdp_mmu_iter_cond_resched(struct kvm *kvm, 788 struct tdp_iter *iter, 789 bool flush, bool shared) 790 { 791 WARN_ON(iter->yielded); 792 793 /* Ensure forward progress has been made before yielding. */ 794 if (iter->next_last_level_gfn == iter->yielded_gfn) 795 return false; 796 797 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 798 if (flush) 799 kvm_flush_remote_tlbs(kvm); 800 801 rcu_read_unlock(); 802 803 if (shared) 804 cond_resched_rwlock_read(&kvm->mmu_lock); 805 else 806 cond_resched_rwlock_write(&kvm->mmu_lock); 807 808 rcu_read_lock(); 809 810 WARN_ON(iter->gfn > iter->next_last_level_gfn); 811 812 iter->yielded = true; 813 } 814 815 return iter->yielded; 816 } 817 818 static inline gfn_t tdp_mmu_max_gfn_host(void) 819 { 820 /* 821 * Bound TDP MMU walks at host.MAXPHYADDR, guest accesses beyond that 822 * will hit a #PF(RSVD) and never hit an EPT Violation/Misconfig / #NPF, 823 * and so KVM will never install a SPTE for such addresses. 824 */ 825 return 1ULL << (shadow_phys_bits - PAGE_SHIFT); 826 } 827 828 static void __tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root, 829 bool shared, int zap_level) 830 { 831 struct tdp_iter iter; 832 833 gfn_t end = tdp_mmu_max_gfn_host(); 834 gfn_t start = 0; 835 836 for_each_tdp_pte_min_level(iter, root, zap_level, start, end) { 837 retry: 838 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared)) 839 continue; 840 841 if (!is_shadow_present_pte(iter.old_spte)) 842 continue; 843 844 if (iter.level > zap_level) 845 continue; 846 847 if (!shared) 848 tdp_mmu_set_spte(kvm, &iter, 0); 849 else if (tdp_mmu_set_spte_atomic(kvm, &iter, 0)) 850 goto retry; 851 } 852 } 853 854 static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root, 855 bool shared) 856 { 857 858 /* 859 * The root must have an elevated refcount so that it's reachable via 860 * mmu_notifier callbacks, which allows this path to yield and drop 861 * mmu_lock. When handling an unmap/release mmu_notifier command, KVM 862 * must drop all references to relevant pages prior to completing the 863 * callback. Dropping mmu_lock with an unreachable root would result 864 * in zapping SPTEs after a relevant mmu_notifier callback completes 865 * and lead to use-after-free as zapping a SPTE triggers "writeback" of 866 * dirty accessed bits to the SPTE's associated struct page. 867 */ 868 WARN_ON_ONCE(!refcount_read(&root->tdp_mmu_root_count)); 869 870 kvm_lockdep_assert_mmu_lock_held(kvm, shared); 871 872 rcu_read_lock(); 873 874 /* 875 * To avoid RCU stalls due to recursively removing huge swaths of SPs, 876 * split the zap into two passes. On the first pass, zap at the 1gb 877 * level, and then zap top-level SPs on the second pass. "1gb" is not 878 * arbitrary, as KVM must be able to zap a 1gb shadow page without 879 * inducing a stall to allow in-place replacement with a 1gb hugepage. 880 * 881 * Because zapping a SP recurses on its children, stepping down to 882 * PG_LEVEL_4K in the iterator itself is unnecessary. 883 */ 884 __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_1G); 885 __tdp_mmu_zap_root(kvm, root, shared, root->role.level); 886 887 rcu_read_unlock(); 888 } 889 890 bool kvm_tdp_mmu_zap_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 891 { 892 u64 old_spte; 893 894 /* 895 * This helper intentionally doesn't allow zapping a root shadow page, 896 * which doesn't have a parent page table and thus no associated entry. 897 */ 898 if (WARN_ON_ONCE(!sp->ptep)) 899 return false; 900 901 old_spte = kvm_tdp_mmu_read_spte(sp->ptep); 902 if (WARN_ON_ONCE(!is_shadow_present_pte(old_spte))) 903 return false; 904 905 __tdp_mmu_set_spte(kvm, kvm_mmu_page_as_id(sp), sp->ptep, old_spte, 0, 906 sp->gfn, sp->role.level + 1, true, true); 907 908 return true; 909 } 910 911 /* 912 * Zap leafs SPTEs for the range of gfns, [start, end). Returns true if SPTEs 913 * have been cleared and a TLB flush is needed before releasing the MMU lock. 914 * 915 * If can_yield is true, will release the MMU lock and reschedule if the 916 * scheduler needs the CPU or there is contention on the MMU lock. If this 917 * function cannot yield, it will not release the MMU lock or reschedule and 918 * the caller must ensure it does not supply too large a GFN range, or the 919 * operation can cause a soft lockup. 920 */ 921 static bool tdp_mmu_zap_leafs(struct kvm *kvm, struct kvm_mmu_page *root, 922 gfn_t start, gfn_t end, bool can_yield, bool flush) 923 { 924 struct tdp_iter iter; 925 926 end = min(end, tdp_mmu_max_gfn_host()); 927 928 lockdep_assert_held_write(&kvm->mmu_lock); 929 930 rcu_read_lock(); 931 932 for_each_tdp_pte_min_level(iter, root, PG_LEVEL_4K, start, end) { 933 if (can_yield && 934 tdp_mmu_iter_cond_resched(kvm, &iter, flush, false)) { 935 flush = false; 936 continue; 937 } 938 939 if (!is_shadow_present_pte(iter.old_spte) || 940 !is_last_spte(iter.old_spte, iter.level)) 941 continue; 942 943 tdp_mmu_set_spte(kvm, &iter, 0); 944 flush = true; 945 } 946 947 rcu_read_unlock(); 948 949 /* 950 * Because this flow zaps _only_ leaf SPTEs, the caller doesn't need 951 * to provide RCU protection as no 'struct kvm_mmu_page' will be freed. 952 */ 953 return flush; 954 } 955 956 /* 957 * Tears down the mappings for the range of gfns, [start, end), and frees the 958 * non-root pages mapping GFNs strictly within that range. Returns true if 959 * SPTEs have been cleared and a TLB flush is needed before releasing the 960 * MMU lock. 961 */ 962 bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, int as_id, gfn_t start, gfn_t end, 963 bool can_yield, bool flush) 964 { 965 struct kvm_mmu_page *root; 966 967 for_each_tdp_mmu_root_yield_safe(kvm, root, as_id) 968 flush = tdp_mmu_zap_leafs(kvm, root, start, end, can_yield, flush); 969 970 return flush; 971 } 972 973 void kvm_tdp_mmu_zap_all(struct kvm *kvm) 974 { 975 struct kvm_mmu_page *root; 976 int i; 977 978 /* 979 * Zap all roots, including invalid roots, as all SPTEs must be dropped 980 * before returning to the caller. Zap directly even if the root is 981 * also being zapped by a worker. Walking zapped top-level SPTEs isn't 982 * all that expensive and mmu_lock is already held, which means the 983 * worker has yielded, i.e. flushing the work instead of zapping here 984 * isn't guaranteed to be any faster. 985 * 986 * A TLB flush is unnecessary, KVM zaps everything if and only the VM 987 * is being destroyed or the userspace VMM has exited. In both cases, 988 * KVM_RUN is unreachable, i.e. no vCPUs will ever service the request. 989 */ 990 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 991 for_each_tdp_mmu_root_yield_safe(kvm, root, i) 992 tdp_mmu_zap_root(kvm, root, false); 993 } 994 } 995 996 /* 997 * Zap all invalidated roots to ensure all SPTEs are dropped before the "fast 998 * zap" completes. 999 */ 1000 void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm) 1001 { 1002 flush_workqueue(kvm->arch.tdp_mmu_zap_wq); 1003 } 1004 1005 /* 1006 * Mark each TDP MMU root as invalid to prevent vCPUs from reusing a root that 1007 * is about to be zapped, e.g. in response to a memslots update. The actual 1008 * zapping is performed asynchronously, so a reference is taken on all roots. 1009 * Using a separate workqueue makes it easy to ensure that the destruction is 1010 * performed before the "fast zap" completes, without keeping a separate list 1011 * of invalidated roots; the list is effectively the list of work items in 1012 * the workqueue. 1013 * 1014 * Get a reference even if the root is already invalid, the asynchronous worker 1015 * assumes it was gifted a reference to the root it processes. Because mmu_lock 1016 * is held for write, it should be impossible to observe a root with zero refcount, 1017 * i.e. the list of roots cannot be stale. 1018 * 1019 * This has essentially the same effect for the TDP MMU 1020 * as updating mmu_valid_gen does for the shadow MMU. 1021 */ 1022 void kvm_tdp_mmu_invalidate_all_roots(struct kvm *kvm) 1023 { 1024 struct kvm_mmu_page *root; 1025 1026 lockdep_assert_held_write(&kvm->mmu_lock); 1027 list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) { 1028 if (!root->role.invalid && 1029 !WARN_ON_ONCE(!kvm_tdp_mmu_get_root(root))) { 1030 root->role.invalid = true; 1031 tdp_mmu_schedule_zap_root(kvm, root); 1032 } 1033 } 1034 } 1035 1036 /* 1037 * Installs a last-level SPTE to handle a TDP page fault. 1038 * (NPT/EPT violation/misconfiguration) 1039 */ 1040 static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, 1041 struct kvm_page_fault *fault, 1042 struct tdp_iter *iter) 1043 { 1044 struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(iter->sptep)); 1045 u64 new_spte; 1046 int ret = RET_PF_FIXED; 1047 bool wrprot = false; 1048 1049 WARN_ON(sp->role.level != fault->goal_level); 1050 if (unlikely(!fault->slot)) 1051 new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL); 1052 else 1053 wrprot = make_spte(vcpu, sp, fault->slot, ACC_ALL, iter->gfn, 1054 fault->pfn, iter->old_spte, fault->prefetch, true, 1055 fault->map_writable, &new_spte); 1056 1057 if (new_spte == iter->old_spte) 1058 ret = RET_PF_SPURIOUS; 1059 else if (tdp_mmu_set_spte_atomic(vcpu->kvm, iter, new_spte)) 1060 return RET_PF_RETRY; 1061 else if (is_shadow_present_pte(iter->old_spte) && 1062 !is_last_spte(iter->old_spte, iter->level)) 1063 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1064 KVM_PAGES_PER_HPAGE(iter->level + 1)); 1065 1066 /* 1067 * If the page fault was caused by a write but the page is write 1068 * protected, emulation is needed. If the emulation was skipped, 1069 * the vCPU would have the same fault again. 1070 */ 1071 if (wrprot) { 1072 if (fault->write) 1073 ret = RET_PF_EMULATE; 1074 } 1075 1076 /* If a MMIO SPTE is installed, the MMIO will need to be emulated. */ 1077 if (unlikely(is_mmio_spte(new_spte))) { 1078 trace_mark_mmio_spte(rcu_dereference(iter->sptep), iter->gfn, 1079 new_spte); 1080 ret = RET_PF_EMULATE; 1081 } else { 1082 trace_kvm_mmu_set_spte(iter->level, iter->gfn, 1083 rcu_dereference(iter->sptep)); 1084 } 1085 1086 /* 1087 * Increase pf_fixed in both RET_PF_EMULATE and RET_PF_FIXED to be 1088 * consistent with legacy MMU behavior. 1089 */ 1090 if (ret != RET_PF_SPURIOUS) 1091 vcpu->stat.pf_fixed++; 1092 1093 return ret; 1094 } 1095 1096 /* 1097 * tdp_mmu_link_sp - Replace the given spte with an spte pointing to the 1098 * provided page table. 1099 * 1100 * @kvm: kvm instance 1101 * @iter: a tdp_iter instance currently on the SPTE that should be set 1102 * @sp: The new TDP page table to install. 1103 * @account_nx: True if this page table is being installed to split a 1104 * non-executable huge page. 1105 * @shared: This operation is running under the MMU lock in read mode. 1106 * 1107 * Returns: 0 if the new page table was installed. Non-0 if the page table 1108 * could not be installed (e.g. the atomic compare-exchange failed). 1109 */ 1110 static int tdp_mmu_link_sp(struct kvm *kvm, struct tdp_iter *iter, 1111 struct kvm_mmu_page *sp, bool account_nx, 1112 bool shared) 1113 { 1114 u64 spte = make_nonleaf_spte(sp->spt, !shadow_accessed_mask); 1115 int ret = 0; 1116 1117 if (shared) { 1118 ret = tdp_mmu_set_spte_atomic(kvm, iter, spte); 1119 if (ret) 1120 return ret; 1121 } else { 1122 tdp_mmu_set_spte(kvm, iter, spte); 1123 } 1124 1125 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 1126 list_add(&sp->link, &kvm->arch.tdp_mmu_pages); 1127 if (account_nx) 1128 account_huge_nx_page(kvm, sp); 1129 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 1130 1131 return 0; 1132 } 1133 1134 /* 1135 * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing 1136 * page tables and SPTEs to translate the faulting guest physical address. 1137 */ 1138 int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 1139 { 1140 struct kvm_mmu *mmu = vcpu->arch.mmu; 1141 struct tdp_iter iter; 1142 struct kvm_mmu_page *sp; 1143 int ret; 1144 1145 kvm_mmu_hugepage_adjust(vcpu, fault); 1146 1147 trace_kvm_mmu_spte_requested(fault); 1148 1149 rcu_read_lock(); 1150 1151 tdp_mmu_for_each_pte(iter, mmu, fault->gfn, fault->gfn + 1) { 1152 if (fault->nx_huge_page_workaround_enabled) 1153 disallowed_hugepage_adjust(fault, iter.old_spte, iter.level); 1154 1155 if (iter.level == fault->goal_level) 1156 break; 1157 1158 /* 1159 * If there is an SPTE mapping a large page at a higher level 1160 * than the target, that SPTE must be cleared and replaced 1161 * with a non-leaf SPTE. 1162 */ 1163 if (is_shadow_present_pte(iter.old_spte) && 1164 is_large_pte(iter.old_spte)) { 1165 if (tdp_mmu_zap_spte_atomic(vcpu->kvm, &iter)) 1166 break; 1167 1168 /* 1169 * The iter must explicitly re-read the spte here 1170 * because the new value informs the !present 1171 * path below. 1172 */ 1173 iter.old_spte = kvm_tdp_mmu_read_spte(iter.sptep); 1174 } 1175 1176 if (!is_shadow_present_pte(iter.old_spte)) { 1177 bool account_nx = fault->huge_page_disallowed && 1178 fault->req_level >= iter.level; 1179 1180 /* 1181 * If SPTE has been frozen by another thread, just 1182 * give up and retry, avoiding unnecessary page table 1183 * allocation and free. 1184 */ 1185 if (is_removed_spte(iter.old_spte)) 1186 break; 1187 1188 sp = tdp_mmu_alloc_sp(vcpu); 1189 tdp_mmu_init_child_sp(sp, &iter); 1190 1191 if (tdp_mmu_link_sp(vcpu->kvm, &iter, sp, account_nx, true)) { 1192 tdp_mmu_free_sp(sp); 1193 break; 1194 } 1195 } 1196 } 1197 1198 /* 1199 * Force the guest to retry the access if the upper level SPTEs aren't 1200 * in place, or if the target leaf SPTE is frozen by another CPU. 1201 */ 1202 if (iter.level != fault->goal_level || is_removed_spte(iter.old_spte)) { 1203 rcu_read_unlock(); 1204 return RET_PF_RETRY; 1205 } 1206 1207 ret = tdp_mmu_map_handle_target_level(vcpu, fault, &iter); 1208 rcu_read_unlock(); 1209 1210 return ret; 1211 } 1212 1213 bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range, 1214 bool flush) 1215 { 1216 return kvm_tdp_mmu_zap_leafs(kvm, range->slot->as_id, range->start, 1217 range->end, range->may_block, flush); 1218 } 1219 1220 typedef bool (*tdp_handler_t)(struct kvm *kvm, struct tdp_iter *iter, 1221 struct kvm_gfn_range *range); 1222 1223 static __always_inline bool kvm_tdp_mmu_handle_gfn(struct kvm *kvm, 1224 struct kvm_gfn_range *range, 1225 tdp_handler_t handler) 1226 { 1227 struct kvm_mmu_page *root; 1228 struct tdp_iter iter; 1229 bool ret = false; 1230 1231 /* 1232 * Don't support rescheduling, none of the MMU notifiers that funnel 1233 * into this helper allow blocking; it'd be dead, wasteful code. 1234 */ 1235 for_each_tdp_mmu_root(kvm, root, range->slot->as_id) { 1236 rcu_read_lock(); 1237 1238 tdp_root_for_each_leaf_pte(iter, root, range->start, range->end) 1239 ret |= handler(kvm, &iter, range); 1240 1241 rcu_read_unlock(); 1242 } 1243 1244 return ret; 1245 } 1246 1247 /* 1248 * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero 1249 * if any of the GFNs in the range have been accessed. 1250 */ 1251 static bool age_gfn_range(struct kvm *kvm, struct tdp_iter *iter, 1252 struct kvm_gfn_range *range) 1253 { 1254 u64 new_spte = 0; 1255 1256 /* If we have a non-accessed entry we don't need to change the pte. */ 1257 if (!is_accessed_spte(iter->old_spte)) 1258 return false; 1259 1260 new_spte = iter->old_spte; 1261 1262 if (spte_ad_enabled(new_spte)) { 1263 new_spte &= ~shadow_accessed_mask; 1264 } else { 1265 /* 1266 * Capture the dirty status of the page, so that it doesn't get 1267 * lost when the SPTE is marked for access tracking. 1268 */ 1269 if (is_writable_pte(new_spte)) 1270 kvm_set_pfn_dirty(spte_to_pfn(new_spte)); 1271 1272 new_spte = mark_spte_for_access_track(new_spte); 1273 } 1274 1275 tdp_mmu_set_spte_no_acc_track(kvm, iter, new_spte); 1276 1277 return true; 1278 } 1279 1280 bool kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1281 { 1282 return kvm_tdp_mmu_handle_gfn(kvm, range, age_gfn_range); 1283 } 1284 1285 static bool test_age_gfn(struct kvm *kvm, struct tdp_iter *iter, 1286 struct kvm_gfn_range *range) 1287 { 1288 return is_accessed_spte(iter->old_spte); 1289 } 1290 1291 bool kvm_tdp_mmu_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1292 { 1293 return kvm_tdp_mmu_handle_gfn(kvm, range, test_age_gfn); 1294 } 1295 1296 static bool set_spte_gfn(struct kvm *kvm, struct tdp_iter *iter, 1297 struct kvm_gfn_range *range) 1298 { 1299 u64 new_spte; 1300 1301 /* Huge pages aren't expected to be modified without first being zapped. */ 1302 WARN_ON(pte_huge(range->pte) || range->start + 1 != range->end); 1303 1304 if (iter->level != PG_LEVEL_4K || 1305 !is_shadow_present_pte(iter->old_spte)) 1306 return false; 1307 1308 /* 1309 * Note, when changing a read-only SPTE, it's not strictly necessary to 1310 * zero the SPTE before setting the new PFN, but doing so preserves the 1311 * invariant that the PFN of a present * leaf SPTE can never change. 1312 * See __handle_changed_spte(). 1313 */ 1314 tdp_mmu_set_spte(kvm, iter, 0); 1315 1316 if (!pte_write(range->pte)) { 1317 new_spte = kvm_mmu_changed_pte_notifier_make_spte(iter->old_spte, 1318 pte_pfn(range->pte)); 1319 1320 tdp_mmu_set_spte(kvm, iter, new_spte); 1321 } 1322 1323 return true; 1324 } 1325 1326 /* 1327 * Handle the changed_pte MMU notifier for the TDP MMU. 1328 * data is a pointer to the new pte_t mapping the HVA specified by the MMU 1329 * notifier. 1330 * Returns non-zero if a flush is needed before releasing the MMU lock. 1331 */ 1332 bool kvm_tdp_mmu_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1333 { 1334 /* 1335 * No need to handle the remote TLB flush under RCU protection, the 1336 * target SPTE _must_ be a leaf SPTE, i.e. cannot result in freeing a 1337 * shadow page. See the WARN on pfn_changed in __handle_changed_spte(). 1338 */ 1339 return kvm_tdp_mmu_handle_gfn(kvm, range, set_spte_gfn); 1340 } 1341 1342 /* 1343 * Remove write access from all SPTEs at or above min_level that map GFNs 1344 * [start, end). Returns true if an SPTE has been changed and the TLBs need to 1345 * be flushed. 1346 */ 1347 static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, 1348 gfn_t start, gfn_t end, int min_level) 1349 { 1350 struct tdp_iter iter; 1351 u64 new_spte; 1352 bool spte_set = false; 1353 1354 rcu_read_lock(); 1355 1356 BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL); 1357 1358 for_each_tdp_pte_min_level(iter, root, min_level, start, end) { 1359 retry: 1360 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) 1361 continue; 1362 1363 if (!is_shadow_present_pte(iter.old_spte) || 1364 !is_last_spte(iter.old_spte, iter.level) || 1365 !(iter.old_spte & PT_WRITABLE_MASK)) 1366 continue; 1367 1368 new_spte = iter.old_spte & ~PT_WRITABLE_MASK; 1369 1370 if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte)) 1371 goto retry; 1372 1373 spte_set = true; 1374 } 1375 1376 rcu_read_unlock(); 1377 return spte_set; 1378 } 1379 1380 /* 1381 * Remove write access from all the SPTEs mapping GFNs in the memslot. Will 1382 * only affect leaf SPTEs down to min_level. 1383 * Returns true if an SPTE has been changed and the TLBs need to be flushed. 1384 */ 1385 bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, 1386 const struct kvm_memory_slot *slot, int min_level) 1387 { 1388 struct kvm_mmu_page *root; 1389 bool spte_set = false; 1390 1391 lockdep_assert_held_read(&kvm->mmu_lock); 1392 1393 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true) 1394 spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn, 1395 slot->base_gfn + slot->npages, min_level); 1396 1397 return spte_set; 1398 } 1399 1400 static struct kvm_mmu_page *__tdp_mmu_alloc_sp_for_split(gfp_t gfp) 1401 { 1402 struct kvm_mmu_page *sp; 1403 1404 gfp |= __GFP_ZERO; 1405 1406 sp = kmem_cache_alloc(mmu_page_header_cache, gfp); 1407 if (!sp) 1408 return NULL; 1409 1410 sp->spt = (void *)__get_free_page(gfp); 1411 if (!sp->spt) { 1412 kmem_cache_free(mmu_page_header_cache, sp); 1413 return NULL; 1414 } 1415 1416 return sp; 1417 } 1418 1419 static struct kvm_mmu_page *tdp_mmu_alloc_sp_for_split(struct kvm *kvm, 1420 struct tdp_iter *iter, 1421 bool shared) 1422 { 1423 struct kvm_mmu_page *sp; 1424 1425 /* 1426 * Since we are allocating while under the MMU lock we have to be 1427 * careful about GFP flags. Use GFP_NOWAIT to avoid blocking on direct 1428 * reclaim and to avoid making any filesystem callbacks (which can end 1429 * up invoking KVM MMU notifiers, resulting in a deadlock). 1430 * 1431 * If this allocation fails we drop the lock and retry with reclaim 1432 * allowed. 1433 */ 1434 sp = __tdp_mmu_alloc_sp_for_split(GFP_NOWAIT | __GFP_ACCOUNT); 1435 if (sp) 1436 return sp; 1437 1438 rcu_read_unlock(); 1439 1440 if (shared) 1441 read_unlock(&kvm->mmu_lock); 1442 else 1443 write_unlock(&kvm->mmu_lock); 1444 1445 iter->yielded = true; 1446 sp = __tdp_mmu_alloc_sp_for_split(GFP_KERNEL_ACCOUNT); 1447 1448 if (shared) 1449 read_lock(&kvm->mmu_lock); 1450 else 1451 write_lock(&kvm->mmu_lock); 1452 1453 rcu_read_lock(); 1454 1455 return sp; 1456 } 1457 1458 static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter, 1459 struct kvm_mmu_page *sp, bool shared) 1460 { 1461 const u64 huge_spte = iter->old_spte; 1462 const int level = iter->level; 1463 int ret, i; 1464 1465 tdp_mmu_init_child_sp(sp, iter); 1466 1467 /* 1468 * No need for atomics when writing to sp->spt since the page table has 1469 * not been linked in yet and thus is not reachable from any other CPU. 1470 */ 1471 for (i = 0; i < PT64_ENT_PER_PAGE; i++) 1472 sp->spt[i] = make_huge_page_split_spte(huge_spte, level, i); 1473 1474 /* 1475 * Replace the huge spte with a pointer to the populated lower level 1476 * page table. Since we are making this change without a TLB flush vCPUs 1477 * will see a mix of the split mappings and the original huge mapping, 1478 * depending on what's currently in their TLB. This is fine from a 1479 * correctness standpoint since the translation will be the same either 1480 * way. 1481 */ 1482 ret = tdp_mmu_link_sp(kvm, iter, sp, false, shared); 1483 if (ret) 1484 goto out; 1485 1486 /* 1487 * tdp_mmu_link_sp_atomic() will handle subtracting the huge page we 1488 * are overwriting from the page stats. But we have to manually update 1489 * the page stats with the new present child pages. 1490 */ 1491 kvm_update_page_stats(kvm, level - 1, PT64_ENT_PER_PAGE); 1492 1493 out: 1494 trace_kvm_mmu_split_huge_page(iter->gfn, huge_spte, level, ret); 1495 return ret; 1496 } 1497 1498 static int tdp_mmu_split_huge_pages_root(struct kvm *kvm, 1499 struct kvm_mmu_page *root, 1500 gfn_t start, gfn_t end, 1501 int target_level, bool shared) 1502 { 1503 struct kvm_mmu_page *sp = NULL; 1504 struct tdp_iter iter; 1505 int ret = 0; 1506 1507 rcu_read_lock(); 1508 1509 /* 1510 * Traverse the page table splitting all huge pages above the target 1511 * level into one lower level. For example, if we encounter a 1GB page 1512 * we split it into 512 2MB pages. 1513 * 1514 * Since the TDP iterator uses a pre-order traversal, we are guaranteed 1515 * to visit an SPTE before ever visiting its children, which means we 1516 * will correctly recursively split huge pages that are more than one 1517 * level above the target level (e.g. splitting a 1GB to 512 2MB pages, 1518 * and then splitting each of those to 512 4KB pages). 1519 */ 1520 for_each_tdp_pte_min_level(iter, root, target_level + 1, start, end) { 1521 retry: 1522 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared)) 1523 continue; 1524 1525 if (!is_shadow_present_pte(iter.old_spte) || !is_large_pte(iter.old_spte)) 1526 continue; 1527 1528 if (!sp) { 1529 sp = tdp_mmu_alloc_sp_for_split(kvm, &iter, shared); 1530 if (!sp) { 1531 ret = -ENOMEM; 1532 trace_kvm_mmu_split_huge_page(iter.gfn, 1533 iter.old_spte, 1534 iter.level, ret); 1535 break; 1536 } 1537 1538 if (iter.yielded) 1539 continue; 1540 } 1541 1542 if (tdp_mmu_split_huge_page(kvm, &iter, sp, shared)) 1543 goto retry; 1544 1545 sp = NULL; 1546 } 1547 1548 rcu_read_unlock(); 1549 1550 /* 1551 * It's possible to exit the loop having never used the last sp if, for 1552 * example, a vCPU doing HugePage NX splitting wins the race and 1553 * installs its own sp in place of the last sp we tried to split. 1554 */ 1555 if (sp) 1556 tdp_mmu_free_sp(sp); 1557 1558 return ret; 1559 } 1560 1561 1562 /* 1563 * Try to split all huge pages mapped by the TDP MMU down to the target level. 1564 */ 1565 void kvm_tdp_mmu_try_split_huge_pages(struct kvm *kvm, 1566 const struct kvm_memory_slot *slot, 1567 gfn_t start, gfn_t end, 1568 int target_level, bool shared) 1569 { 1570 struct kvm_mmu_page *root; 1571 int r = 0; 1572 1573 kvm_lockdep_assert_mmu_lock_held(kvm, shared); 1574 1575 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, shared) { 1576 r = tdp_mmu_split_huge_pages_root(kvm, root, start, end, target_level, shared); 1577 if (r) { 1578 kvm_tdp_mmu_put_root(kvm, root, shared); 1579 break; 1580 } 1581 } 1582 } 1583 1584 /* 1585 * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If 1586 * AD bits are enabled, this will involve clearing the dirty bit on each SPTE. 1587 * If AD bits are not enabled, this will require clearing the writable bit on 1588 * each SPTE. Returns true if an SPTE has been changed and the TLBs need to 1589 * be flushed. 1590 */ 1591 static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, 1592 gfn_t start, gfn_t end) 1593 { 1594 struct tdp_iter iter; 1595 u64 new_spte; 1596 bool spte_set = false; 1597 1598 rcu_read_lock(); 1599 1600 tdp_root_for_each_leaf_pte(iter, root, start, end) { 1601 retry: 1602 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) 1603 continue; 1604 1605 if (!is_shadow_present_pte(iter.old_spte)) 1606 continue; 1607 1608 if (spte_ad_need_write_protect(iter.old_spte)) { 1609 if (is_writable_pte(iter.old_spte)) 1610 new_spte = iter.old_spte & ~PT_WRITABLE_MASK; 1611 else 1612 continue; 1613 } else { 1614 if (iter.old_spte & shadow_dirty_mask) 1615 new_spte = iter.old_spte & ~shadow_dirty_mask; 1616 else 1617 continue; 1618 } 1619 1620 if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte)) 1621 goto retry; 1622 1623 spte_set = true; 1624 } 1625 1626 rcu_read_unlock(); 1627 return spte_set; 1628 } 1629 1630 /* 1631 * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If 1632 * AD bits are enabled, this will involve clearing the dirty bit on each SPTE. 1633 * If AD bits are not enabled, this will require clearing the writable bit on 1634 * each SPTE. Returns true if an SPTE has been changed and the TLBs need to 1635 * be flushed. 1636 */ 1637 bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, 1638 const struct kvm_memory_slot *slot) 1639 { 1640 struct kvm_mmu_page *root; 1641 bool spte_set = false; 1642 1643 lockdep_assert_held_read(&kvm->mmu_lock); 1644 1645 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true) 1646 spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn, 1647 slot->base_gfn + slot->npages); 1648 1649 return spte_set; 1650 } 1651 1652 /* 1653 * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is 1654 * set in mask, starting at gfn. The given memslot is expected to contain all 1655 * the GFNs represented by set bits in the mask. If AD bits are enabled, 1656 * clearing the dirty status will involve clearing the dirty bit on each SPTE 1657 * or, if AD bits are not enabled, clearing the writable bit on each SPTE. 1658 */ 1659 static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root, 1660 gfn_t gfn, unsigned long mask, bool wrprot) 1661 { 1662 struct tdp_iter iter; 1663 u64 new_spte; 1664 1665 rcu_read_lock(); 1666 1667 tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask), 1668 gfn + BITS_PER_LONG) { 1669 if (!mask) 1670 break; 1671 1672 if (iter.level > PG_LEVEL_4K || 1673 !(mask & (1UL << (iter.gfn - gfn)))) 1674 continue; 1675 1676 mask &= ~(1UL << (iter.gfn - gfn)); 1677 1678 if (wrprot || spte_ad_need_write_protect(iter.old_spte)) { 1679 if (is_writable_pte(iter.old_spte)) 1680 new_spte = iter.old_spte & ~PT_WRITABLE_MASK; 1681 else 1682 continue; 1683 } else { 1684 if (iter.old_spte & shadow_dirty_mask) 1685 new_spte = iter.old_spte & ~shadow_dirty_mask; 1686 else 1687 continue; 1688 } 1689 1690 tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte); 1691 } 1692 1693 rcu_read_unlock(); 1694 } 1695 1696 /* 1697 * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is 1698 * set in mask, starting at gfn. The given memslot is expected to contain all 1699 * the GFNs represented by set bits in the mask. If AD bits are enabled, 1700 * clearing the dirty status will involve clearing the dirty bit on each SPTE 1701 * or, if AD bits are not enabled, clearing the writable bit on each SPTE. 1702 */ 1703 void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1704 struct kvm_memory_slot *slot, 1705 gfn_t gfn, unsigned long mask, 1706 bool wrprot) 1707 { 1708 struct kvm_mmu_page *root; 1709 1710 lockdep_assert_held_write(&kvm->mmu_lock); 1711 for_each_tdp_mmu_root(kvm, root, slot->as_id) 1712 clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot); 1713 } 1714 1715 /* 1716 * Clear leaf entries which could be replaced by large mappings, for 1717 * GFNs within the slot. 1718 */ 1719 static void zap_collapsible_spte_range(struct kvm *kvm, 1720 struct kvm_mmu_page *root, 1721 const struct kvm_memory_slot *slot) 1722 { 1723 gfn_t start = slot->base_gfn; 1724 gfn_t end = start + slot->npages; 1725 struct tdp_iter iter; 1726 kvm_pfn_t pfn; 1727 1728 rcu_read_lock(); 1729 1730 tdp_root_for_each_pte(iter, root, start, end) { 1731 retry: 1732 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) 1733 continue; 1734 1735 if (!is_shadow_present_pte(iter.old_spte) || 1736 !is_last_spte(iter.old_spte, iter.level)) 1737 continue; 1738 1739 pfn = spte_to_pfn(iter.old_spte); 1740 if (kvm_is_reserved_pfn(pfn) || 1741 iter.level >= kvm_mmu_max_mapping_level(kvm, slot, iter.gfn, 1742 pfn, PG_LEVEL_NUM)) 1743 continue; 1744 1745 /* Note, a successful atomic zap also does a remote TLB flush. */ 1746 if (tdp_mmu_zap_spte_atomic(kvm, &iter)) 1747 goto retry; 1748 } 1749 1750 rcu_read_unlock(); 1751 } 1752 1753 /* 1754 * Clear non-leaf entries (and free associated page tables) which could 1755 * be replaced by large mappings, for GFNs within the slot. 1756 */ 1757 void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm, 1758 const struct kvm_memory_slot *slot) 1759 { 1760 struct kvm_mmu_page *root; 1761 1762 lockdep_assert_held_read(&kvm->mmu_lock); 1763 1764 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true) 1765 zap_collapsible_spte_range(kvm, root, slot); 1766 } 1767 1768 /* 1769 * Removes write access on the last level SPTE mapping this GFN and unsets the 1770 * MMU-writable bit to ensure future writes continue to be intercepted. 1771 * Returns true if an SPTE was set and a TLB flush is needed. 1772 */ 1773 static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root, 1774 gfn_t gfn, int min_level) 1775 { 1776 struct tdp_iter iter; 1777 u64 new_spte; 1778 bool spte_set = false; 1779 1780 BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL); 1781 1782 rcu_read_lock(); 1783 1784 for_each_tdp_pte_min_level(iter, root, min_level, gfn, gfn + 1) { 1785 if (!is_shadow_present_pte(iter.old_spte) || 1786 !is_last_spte(iter.old_spte, iter.level)) 1787 continue; 1788 1789 new_spte = iter.old_spte & 1790 ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask); 1791 1792 if (new_spte == iter.old_spte) 1793 break; 1794 1795 tdp_mmu_set_spte(kvm, &iter, new_spte); 1796 spte_set = true; 1797 } 1798 1799 rcu_read_unlock(); 1800 1801 return spte_set; 1802 } 1803 1804 /* 1805 * Removes write access on the last level SPTE mapping this GFN and unsets the 1806 * MMU-writable bit to ensure future writes continue to be intercepted. 1807 * Returns true if an SPTE was set and a TLB flush is needed. 1808 */ 1809 bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm, 1810 struct kvm_memory_slot *slot, gfn_t gfn, 1811 int min_level) 1812 { 1813 struct kvm_mmu_page *root; 1814 bool spte_set = false; 1815 1816 lockdep_assert_held_write(&kvm->mmu_lock); 1817 for_each_tdp_mmu_root(kvm, root, slot->as_id) 1818 spte_set |= write_protect_gfn(kvm, root, gfn, min_level); 1819 1820 return spte_set; 1821 } 1822 1823 /* 1824 * Return the level of the lowest level SPTE added to sptes. 1825 * That SPTE may be non-present. 1826 * 1827 * Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}. 1828 */ 1829 int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, 1830 int *root_level) 1831 { 1832 struct tdp_iter iter; 1833 struct kvm_mmu *mmu = vcpu->arch.mmu; 1834 gfn_t gfn = addr >> PAGE_SHIFT; 1835 int leaf = -1; 1836 1837 *root_level = vcpu->arch.mmu->shadow_root_level; 1838 1839 tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) { 1840 leaf = iter.level; 1841 sptes[leaf] = iter.old_spte; 1842 } 1843 1844 return leaf; 1845 } 1846 1847 /* 1848 * Returns the last level spte pointer of the shadow page walk for the given 1849 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 1850 * walk could be performed, returns NULL and *spte does not contain valid data. 1851 * 1852 * Contract: 1853 * - Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}. 1854 * - The returned sptep must not be used after kvm_tdp_mmu_walk_lockless_end. 1855 * 1856 * WARNING: This function is only intended to be called during fast_page_fault. 1857 */ 1858 u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, u64 addr, 1859 u64 *spte) 1860 { 1861 struct tdp_iter iter; 1862 struct kvm_mmu *mmu = vcpu->arch.mmu; 1863 gfn_t gfn = addr >> PAGE_SHIFT; 1864 tdp_ptep_t sptep = NULL; 1865 1866 tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) { 1867 *spte = iter.old_spte; 1868 sptep = iter.sptep; 1869 } 1870 1871 /* 1872 * Perform the rcu_dereference to get the raw spte pointer value since 1873 * we are passing it up to fast_page_fault, which is shared with the 1874 * legacy MMU and thus does not retain the TDP MMU-specific __rcu 1875 * annotation. 1876 * 1877 * This is safe since fast_page_fault obeys the contracts of this 1878 * function as well as all TDP MMU contracts around modifying SPTEs 1879 * outside of mmu_lock. 1880 */ 1881 return rcu_dereference(sptep); 1882 } 1883