xref: /openbmc/linux/arch/x86/kvm/mmu/tdp_mmu.c (revision 6197e5b7)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "mmu.h"
4 #include "mmu_internal.h"
5 #include "mmutrace.h"
6 #include "tdp_iter.h"
7 #include "tdp_mmu.h"
8 #include "spte.h"
9 
10 #include <trace/events/kvm.h>
11 
12 #ifdef CONFIG_X86_64
13 static bool __read_mostly tdp_mmu_enabled = false;
14 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644);
15 #endif
16 
17 static bool is_tdp_mmu_enabled(void)
18 {
19 #ifdef CONFIG_X86_64
20 	return tdp_enabled && READ_ONCE(tdp_mmu_enabled);
21 #else
22 	return false;
23 #endif /* CONFIG_X86_64 */
24 }
25 
26 /* Initializes the TDP MMU for the VM, if enabled. */
27 void kvm_mmu_init_tdp_mmu(struct kvm *kvm)
28 {
29 	if (!is_tdp_mmu_enabled())
30 		return;
31 
32 	/* This should not be changed for the lifetime of the VM. */
33 	kvm->arch.tdp_mmu_enabled = true;
34 
35 	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
36 	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages);
37 }
38 
39 void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
40 {
41 	if (!kvm->arch.tdp_mmu_enabled)
42 		return;
43 
44 	WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
45 }
46 
47 static void tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root)
48 {
49 	if (kvm_mmu_put_root(kvm, root))
50 		kvm_tdp_mmu_free_root(kvm, root);
51 }
52 
53 static inline bool tdp_mmu_next_root_valid(struct kvm *kvm,
54 					   struct kvm_mmu_page *root)
55 {
56 	lockdep_assert_held(&kvm->mmu_lock);
57 
58 	if (list_entry_is_head(root, &kvm->arch.tdp_mmu_roots, link))
59 		return false;
60 
61 	kvm_mmu_get_root(kvm, root);
62 	return true;
63 
64 }
65 
66 static inline struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm,
67 						     struct kvm_mmu_page *root)
68 {
69 	struct kvm_mmu_page *next_root;
70 
71 	next_root = list_next_entry(root, link);
72 	tdp_mmu_put_root(kvm, root);
73 	return next_root;
74 }
75 
76 /*
77  * Note: this iterator gets and puts references to the roots it iterates over.
78  * This makes it safe to release the MMU lock and yield within the loop, but
79  * if exiting the loop early, the caller must drop the reference to the most
80  * recent root. (Unless keeping a live reference is desirable.)
81  */
82 #define for_each_tdp_mmu_root_yield_safe(_kvm, _root)				\
83 	for (_root = list_first_entry(&_kvm->arch.tdp_mmu_roots,	\
84 				      typeof(*_root), link);		\
85 	     tdp_mmu_next_root_valid(_kvm, _root);			\
86 	     _root = tdp_mmu_next_root(_kvm, _root))
87 
88 #define for_each_tdp_mmu_root(_kvm, _root)				\
89 	list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link)
90 
91 bool is_tdp_mmu_root(struct kvm *kvm, hpa_t hpa)
92 {
93 	struct kvm_mmu_page *sp;
94 
95 	if (!kvm->arch.tdp_mmu_enabled)
96 		return false;
97 	if (WARN_ON(!VALID_PAGE(hpa)))
98 		return false;
99 
100 	sp = to_shadow_page(hpa);
101 	if (WARN_ON(!sp))
102 		return false;
103 
104 	return sp->tdp_mmu_page && sp->root_count;
105 }
106 
107 static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
108 			  gfn_t start, gfn_t end, bool can_yield);
109 
110 void kvm_tdp_mmu_free_root(struct kvm *kvm, struct kvm_mmu_page *root)
111 {
112 	gfn_t max_gfn = 1ULL << (shadow_phys_bits - PAGE_SHIFT);
113 
114 	lockdep_assert_held(&kvm->mmu_lock);
115 
116 	WARN_ON(root->root_count);
117 	WARN_ON(!root->tdp_mmu_page);
118 
119 	list_del(&root->link);
120 
121 	zap_gfn_range(kvm, root, 0, max_gfn, false);
122 
123 	free_page((unsigned long)root->spt);
124 	kmem_cache_free(mmu_page_header_cache, root);
125 }
126 
127 static union kvm_mmu_page_role page_role_for_level(struct kvm_vcpu *vcpu,
128 						   int level)
129 {
130 	union kvm_mmu_page_role role;
131 
132 	role = vcpu->arch.mmu->mmu_role.base;
133 	role.level = level;
134 	role.direct = true;
135 	role.gpte_is_8_bytes = true;
136 	role.access = ACC_ALL;
137 
138 	return role;
139 }
140 
141 static struct kvm_mmu_page *alloc_tdp_mmu_page(struct kvm_vcpu *vcpu, gfn_t gfn,
142 					       int level)
143 {
144 	struct kvm_mmu_page *sp;
145 
146 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
147 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
148 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
149 
150 	sp->role.word = page_role_for_level(vcpu, level).word;
151 	sp->gfn = gfn;
152 	sp->tdp_mmu_page = true;
153 
154 	trace_kvm_mmu_get_page(sp, true);
155 
156 	return sp;
157 }
158 
159 static struct kvm_mmu_page *get_tdp_mmu_vcpu_root(struct kvm_vcpu *vcpu)
160 {
161 	union kvm_mmu_page_role role;
162 	struct kvm *kvm = vcpu->kvm;
163 	struct kvm_mmu_page *root;
164 
165 	role = page_role_for_level(vcpu, vcpu->arch.mmu->shadow_root_level);
166 
167 	spin_lock(&kvm->mmu_lock);
168 
169 	/* Check for an existing root before allocating a new one. */
170 	for_each_tdp_mmu_root(kvm, root) {
171 		if (root->role.word == role.word) {
172 			kvm_mmu_get_root(kvm, root);
173 			spin_unlock(&kvm->mmu_lock);
174 			return root;
175 		}
176 	}
177 
178 	root = alloc_tdp_mmu_page(vcpu, 0, vcpu->arch.mmu->shadow_root_level);
179 	root->root_count = 1;
180 
181 	list_add(&root->link, &kvm->arch.tdp_mmu_roots);
182 
183 	spin_unlock(&kvm->mmu_lock);
184 
185 	return root;
186 }
187 
188 hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu)
189 {
190 	struct kvm_mmu_page *root;
191 
192 	root = get_tdp_mmu_vcpu_root(vcpu);
193 	if (!root)
194 		return INVALID_PAGE;
195 
196 	return __pa(root->spt);
197 }
198 
199 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
200 				u64 old_spte, u64 new_spte, int level);
201 
202 static int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
203 {
204 	return sp->role.smm ? 1 : 0;
205 }
206 
207 static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level)
208 {
209 	bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
210 
211 	if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level))
212 		return;
213 
214 	if (is_accessed_spte(old_spte) &&
215 	    (!is_accessed_spte(new_spte) || pfn_changed))
216 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
217 }
218 
219 static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn,
220 					  u64 old_spte, u64 new_spte, int level)
221 {
222 	bool pfn_changed;
223 	struct kvm_memory_slot *slot;
224 
225 	if (level > PG_LEVEL_4K)
226 		return;
227 
228 	pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
229 
230 	if ((!is_writable_pte(old_spte) || pfn_changed) &&
231 	    is_writable_pte(new_spte)) {
232 		slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn);
233 		mark_page_dirty_in_slot(kvm, slot, gfn);
234 	}
235 }
236 
237 /**
238  * handle_changed_spte - handle bookkeeping associated with an SPTE change
239  * @kvm: kvm instance
240  * @as_id: the address space of the paging structure the SPTE was a part of
241  * @gfn: the base GFN that was mapped by the SPTE
242  * @old_spte: The value of the SPTE before the change
243  * @new_spte: The value of the SPTE after the change
244  * @level: the level of the PT the SPTE is part of in the paging structure
245  *
246  * Handle bookkeeping that might result from the modification of a SPTE.
247  * This function must be called for all TDP SPTE modifications.
248  */
249 static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
250 				u64 old_spte, u64 new_spte, int level)
251 {
252 	bool was_present = is_shadow_present_pte(old_spte);
253 	bool is_present = is_shadow_present_pte(new_spte);
254 	bool was_leaf = was_present && is_last_spte(old_spte, level);
255 	bool is_leaf = is_present && is_last_spte(new_spte, level);
256 	bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
257 	u64 *pt;
258 	struct kvm_mmu_page *sp;
259 	u64 old_child_spte;
260 	int i;
261 
262 	WARN_ON(level > PT64_ROOT_MAX_LEVEL);
263 	WARN_ON(level < PG_LEVEL_4K);
264 	WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
265 
266 	/*
267 	 * If this warning were to trigger it would indicate that there was a
268 	 * missing MMU notifier or a race with some notifier handler.
269 	 * A present, leaf SPTE should never be directly replaced with another
270 	 * present leaf SPTE pointing to a differnt PFN. A notifier handler
271 	 * should be zapping the SPTE before the main MM's page table is
272 	 * changed, or the SPTE should be zeroed, and the TLBs flushed by the
273 	 * thread before replacement.
274 	 */
275 	if (was_leaf && is_leaf && pfn_changed) {
276 		pr_err("Invalid SPTE change: cannot replace a present leaf\n"
277 		       "SPTE with another present leaf SPTE mapping a\n"
278 		       "different PFN!\n"
279 		       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
280 		       as_id, gfn, old_spte, new_spte, level);
281 
282 		/*
283 		 * Crash the host to prevent error propagation and guest data
284 		 * courruption.
285 		 */
286 		BUG();
287 	}
288 
289 	if (old_spte == new_spte)
290 		return;
291 
292 	trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte);
293 
294 	/*
295 	 * The only times a SPTE should be changed from a non-present to
296 	 * non-present state is when an MMIO entry is installed/modified/
297 	 * removed. In that case, there is nothing to do here.
298 	 */
299 	if (!was_present && !is_present) {
300 		/*
301 		 * If this change does not involve a MMIO SPTE, it is
302 		 * unexpected. Log the change, though it should not impact the
303 		 * guest since both the former and current SPTEs are nonpresent.
304 		 */
305 		if (WARN_ON(!is_mmio_spte(old_spte) && !is_mmio_spte(new_spte)))
306 			pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
307 			       "should not be replaced with another,\n"
308 			       "different nonpresent SPTE, unless one or both\n"
309 			       "are MMIO SPTEs.\n"
310 			       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
311 			       as_id, gfn, old_spte, new_spte, level);
312 		return;
313 	}
314 
315 
316 	if (was_leaf && is_dirty_spte(old_spte) &&
317 	    (!is_dirty_spte(new_spte) || pfn_changed))
318 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
319 
320 	/*
321 	 * Recursively handle child PTs if the change removed a subtree from
322 	 * the paging structure.
323 	 */
324 	if (was_present && !was_leaf && (pfn_changed || !is_present)) {
325 		pt = spte_to_child_pt(old_spte, level);
326 		sp = sptep_to_sp(pt);
327 
328 		trace_kvm_mmu_prepare_zap_page(sp);
329 
330 		list_del(&sp->link);
331 
332 		if (sp->lpage_disallowed)
333 			unaccount_huge_nx_page(kvm, sp);
334 
335 		for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
336 			old_child_spte = READ_ONCE(*(pt + i));
337 			WRITE_ONCE(*(pt + i), 0);
338 			handle_changed_spte(kvm, as_id,
339 				gfn + (i * KVM_PAGES_PER_HPAGE(level - 1)),
340 				old_child_spte, 0, level - 1);
341 		}
342 
343 		kvm_flush_remote_tlbs_with_address(kvm, gfn,
344 						   KVM_PAGES_PER_HPAGE(level));
345 
346 		free_page((unsigned long)pt);
347 		kmem_cache_free(mmu_page_header_cache, sp);
348 	}
349 }
350 
351 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
352 				u64 old_spte, u64 new_spte, int level)
353 {
354 	__handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level);
355 	handle_changed_spte_acc_track(old_spte, new_spte, level);
356 	handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
357 				      new_spte, level);
358 }
359 
360 static inline void __tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
361 				      u64 new_spte, bool record_acc_track,
362 				      bool record_dirty_log)
363 {
364 	u64 *root_pt = tdp_iter_root_pt(iter);
365 	struct kvm_mmu_page *root = sptep_to_sp(root_pt);
366 	int as_id = kvm_mmu_page_as_id(root);
367 
368 	WRITE_ONCE(*iter->sptep, new_spte);
369 
370 	__handle_changed_spte(kvm, as_id, iter->gfn, iter->old_spte, new_spte,
371 			      iter->level);
372 	if (record_acc_track)
373 		handle_changed_spte_acc_track(iter->old_spte, new_spte,
374 					      iter->level);
375 	if (record_dirty_log)
376 		handle_changed_spte_dirty_log(kvm, as_id, iter->gfn,
377 					      iter->old_spte, new_spte,
378 					      iter->level);
379 }
380 
381 static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
382 				    u64 new_spte)
383 {
384 	__tdp_mmu_set_spte(kvm, iter, new_spte, true, true);
385 }
386 
387 static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm,
388 						 struct tdp_iter *iter,
389 						 u64 new_spte)
390 {
391 	__tdp_mmu_set_spte(kvm, iter, new_spte, false, true);
392 }
393 
394 static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm,
395 						 struct tdp_iter *iter,
396 						 u64 new_spte)
397 {
398 	__tdp_mmu_set_spte(kvm, iter, new_spte, true, false);
399 }
400 
401 #define tdp_root_for_each_pte(_iter, _root, _start, _end) \
402 	for_each_tdp_pte(_iter, _root->spt, _root->role.level, _start, _end)
403 
404 #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end)	\
405 	tdp_root_for_each_pte(_iter, _root, _start, _end)		\
406 		if (!is_shadow_present_pte(_iter.old_spte) ||		\
407 		    !is_last_spte(_iter.old_spte, _iter.level))		\
408 			continue;					\
409 		else
410 
411 #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end)		\
412 	for_each_tdp_pte(_iter, __va(_mmu->root_hpa),		\
413 			 _mmu->shadow_root_level, _start, _end)
414 
415 /*
416  * Flush the TLB if the process should drop kvm->mmu_lock.
417  * Return whether the caller still needs to flush the tlb.
418  */
419 static bool tdp_mmu_iter_flush_cond_resched(struct kvm *kvm, struct tdp_iter *iter)
420 {
421 	if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
422 		kvm_flush_remote_tlbs(kvm);
423 		cond_resched_lock(&kvm->mmu_lock);
424 		tdp_iter_refresh_walk(iter);
425 		return false;
426 	} else {
427 		return true;
428 	}
429 }
430 
431 static void tdp_mmu_iter_cond_resched(struct kvm *kvm, struct tdp_iter *iter)
432 {
433 	if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
434 		cond_resched_lock(&kvm->mmu_lock);
435 		tdp_iter_refresh_walk(iter);
436 	}
437 }
438 
439 /*
440  * Tears down the mappings for the range of gfns, [start, end), and frees the
441  * non-root pages mapping GFNs strictly within that range. Returns true if
442  * SPTEs have been cleared and a TLB flush is needed before releasing the
443  * MMU lock.
444  * If can_yield is true, will release the MMU lock and reschedule if the
445  * scheduler needs the CPU or there is contention on the MMU lock. If this
446  * function cannot yield, it will not release the MMU lock or reschedule and
447  * the caller must ensure it does not supply too large a GFN range, or the
448  * operation can cause a soft lockup.
449  */
450 static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
451 			  gfn_t start, gfn_t end, bool can_yield)
452 {
453 	struct tdp_iter iter;
454 	bool flush_needed = false;
455 
456 	tdp_root_for_each_pte(iter, root, start, end) {
457 		if (!is_shadow_present_pte(iter.old_spte))
458 			continue;
459 
460 		/*
461 		 * If this is a non-last-level SPTE that covers a larger range
462 		 * than should be zapped, continue, and zap the mappings at a
463 		 * lower level.
464 		 */
465 		if ((iter.gfn < start ||
466 		     iter.gfn + KVM_PAGES_PER_HPAGE(iter.level) > end) &&
467 		    !is_last_spte(iter.old_spte, iter.level))
468 			continue;
469 
470 		tdp_mmu_set_spte(kvm, &iter, 0);
471 
472 		if (can_yield)
473 			flush_needed = tdp_mmu_iter_flush_cond_resched(kvm, &iter);
474 		else
475 			flush_needed = true;
476 	}
477 	return flush_needed;
478 }
479 
480 /*
481  * Tears down the mappings for the range of gfns, [start, end), and frees the
482  * non-root pages mapping GFNs strictly within that range. Returns true if
483  * SPTEs have been cleared and a TLB flush is needed before releasing the
484  * MMU lock.
485  */
486 bool kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, gfn_t start, gfn_t end)
487 {
488 	struct kvm_mmu_page *root;
489 	bool flush = false;
490 
491 	for_each_tdp_mmu_root_yield_safe(kvm, root)
492 		flush |= zap_gfn_range(kvm, root, start, end, true);
493 
494 	return flush;
495 }
496 
497 void kvm_tdp_mmu_zap_all(struct kvm *kvm)
498 {
499 	gfn_t max_gfn = 1ULL << (shadow_phys_bits - PAGE_SHIFT);
500 	bool flush;
501 
502 	flush = kvm_tdp_mmu_zap_gfn_range(kvm, 0, max_gfn);
503 	if (flush)
504 		kvm_flush_remote_tlbs(kvm);
505 }
506 
507 /*
508  * Installs a last-level SPTE to handle a TDP page fault.
509  * (NPT/EPT violation/misconfiguration)
510  */
511 static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, int write,
512 					  int map_writable,
513 					  struct tdp_iter *iter,
514 					  kvm_pfn_t pfn, bool prefault)
515 {
516 	u64 new_spte;
517 	int ret = 0;
518 	int make_spte_ret = 0;
519 
520 	if (unlikely(is_noslot_pfn(pfn))) {
521 		new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
522 		trace_mark_mmio_spte(iter->sptep, iter->gfn, new_spte);
523 	} else {
524 		make_spte_ret = make_spte(vcpu, ACC_ALL, iter->level, iter->gfn,
525 					 pfn, iter->old_spte, prefault, true,
526 					 map_writable, !shadow_accessed_mask,
527 					 &new_spte);
528 		trace_kvm_mmu_set_spte(iter->level, iter->gfn, iter->sptep);
529 	}
530 
531 	if (new_spte == iter->old_spte)
532 		ret = RET_PF_SPURIOUS;
533 	else
534 		tdp_mmu_set_spte(vcpu->kvm, iter, new_spte);
535 
536 	/*
537 	 * If the page fault was caused by a write but the page is write
538 	 * protected, emulation is needed. If the emulation was skipped,
539 	 * the vCPU would have the same fault again.
540 	 */
541 	if (make_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
542 		if (write)
543 			ret = RET_PF_EMULATE;
544 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
545 	}
546 
547 	/* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
548 	if (unlikely(is_mmio_spte(new_spte)))
549 		ret = RET_PF_EMULATE;
550 
551 	trace_kvm_mmu_set_spte(iter->level, iter->gfn, iter->sptep);
552 	if (!prefault)
553 		vcpu->stat.pf_fixed++;
554 
555 	return ret;
556 }
557 
558 /*
559  * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
560  * page tables and SPTEs to translate the faulting guest physical address.
561  */
562 int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
563 		    int map_writable, int max_level, kvm_pfn_t pfn,
564 		    bool prefault)
565 {
566 	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
567 	bool write = error_code & PFERR_WRITE_MASK;
568 	bool exec = error_code & PFERR_FETCH_MASK;
569 	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
570 	struct kvm_mmu *mmu = vcpu->arch.mmu;
571 	struct tdp_iter iter;
572 	struct kvm_mmu_page *sp;
573 	u64 *child_pt;
574 	u64 new_spte;
575 	int ret;
576 	gfn_t gfn = gpa >> PAGE_SHIFT;
577 	int level;
578 	int req_level;
579 
580 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
581 		return RET_PF_RETRY;
582 	if (WARN_ON(!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)))
583 		return RET_PF_RETRY;
584 
585 	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
586 					huge_page_disallowed, &req_level);
587 
588 	trace_kvm_mmu_spte_requested(gpa, level, pfn);
589 	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
590 		if (nx_huge_page_workaround_enabled)
591 			disallowed_hugepage_adjust(iter.old_spte, gfn,
592 						   iter.level, &pfn, &level);
593 
594 		if (iter.level == level)
595 			break;
596 
597 		/*
598 		 * If there is an SPTE mapping a large page at a higher level
599 		 * than the target, that SPTE must be cleared and replaced
600 		 * with a non-leaf SPTE.
601 		 */
602 		if (is_shadow_present_pte(iter.old_spte) &&
603 		    is_large_pte(iter.old_spte)) {
604 			tdp_mmu_set_spte(vcpu->kvm, &iter, 0);
605 
606 			kvm_flush_remote_tlbs_with_address(vcpu->kvm, iter.gfn,
607 					KVM_PAGES_PER_HPAGE(iter.level));
608 
609 			/*
610 			 * The iter must explicitly re-read the spte here
611 			 * because the new value informs the !present
612 			 * path below.
613 			 */
614 			iter.old_spte = READ_ONCE(*iter.sptep);
615 		}
616 
617 		if (!is_shadow_present_pte(iter.old_spte)) {
618 			sp = alloc_tdp_mmu_page(vcpu, iter.gfn, iter.level);
619 			list_add(&sp->link, &vcpu->kvm->arch.tdp_mmu_pages);
620 			child_pt = sp->spt;
621 			clear_page(child_pt);
622 			new_spte = make_nonleaf_spte(child_pt,
623 						     !shadow_accessed_mask);
624 
625 			trace_kvm_mmu_get_page(sp, true);
626 			if (huge_page_disallowed && req_level >= iter.level)
627 				account_huge_nx_page(vcpu->kvm, sp);
628 
629 			tdp_mmu_set_spte(vcpu->kvm, &iter, new_spte);
630 		}
631 	}
632 
633 	if (WARN_ON(iter.level != level))
634 		return RET_PF_RETRY;
635 
636 	ret = tdp_mmu_map_handle_target_level(vcpu, write, map_writable, &iter,
637 					      pfn, prefault);
638 
639 	return ret;
640 }
641 
642 static int kvm_tdp_mmu_handle_hva_range(struct kvm *kvm, unsigned long start,
643 		unsigned long end, unsigned long data,
644 		int (*handler)(struct kvm *kvm, struct kvm_memory_slot *slot,
645 			       struct kvm_mmu_page *root, gfn_t start,
646 			       gfn_t end, unsigned long data))
647 {
648 	struct kvm_memslots *slots;
649 	struct kvm_memory_slot *memslot;
650 	struct kvm_mmu_page *root;
651 	int ret = 0;
652 	int as_id;
653 
654 	for_each_tdp_mmu_root_yield_safe(kvm, root) {
655 		as_id = kvm_mmu_page_as_id(root);
656 		slots = __kvm_memslots(kvm, as_id);
657 		kvm_for_each_memslot(memslot, slots) {
658 			unsigned long hva_start, hva_end;
659 			gfn_t gfn_start, gfn_end;
660 
661 			hva_start = max(start, memslot->userspace_addr);
662 			hva_end = min(end, memslot->userspace_addr +
663 				      (memslot->npages << PAGE_SHIFT));
664 			if (hva_start >= hva_end)
665 				continue;
666 			/*
667 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
668 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
669 			 */
670 			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
671 			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
672 
673 			ret |= handler(kvm, memslot, root, gfn_start,
674 				       gfn_end, data);
675 		}
676 	}
677 
678 	return ret;
679 }
680 
681 static int zap_gfn_range_hva_wrapper(struct kvm *kvm,
682 				     struct kvm_memory_slot *slot,
683 				     struct kvm_mmu_page *root, gfn_t start,
684 				     gfn_t end, unsigned long unused)
685 {
686 	return zap_gfn_range(kvm, root, start, end, false);
687 }
688 
689 int kvm_tdp_mmu_zap_hva_range(struct kvm *kvm, unsigned long start,
690 			      unsigned long end)
691 {
692 	return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
693 					    zap_gfn_range_hva_wrapper);
694 }
695 
696 /*
697  * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
698  * if any of the GFNs in the range have been accessed.
699  */
700 static int age_gfn_range(struct kvm *kvm, struct kvm_memory_slot *slot,
701 			 struct kvm_mmu_page *root, gfn_t start, gfn_t end,
702 			 unsigned long unused)
703 {
704 	struct tdp_iter iter;
705 	int young = 0;
706 	u64 new_spte = 0;
707 
708 	tdp_root_for_each_leaf_pte(iter, root, start, end) {
709 		/*
710 		 * If we have a non-accessed entry we don't need to change the
711 		 * pte.
712 		 */
713 		if (!is_accessed_spte(iter.old_spte))
714 			continue;
715 
716 		new_spte = iter.old_spte;
717 
718 		if (spte_ad_enabled(new_spte)) {
719 			clear_bit((ffs(shadow_accessed_mask) - 1),
720 				  (unsigned long *)&new_spte);
721 		} else {
722 			/*
723 			 * Capture the dirty status of the page, so that it doesn't get
724 			 * lost when the SPTE is marked for access tracking.
725 			 */
726 			if (is_writable_pte(new_spte))
727 				kvm_set_pfn_dirty(spte_to_pfn(new_spte));
728 
729 			new_spte = mark_spte_for_access_track(new_spte);
730 		}
731 		new_spte &= ~shadow_dirty_mask;
732 
733 		tdp_mmu_set_spte_no_acc_track(kvm, &iter, new_spte);
734 		young = 1;
735 
736 		trace_kvm_age_page(iter.gfn, iter.level, slot, young);
737 	}
738 
739 	return young;
740 }
741 
742 int kvm_tdp_mmu_age_hva_range(struct kvm *kvm, unsigned long start,
743 			      unsigned long end)
744 {
745 	return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
746 					    age_gfn_range);
747 }
748 
749 static int test_age_gfn(struct kvm *kvm, struct kvm_memory_slot *slot,
750 			struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
751 			unsigned long unused2)
752 {
753 	struct tdp_iter iter;
754 
755 	tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1)
756 		if (is_accessed_spte(iter.old_spte))
757 			return 1;
758 
759 	return 0;
760 }
761 
762 int kvm_tdp_mmu_test_age_hva(struct kvm *kvm, unsigned long hva)
763 {
764 	return kvm_tdp_mmu_handle_hva_range(kvm, hva, hva + 1, 0,
765 					    test_age_gfn);
766 }
767 
768 /*
769  * Handle the changed_pte MMU notifier for the TDP MMU.
770  * data is a pointer to the new pte_t mapping the HVA specified by the MMU
771  * notifier.
772  * Returns non-zero if a flush is needed before releasing the MMU lock.
773  */
774 static int set_tdp_spte(struct kvm *kvm, struct kvm_memory_slot *slot,
775 			struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
776 			unsigned long data)
777 {
778 	struct tdp_iter iter;
779 	pte_t *ptep = (pte_t *)data;
780 	kvm_pfn_t new_pfn;
781 	u64 new_spte;
782 	int need_flush = 0;
783 
784 	WARN_ON(pte_huge(*ptep));
785 
786 	new_pfn = pte_pfn(*ptep);
787 
788 	tdp_root_for_each_pte(iter, root, gfn, gfn + 1) {
789 		if (iter.level != PG_LEVEL_4K)
790 			continue;
791 
792 		if (!is_shadow_present_pte(iter.old_spte))
793 			break;
794 
795 		tdp_mmu_set_spte(kvm, &iter, 0);
796 
797 		kvm_flush_remote_tlbs_with_address(kvm, iter.gfn, 1);
798 
799 		if (!pte_write(*ptep)) {
800 			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
801 					iter.old_spte, new_pfn);
802 
803 			tdp_mmu_set_spte(kvm, &iter, new_spte);
804 		}
805 
806 		need_flush = 1;
807 	}
808 
809 	if (need_flush)
810 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
811 
812 	return 0;
813 }
814 
815 int kvm_tdp_mmu_set_spte_hva(struct kvm *kvm, unsigned long address,
816 			     pte_t *host_ptep)
817 {
818 	return kvm_tdp_mmu_handle_hva_range(kvm, address, address + 1,
819 					    (unsigned long)host_ptep,
820 					    set_tdp_spte);
821 }
822 
823 /*
824  * Remove write access from all the SPTEs mapping GFNs [start, end). If
825  * skip_4k is set, SPTEs that map 4k pages, will not be write-protected.
826  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
827  */
828 static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
829 			     gfn_t start, gfn_t end, int min_level)
830 {
831 	struct tdp_iter iter;
832 	u64 new_spte;
833 	bool spte_set = false;
834 
835 	BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
836 
837 	for_each_tdp_pte_min_level(iter, root->spt, root->role.level,
838 				   min_level, start, end) {
839 		if (!is_shadow_present_pte(iter.old_spte) ||
840 		    !is_last_spte(iter.old_spte, iter.level))
841 			continue;
842 
843 		new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
844 
845 		tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
846 		spte_set = true;
847 
848 		tdp_mmu_iter_cond_resched(kvm, &iter);
849 	}
850 	return spte_set;
851 }
852 
853 /*
854  * Remove write access from all the SPTEs mapping GFNs in the memslot. Will
855  * only affect leaf SPTEs down to min_level.
856  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
857  */
858 bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, struct kvm_memory_slot *slot,
859 			     int min_level)
860 {
861 	struct kvm_mmu_page *root;
862 	int root_as_id;
863 	bool spte_set = false;
864 
865 	for_each_tdp_mmu_root_yield_safe(kvm, root) {
866 		root_as_id = kvm_mmu_page_as_id(root);
867 		if (root_as_id != slot->as_id)
868 			continue;
869 
870 		spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
871 			     slot->base_gfn + slot->npages, min_level);
872 	}
873 
874 	return spte_set;
875 }
876 
877 /*
878  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
879  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
880  * If AD bits are not enabled, this will require clearing the writable bit on
881  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
882  * be flushed.
883  */
884 static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
885 			   gfn_t start, gfn_t end)
886 {
887 	struct tdp_iter iter;
888 	u64 new_spte;
889 	bool spte_set = false;
890 
891 	tdp_root_for_each_leaf_pte(iter, root, start, end) {
892 		if (spte_ad_need_write_protect(iter.old_spte)) {
893 			if (is_writable_pte(iter.old_spte))
894 				new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
895 			else
896 				continue;
897 		} else {
898 			if (iter.old_spte & shadow_dirty_mask)
899 				new_spte = iter.old_spte & ~shadow_dirty_mask;
900 			else
901 				continue;
902 		}
903 
904 		tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
905 		spte_set = true;
906 
907 		tdp_mmu_iter_cond_resched(kvm, &iter);
908 	}
909 	return spte_set;
910 }
911 
912 /*
913  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
914  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
915  * If AD bits are not enabled, this will require clearing the writable bit on
916  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
917  * be flushed.
918  */
919 bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, struct kvm_memory_slot *slot)
920 {
921 	struct kvm_mmu_page *root;
922 	int root_as_id;
923 	bool spte_set = false;
924 
925 	for_each_tdp_mmu_root_yield_safe(kvm, root) {
926 		root_as_id = kvm_mmu_page_as_id(root);
927 		if (root_as_id != slot->as_id)
928 			continue;
929 
930 		spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
931 				slot->base_gfn + slot->npages);
932 	}
933 
934 	return spte_set;
935 }
936 
937 /*
938  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
939  * set in mask, starting at gfn. The given memslot is expected to contain all
940  * the GFNs represented by set bits in the mask. If AD bits are enabled,
941  * clearing the dirty status will involve clearing the dirty bit on each SPTE
942  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
943  */
944 static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
945 				  gfn_t gfn, unsigned long mask, bool wrprot)
946 {
947 	struct tdp_iter iter;
948 	u64 new_spte;
949 
950 	tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
951 				    gfn + BITS_PER_LONG) {
952 		if (!mask)
953 			break;
954 
955 		if (iter.level > PG_LEVEL_4K ||
956 		    !(mask & (1UL << (iter.gfn - gfn))))
957 			continue;
958 
959 		if (wrprot || spte_ad_need_write_protect(iter.old_spte)) {
960 			if (is_writable_pte(iter.old_spte))
961 				new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
962 			else
963 				continue;
964 		} else {
965 			if (iter.old_spte & shadow_dirty_mask)
966 				new_spte = iter.old_spte & ~shadow_dirty_mask;
967 			else
968 				continue;
969 		}
970 
971 		tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
972 
973 		mask &= ~(1UL << (iter.gfn - gfn));
974 	}
975 }
976 
977 /*
978  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
979  * set in mask, starting at gfn. The given memslot is expected to contain all
980  * the GFNs represented by set bits in the mask. If AD bits are enabled,
981  * clearing the dirty status will involve clearing the dirty bit on each SPTE
982  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
983  */
984 void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
985 				       struct kvm_memory_slot *slot,
986 				       gfn_t gfn, unsigned long mask,
987 				       bool wrprot)
988 {
989 	struct kvm_mmu_page *root;
990 	int root_as_id;
991 
992 	lockdep_assert_held(&kvm->mmu_lock);
993 	for_each_tdp_mmu_root(kvm, root) {
994 		root_as_id = kvm_mmu_page_as_id(root);
995 		if (root_as_id != slot->as_id)
996 			continue;
997 
998 		clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
999 	}
1000 }
1001 
1002 /*
1003  * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
1004  * only used for PML, and so will involve setting the dirty bit on each SPTE.
1005  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1006  */
1007 static bool set_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1008 				gfn_t start, gfn_t end)
1009 {
1010 	struct tdp_iter iter;
1011 	u64 new_spte;
1012 	bool spte_set = false;
1013 
1014 	tdp_root_for_each_pte(iter, root, start, end) {
1015 		if (!is_shadow_present_pte(iter.old_spte))
1016 			continue;
1017 
1018 		new_spte = iter.old_spte | shadow_dirty_mask;
1019 
1020 		tdp_mmu_set_spte(kvm, &iter, new_spte);
1021 		spte_set = true;
1022 
1023 		tdp_mmu_iter_cond_resched(kvm, &iter);
1024 	}
1025 
1026 	return spte_set;
1027 }
1028 
1029 /*
1030  * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
1031  * only used for PML, and so will involve setting the dirty bit on each SPTE.
1032  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1033  */
1034 bool kvm_tdp_mmu_slot_set_dirty(struct kvm *kvm, struct kvm_memory_slot *slot)
1035 {
1036 	struct kvm_mmu_page *root;
1037 	int root_as_id;
1038 	bool spte_set = false;
1039 
1040 	for_each_tdp_mmu_root_yield_safe(kvm, root) {
1041 		root_as_id = kvm_mmu_page_as_id(root);
1042 		if (root_as_id != slot->as_id)
1043 			continue;
1044 
1045 		spte_set |= set_dirty_gfn_range(kvm, root, slot->base_gfn,
1046 				slot->base_gfn + slot->npages);
1047 	}
1048 	return spte_set;
1049 }
1050 
1051 /*
1052  * Clear leaf entries which could be replaced by large mappings, for
1053  * GFNs within the slot.
1054  */
1055 static void zap_collapsible_spte_range(struct kvm *kvm,
1056 				       struct kvm_mmu_page *root,
1057 				       gfn_t start, gfn_t end)
1058 {
1059 	struct tdp_iter iter;
1060 	kvm_pfn_t pfn;
1061 	bool spte_set = false;
1062 
1063 	tdp_root_for_each_pte(iter, root, start, end) {
1064 		if (!is_shadow_present_pte(iter.old_spte) ||
1065 		    !is_last_spte(iter.old_spte, iter.level))
1066 			continue;
1067 
1068 		pfn = spte_to_pfn(iter.old_spte);
1069 		if (kvm_is_reserved_pfn(pfn) ||
1070 		    !PageTransCompoundMap(pfn_to_page(pfn)))
1071 			continue;
1072 
1073 		tdp_mmu_set_spte(kvm, &iter, 0);
1074 
1075 		spte_set = tdp_mmu_iter_flush_cond_resched(kvm, &iter);
1076 	}
1077 
1078 	if (spte_set)
1079 		kvm_flush_remote_tlbs(kvm);
1080 }
1081 
1082 /*
1083  * Clear non-leaf entries (and free associated page tables) which could
1084  * be replaced by large mappings, for GFNs within the slot.
1085  */
1086 void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm,
1087 				       const struct kvm_memory_slot *slot)
1088 {
1089 	struct kvm_mmu_page *root;
1090 	int root_as_id;
1091 
1092 	for_each_tdp_mmu_root_yield_safe(kvm, root) {
1093 		root_as_id = kvm_mmu_page_as_id(root);
1094 		if (root_as_id != slot->as_id)
1095 			continue;
1096 
1097 		zap_collapsible_spte_range(kvm, root, slot->base_gfn,
1098 					   slot->base_gfn + slot->npages);
1099 	}
1100 }
1101 
1102 /*
1103  * Removes write access on the last level SPTE mapping this GFN and unsets the
1104  * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
1105  * Returns true if an SPTE was set and a TLB flush is needed.
1106  */
1107 static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
1108 			      gfn_t gfn)
1109 {
1110 	struct tdp_iter iter;
1111 	u64 new_spte;
1112 	bool spte_set = false;
1113 
1114 	tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1) {
1115 		if (!is_writable_pte(iter.old_spte))
1116 			break;
1117 
1118 		new_spte = iter.old_spte &
1119 			~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1120 
1121 		tdp_mmu_set_spte(kvm, &iter, new_spte);
1122 		spte_set = true;
1123 	}
1124 
1125 	return spte_set;
1126 }
1127 
1128 /*
1129  * Removes write access on the last level SPTE mapping this GFN and unsets the
1130  * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
1131  * Returns true if an SPTE was set and a TLB flush is needed.
1132  */
1133 bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
1134 				   struct kvm_memory_slot *slot, gfn_t gfn)
1135 {
1136 	struct kvm_mmu_page *root;
1137 	int root_as_id;
1138 	bool spte_set = false;
1139 
1140 	lockdep_assert_held(&kvm->mmu_lock);
1141 	for_each_tdp_mmu_root(kvm, root) {
1142 		root_as_id = kvm_mmu_page_as_id(root);
1143 		if (root_as_id != slot->as_id)
1144 			continue;
1145 
1146 		spte_set |= write_protect_gfn(kvm, root, gfn);
1147 	}
1148 	return spte_set;
1149 }
1150 
1151 /*
1152  * Return the level of the lowest level SPTE added to sptes.
1153  * That SPTE may be non-present.
1154  */
1155 int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
1156 			 int *root_level)
1157 {
1158 	struct tdp_iter iter;
1159 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1160 	gfn_t gfn = addr >> PAGE_SHIFT;
1161 	int leaf = -1;
1162 
1163 	*root_level = vcpu->arch.mmu->shadow_root_level;
1164 
1165 	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1166 		leaf = iter.level;
1167 		sptes[leaf] = iter.old_spte;
1168 	}
1169 
1170 	return leaf;
1171 }
1172