xref: /openbmc/linux/arch/x86/kvm/mmu/tdp_mmu.c (revision 58919326e72f63c380dc3271dd1cc8bdf1bbe3e4)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "mmu.h"
4 #include "mmu_internal.h"
5 #include "mmutrace.h"
6 #include "tdp_iter.h"
7 #include "tdp_mmu.h"
8 #include "spte.h"
9 
10 #include <asm/cmpxchg.h>
11 #include <trace/events/kvm.h>
12 
13 static bool __read_mostly tdp_mmu_enabled = true;
14 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644);
15 
16 /* Initializes the TDP MMU for the VM, if enabled. */
17 int kvm_mmu_init_tdp_mmu(struct kvm *kvm)
18 {
19 	struct workqueue_struct *wq;
20 
21 	if (!tdp_enabled || !READ_ONCE(tdp_mmu_enabled))
22 		return 0;
23 
24 	wq = alloc_workqueue("kvm", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 0);
25 	if (!wq)
26 		return -ENOMEM;
27 
28 	/* This should not be changed for the lifetime of the VM. */
29 	kvm->arch.tdp_mmu_enabled = true;
30 	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
31 	spin_lock_init(&kvm->arch.tdp_mmu_pages_lock);
32 	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages);
33 	kvm->arch.tdp_mmu_zap_wq = wq;
34 	return 1;
35 }
36 
37 /* Arbitrarily returns true so that this may be used in if statements. */
38 static __always_inline bool kvm_lockdep_assert_mmu_lock_held(struct kvm *kvm,
39 							     bool shared)
40 {
41 	if (shared)
42 		lockdep_assert_held_read(&kvm->mmu_lock);
43 	else
44 		lockdep_assert_held_write(&kvm->mmu_lock);
45 
46 	return true;
47 }
48 
49 void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
50 {
51 	if (!kvm->arch.tdp_mmu_enabled)
52 		return;
53 
54 	/* Also waits for any queued work items.  */
55 	destroy_workqueue(kvm->arch.tdp_mmu_zap_wq);
56 
57 	WARN_ON(!list_empty(&kvm->arch.tdp_mmu_pages));
58 	WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
59 
60 	/*
61 	 * Ensure that all the outstanding RCU callbacks to free shadow pages
62 	 * can run before the VM is torn down.  Work items on tdp_mmu_zap_wq
63 	 * can call kvm_tdp_mmu_put_root and create new callbacks.
64 	 */
65 	rcu_barrier();
66 }
67 
68 static void tdp_mmu_free_sp(struct kvm_mmu_page *sp)
69 {
70 	free_page((unsigned long)sp->spt);
71 	kmem_cache_free(mmu_page_header_cache, sp);
72 }
73 
74 /*
75  * This is called through call_rcu in order to free TDP page table memory
76  * safely with respect to other kernel threads that may be operating on
77  * the memory.
78  * By only accessing TDP MMU page table memory in an RCU read critical
79  * section, and freeing it after a grace period, lockless access to that
80  * memory won't use it after it is freed.
81  */
82 static void tdp_mmu_free_sp_rcu_callback(struct rcu_head *head)
83 {
84 	struct kvm_mmu_page *sp = container_of(head, struct kvm_mmu_page,
85 					       rcu_head);
86 
87 	tdp_mmu_free_sp(sp);
88 }
89 
90 static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
91 			     bool shared);
92 
93 static void tdp_mmu_zap_root_work(struct work_struct *work)
94 {
95 	struct kvm_mmu_page *root = container_of(work, struct kvm_mmu_page,
96 						 tdp_mmu_async_work);
97 	struct kvm *kvm = root->tdp_mmu_async_data;
98 
99 	read_lock(&kvm->mmu_lock);
100 
101 	/*
102 	 * A TLB flush is not necessary as KVM performs a local TLB flush when
103 	 * allocating a new root (see kvm_mmu_load()), and when migrating vCPU
104 	 * to a different pCPU.  Note, the local TLB flush on reuse also
105 	 * invalidates any paging-structure-cache entries, i.e. TLB entries for
106 	 * intermediate paging structures, that may be zapped, as such entries
107 	 * are associated with the ASID on both VMX and SVM.
108 	 */
109 	tdp_mmu_zap_root(kvm, root, true);
110 
111 	/*
112 	 * Drop the refcount using kvm_tdp_mmu_put_root() to test its logic for
113 	 * avoiding an infinite loop.  By design, the root is reachable while
114 	 * it's being asynchronously zapped, thus a different task can put its
115 	 * last reference, i.e. flowing through kvm_tdp_mmu_put_root() for an
116 	 * asynchronously zapped root is unavoidable.
117 	 */
118 	kvm_tdp_mmu_put_root(kvm, root, true);
119 
120 	read_unlock(&kvm->mmu_lock);
121 }
122 
123 static void tdp_mmu_schedule_zap_root(struct kvm *kvm, struct kvm_mmu_page *root)
124 {
125 	root->tdp_mmu_async_data = kvm;
126 	INIT_WORK(&root->tdp_mmu_async_work, tdp_mmu_zap_root_work);
127 	queue_work(kvm->arch.tdp_mmu_zap_wq, &root->tdp_mmu_async_work);
128 }
129 
130 static inline bool kvm_tdp_root_mark_invalid(struct kvm_mmu_page *page)
131 {
132 	union kvm_mmu_page_role role = page->role;
133 	role.invalid = true;
134 
135 	/* No need to use cmpxchg, only the invalid bit can change.  */
136 	role.word = xchg(&page->role.word, role.word);
137 	return role.invalid;
138 }
139 
140 void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root,
141 			  bool shared)
142 {
143 	kvm_lockdep_assert_mmu_lock_held(kvm, shared);
144 
145 	if (!refcount_dec_and_test(&root->tdp_mmu_root_count))
146 		return;
147 
148 	WARN_ON(!root->tdp_mmu_page);
149 
150 	/*
151 	 * The root now has refcount=0.  It is valid, but readers already
152 	 * cannot acquire a reference to it because kvm_tdp_mmu_get_root()
153 	 * rejects it.  This remains true for the rest of the execution
154 	 * of this function, because readers visit valid roots only
155 	 * (except for tdp_mmu_zap_root_work(), which however
156 	 * does not acquire any reference itself).
157 	 *
158 	 * Even though there are flows that need to visit all roots for
159 	 * correctness, they all take mmu_lock for write, so they cannot yet
160 	 * run concurrently. The same is true after kvm_tdp_root_mark_invalid,
161 	 * since the root still has refcount=0.
162 	 *
163 	 * However, tdp_mmu_zap_root can yield, and writers do not expect to
164 	 * see refcount=0 (see for example kvm_tdp_mmu_invalidate_all_roots()).
165 	 * So the root temporarily gets an extra reference, going to refcount=1
166 	 * while staying invalid.  Readers still cannot acquire any reference;
167 	 * but writers are now allowed to run if tdp_mmu_zap_root yields and
168 	 * they might take an extra reference if they themselves yield.
169 	 * Therefore, when the reference is given back by the worker,
170 	 * there is no guarantee that the refcount is still 1.  If not, whoever
171 	 * puts the last reference will free the page, but they will not have to
172 	 * zap the root because a root cannot go from invalid to valid.
173 	 */
174 	if (!kvm_tdp_root_mark_invalid(root)) {
175 		refcount_set(&root->tdp_mmu_root_count, 1);
176 
177 		/*
178 		 * Zapping the root in a worker is not just "nice to have";
179 		 * it is required because kvm_tdp_mmu_invalidate_all_roots()
180 		 * skips already-invalid roots.  If kvm_tdp_mmu_put_root() did
181 		 * not add the root to the workqueue, kvm_tdp_mmu_zap_all_fast()
182 		 * might return with some roots not zapped yet.
183 		 */
184 		tdp_mmu_schedule_zap_root(kvm, root);
185 		return;
186 	}
187 
188 	spin_lock(&kvm->arch.tdp_mmu_pages_lock);
189 	list_del_rcu(&root->link);
190 	spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
191 	call_rcu(&root->rcu_head, tdp_mmu_free_sp_rcu_callback);
192 }
193 
194 /*
195  * Returns the next root after @prev_root (or the first root if @prev_root is
196  * NULL).  A reference to the returned root is acquired, and the reference to
197  * @prev_root is released (the caller obviously must hold a reference to
198  * @prev_root if it's non-NULL).
199  *
200  * If @only_valid is true, invalid roots are skipped.
201  *
202  * Returns NULL if the end of tdp_mmu_roots was reached.
203  */
204 static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm,
205 					      struct kvm_mmu_page *prev_root,
206 					      bool shared, bool only_valid)
207 {
208 	struct kvm_mmu_page *next_root;
209 
210 	rcu_read_lock();
211 
212 	if (prev_root)
213 		next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
214 						  &prev_root->link,
215 						  typeof(*prev_root), link);
216 	else
217 		next_root = list_first_or_null_rcu(&kvm->arch.tdp_mmu_roots,
218 						   typeof(*next_root), link);
219 
220 	while (next_root) {
221 		if ((!only_valid || !next_root->role.invalid) &&
222 		    kvm_tdp_mmu_get_root(next_root))
223 			break;
224 
225 		next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
226 				&next_root->link, typeof(*next_root), link);
227 	}
228 
229 	rcu_read_unlock();
230 
231 	if (prev_root)
232 		kvm_tdp_mmu_put_root(kvm, prev_root, shared);
233 
234 	return next_root;
235 }
236 
237 /*
238  * Note: this iterator gets and puts references to the roots it iterates over.
239  * This makes it safe to release the MMU lock and yield within the loop, but
240  * if exiting the loop early, the caller must drop the reference to the most
241  * recent root. (Unless keeping a live reference is desirable.)
242  *
243  * If shared is set, this function is operating under the MMU lock in read
244  * mode. In the unlikely event that this thread must free a root, the lock
245  * will be temporarily dropped and reacquired in write mode.
246  */
247 #define __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared, _only_valid)\
248 	for (_root = tdp_mmu_next_root(_kvm, NULL, _shared, _only_valid);	\
249 	     _root;								\
250 	     _root = tdp_mmu_next_root(_kvm, _root, _shared, _only_valid))	\
251 		if (kvm_lockdep_assert_mmu_lock_held(_kvm, _shared) &&		\
252 		    kvm_mmu_page_as_id(_root) != _as_id) {			\
253 		} else
254 
255 #define for_each_valid_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared)	\
256 	__for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared, true)
257 
258 #define for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id)			\
259 	__for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, false, false)
260 
261 /*
262  * Iterate over all TDP MMU roots.  Requires that mmu_lock be held for write,
263  * the implication being that any flow that holds mmu_lock for read is
264  * inherently yield-friendly and should use the yield-safe variant above.
265  * Holding mmu_lock for write obviates the need for RCU protection as the list
266  * is guaranteed to be stable.
267  */
268 #define for_each_tdp_mmu_root(_kvm, _root, _as_id)			\
269 	list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link)	\
270 		if (kvm_lockdep_assert_mmu_lock_held(_kvm, false) &&	\
271 		    kvm_mmu_page_as_id(_root) != _as_id) {		\
272 		} else
273 
274 static struct kvm_mmu_page *tdp_mmu_alloc_sp(struct kvm_vcpu *vcpu)
275 {
276 	struct kvm_mmu_page *sp;
277 
278 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
279 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
280 
281 	return sp;
282 }
283 
284 static void tdp_mmu_init_sp(struct kvm_mmu_page *sp, tdp_ptep_t sptep,
285 			    gfn_t gfn, union kvm_mmu_page_role role)
286 {
287 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
288 
289 	sp->role = role;
290 	sp->gfn = gfn;
291 	sp->ptep = sptep;
292 	sp->tdp_mmu_page = true;
293 
294 	trace_kvm_mmu_get_page(sp, true);
295 }
296 
297 static void tdp_mmu_init_child_sp(struct kvm_mmu_page *child_sp,
298 				  struct tdp_iter *iter)
299 {
300 	struct kvm_mmu_page *parent_sp;
301 	union kvm_mmu_page_role role;
302 
303 	parent_sp = sptep_to_sp(rcu_dereference(iter->sptep));
304 
305 	role = parent_sp->role;
306 	role.level--;
307 
308 	tdp_mmu_init_sp(child_sp, iter->sptep, iter->gfn, role);
309 }
310 
311 hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu)
312 {
313 	union kvm_mmu_page_role role = vcpu->arch.mmu->mmu_role.base;
314 	struct kvm *kvm = vcpu->kvm;
315 	struct kvm_mmu_page *root;
316 
317 	lockdep_assert_held_write(&kvm->mmu_lock);
318 
319 	/*
320 	 * Check for an existing root before allocating a new one.  Note, the
321 	 * role check prevents consuming an invalid root.
322 	 */
323 	for_each_tdp_mmu_root(kvm, root, kvm_mmu_role_as_id(role)) {
324 		if (root->role.word == role.word &&
325 		    kvm_tdp_mmu_get_root(root))
326 			goto out;
327 	}
328 
329 	root = tdp_mmu_alloc_sp(vcpu);
330 	tdp_mmu_init_sp(root, NULL, 0, role);
331 
332 	refcount_set(&root->tdp_mmu_root_count, 1);
333 
334 	spin_lock(&kvm->arch.tdp_mmu_pages_lock);
335 	list_add_rcu(&root->link, &kvm->arch.tdp_mmu_roots);
336 	spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
337 
338 out:
339 	return __pa(root->spt);
340 }
341 
342 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
343 				u64 old_spte, u64 new_spte, int level,
344 				bool shared);
345 
346 static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level)
347 {
348 	if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level))
349 		return;
350 
351 	if (is_accessed_spte(old_spte) &&
352 	    (!is_shadow_present_pte(new_spte) || !is_accessed_spte(new_spte) ||
353 	     spte_to_pfn(old_spte) != spte_to_pfn(new_spte)))
354 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
355 }
356 
357 static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn,
358 					  u64 old_spte, u64 new_spte, int level)
359 {
360 	bool pfn_changed;
361 	struct kvm_memory_slot *slot;
362 
363 	if (level > PG_LEVEL_4K)
364 		return;
365 
366 	pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
367 
368 	if ((!is_writable_pte(old_spte) || pfn_changed) &&
369 	    is_writable_pte(new_spte)) {
370 		slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn);
371 		mark_page_dirty_in_slot(kvm, slot, gfn);
372 	}
373 }
374 
375 /**
376  * tdp_mmu_unlink_sp() - Remove a shadow page from the list of used pages
377  *
378  * @kvm: kvm instance
379  * @sp: the page to be removed
380  * @shared: This operation may not be running under the exclusive use of
381  *	    the MMU lock and the operation must synchronize with other
382  *	    threads that might be adding or removing pages.
383  */
384 static void tdp_mmu_unlink_sp(struct kvm *kvm, struct kvm_mmu_page *sp,
385 			      bool shared)
386 {
387 	if (shared)
388 		spin_lock(&kvm->arch.tdp_mmu_pages_lock);
389 	else
390 		lockdep_assert_held_write(&kvm->mmu_lock);
391 
392 	list_del(&sp->link);
393 	if (sp->lpage_disallowed)
394 		unaccount_huge_nx_page(kvm, sp);
395 
396 	if (shared)
397 		spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
398 }
399 
400 /**
401  * handle_removed_pt() - handle a page table removed from the TDP structure
402  *
403  * @kvm: kvm instance
404  * @pt: the page removed from the paging structure
405  * @shared: This operation may not be running under the exclusive use
406  *	    of the MMU lock and the operation must synchronize with other
407  *	    threads that might be modifying SPTEs.
408  *
409  * Given a page table that has been removed from the TDP paging structure,
410  * iterates through the page table to clear SPTEs and free child page tables.
411  *
412  * Note that pt is passed in as a tdp_ptep_t, but it does not need RCU
413  * protection. Since this thread removed it from the paging structure,
414  * this thread will be responsible for ensuring the page is freed. Hence the
415  * early rcu_dereferences in the function.
416  */
417 static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared)
418 {
419 	struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(pt));
420 	int level = sp->role.level;
421 	gfn_t base_gfn = sp->gfn;
422 	int i;
423 
424 	trace_kvm_mmu_prepare_zap_page(sp);
425 
426 	tdp_mmu_unlink_sp(kvm, sp, shared);
427 
428 	for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
429 		tdp_ptep_t sptep = pt + i;
430 		gfn_t gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level);
431 		u64 old_spte;
432 
433 		if (shared) {
434 			/*
435 			 * Set the SPTE to a nonpresent value that other
436 			 * threads will not overwrite. If the SPTE was
437 			 * already marked as removed then another thread
438 			 * handling a page fault could overwrite it, so
439 			 * set the SPTE until it is set from some other
440 			 * value to the removed SPTE value.
441 			 */
442 			for (;;) {
443 				old_spte = kvm_tdp_mmu_write_spte_atomic(sptep, REMOVED_SPTE);
444 				if (!is_removed_spte(old_spte))
445 					break;
446 				cpu_relax();
447 			}
448 		} else {
449 			/*
450 			 * If the SPTE is not MMU-present, there is no backing
451 			 * page associated with the SPTE and so no side effects
452 			 * that need to be recorded, and exclusive ownership of
453 			 * mmu_lock ensures the SPTE can't be made present.
454 			 * Note, zapping MMIO SPTEs is also unnecessary as they
455 			 * are guarded by the memslots generation, not by being
456 			 * unreachable.
457 			 */
458 			old_spte = kvm_tdp_mmu_read_spte(sptep);
459 			if (!is_shadow_present_pte(old_spte))
460 				continue;
461 
462 			/*
463 			 * Use the common helper instead of a raw WRITE_ONCE as
464 			 * the SPTE needs to be updated atomically if it can be
465 			 * modified by a different vCPU outside of mmu_lock.
466 			 * Even though the parent SPTE is !PRESENT, the TLB
467 			 * hasn't yet been flushed, and both Intel and AMD
468 			 * document that A/D assists can use upper-level PxE
469 			 * entries that are cached in the TLB, i.e. the CPU can
470 			 * still access the page and mark it dirty.
471 			 *
472 			 * No retry is needed in the atomic update path as the
473 			 * sole concern is dropping a Dirty bit, i.e. no other
474 			 * task can zap/remove the SPTE as mmu_lock is held for
475 			 * write.  Marking the SPTE as a removed SPTE is not
476 			 * strictly necessary for the same reason, but using
477 			 * the remove SPTE value keeps the shared/exclusive
478 			 * paths consistent and allows the handle_changed_spte()
479 			 * call below to hardcode the new value to REMOVED_SPTE.
480 			 *
481 			 * Note, even though dropping a Dirty bit is the only
482 			 * scenario where a non-atomic update could result in a
483 			 * functional bug, simply checking the Dirty bit isn't
484 			 * sufficient as a fast page fault could read the upper
485 			 * level SPTE before it is zapped, and then make this
486 			 * target SPTE writable, resume the guest, and set the
487 			 * Dirty bit between reading the SPTE above and writing
488 			 * it here.
489 			 */
490 			old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte,
491 							  REMOVED_SPTE, level);
492 		}
493 		handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn,
494 				    old_spte, REMOVED_SPTE, level, shared);
495 	}
496 
497 	call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback);
498 }
499 
500 /**
501  * __handle_changed_spte - handle bookkeeping associated with an SPTE change
502  * @kvm: kvm instance
503  * @as_id: the address space of the paging structure the SPTE was a part of
504  * @gfn: the base GFN that was mapped by the SPTE
505  * @old_spte: The value of the SPTE before the change
506  * @new_spte: The value of the SPTE after the change
507  * @level: the level of the PT the SPTE is part of in the paging structure
508  * @shared: This operation may not be running under the exclusive use of
509  *	    the MMU lock and the operation must synchronize with other
510  *	    threads that might be modifying SPTEs.
511  *
512  * Handle bookkeeping that might result from the modification of a SPTE.
513  * This function must be called for all TDP SPTE modifications.
514  */
515 static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
516 				  u64 old_spte, u64 new_spte, int level,
517 				  bool shared)
518 {
519 	bool was_present = is_shadow_present_pte(old_spte);
520 	bool is_present = is_shadow_present_pte(new_spte);
521 	bool was_leaf = was_present && is_last_spte(old_spte, level);
522 	bool is_leaf = is_present && is_last_spte(new_spte, level);
523 	bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
524 
525 	WARN_ON(level > PT64_ROOT_MAX_LEVEL);
526 	WARN_ON(level < PG_LEVEL_4K);
527 	WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
528 
529 	/*
530 	 * If this warning were to trigger it would indicate that there was a
531 	 * missing MMU notifier or a race with some notifier handler.
532 	 * A present, leaf SPTE should never be directly replaced with another
533 	 * present leaf SPTE pointing to a different PFN. A notifier handler
534 	 * should be zapping the SPTE before the main MM's page table is
535 	 * changed, or the SPTE should be zeroed, and the TLBs flushed by the
536 	 * thread before replacement.
537 	 */
538 	if (was_leaf && is_leaf && pfn_changed) {
539 		pr_err("Invalid SPTE change: cannot replace a present leaf\n"
540 		       "SPTE with another present leaf SPTE mapping a\n"
541 		       "different PFN!\n"
542 		       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
543 		       as_id, gfn, old_spte, new_spte, level);
544 
545 		/*
546 		 * Crash the host to prevent error propagation and guest data
547 		 * corruption.
548 		 */
549 		BUG();
550 	}
551 
552 	if (old_spte == new_spte)
553 		return;
554 
555 	trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte);
556 
557 	if (is_leaf)
558 		check_spte_writable_invariants(new_spte);
559 
560 	/*
561 	 * The only times a SPTE should be changed from a non-present to
562 	 * non-present state is when an MMIO entry is installed/modified/
563 	 * removed. In that case, there is nothing to do here.
564 	 */
565 	if (!was_present && !is_present) {
566 		/*
567 		 * If this change does not involve a MMIO SPTE or removed SPTE,
568 		 * it is unexpected. Log the change, though it should not
569 		 * impact the guest since both the former and current SPTEs
570 		 * are nonpresent.
571 		 */
572 		if (WARN_ON(!is_mmio_spte(old_spte) &&
573 			    !is_mmio_spte(new_spte) &&
574 			    !is_removed_spte(new_spte)))
575 			pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
576 			       "should not be replaced with another,\n"
577 			       "different nonpresent SPTE, unless one or both\n"
578 			       "are MMIO SPTEs, or the new SPTE is\n"
579 			       "a temporary removed SPTE.\n"
580 			       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
581 			       as_id, gfn, old_spte, new_spte, level);
582 		return;
583 	}
584 
585 	if (is_leaf != was_leaf)
586 		kvm_update_page_stats(kvm, level, is_leaf ? 1 : -1);
587 
588 	if (was_leaf && is_dirty_spte(old_spte) &&
589 	    (!is_present || !is_dirty_spte(new_spte) || pfn_changed))
590 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
591 
592 	/*
593 	 * Recursively handle child PTs if the change removed a subtree from
594 	 * the paging structure.  Note the WARN on the PFN changing without the
595 	 * SPTE being converted to a hugepage (leaf) or being zapped.  Shadow
596 	 * pages are kernel allocations and should never be migrated.
597 	 */
598 	if (was_present && !was_leaf &&
599 	    (is_leaf || !is_present || WARN_ON_ONCE(pfn_changed)))
600 		handle_removed_pt(kvm, spte_to_child_pt(old_spte, level), shared);
601 }
602 
603 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
604 				u64 old_spte, u64 new_spte, int level,
605 				bool shared)
606 {
607 	__handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level,
608 			      shared);
609 	handle_changed_spte_acc_track(old_spte, new_spte, level);
610 	handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
611 				      new_spte, level);
612 }
613 
614 /*
615  * tdp_mmu_set_spte_atomic - Set a TDP MMU SPTE atomically
616  * and handle the associated bookkeeping.  Do not mark the page dirty
617  * in KVM's dirty bitmaps.
618  *
619  * If setting the SPTE fails because it has changed, iter->old_spte will be
620  * refreshed to the current value of the spte.
621  *
622  * @kvm: kvm instance
623  * @iter: a tdp_iter instance currently on the SPTE that should be set
624  * @new_spte: The value the SPTE should be set to
625  * Return:
626  * * 0      - If the SPTE was set.
627  * * -EBUSY - If the SPTE cannot be set. In this case this function will have
628  *            no side-effects other than setting iter->old_spte to the last
629  *            known value of the spte.
630  */
631 static inline int tdp_mmu_set_spte_atomic(struct kvm *kvm,
632 					  struct tdp_iter *iter,
633 					  u64 new_spte)
634 {
635 	u64 *sptep = rcu_dereference(iter->sptep);
636 	u64 old_spte;
637 
638 	/*
639 	 * The caller is responsible for ensuring the old SPTE is not a REMOVED
640 	 * SPTE.  KVM should never attempt to zap or manipulate a REMOVED SPTE,
641 	 * and pre-checking before inserting a new SPTE is advantageous as it
642 	 * avoids unnecessary work.
643 	 */
644 	WARN_ON_ONCE(iter->yielded || is_removed_spte(iter->old_spte));
645 
646 	lockdep_assert_held_read(&kvm->mmu_lock);
647 
648 	/*
649 	 * Note, fast_pf_fix_direct_spte() can also modify TDP MMU SPTEs and
650 	 * does not hold the mmu_lock.
651 	 */
652 	old_spte = cmpxchg64(sptep, iter->old_spte, new_spte);
653 	if (old_spte != iter->old_spte) {
654 		/*
655 		 * The page table entry was modified by a different logical
656 		 * CPU. Refresh iter->old_spte with the current value so the
657 		 * caller operates on fresh data, e.g. if it retries
658 		 * tdp_mmu_set_spte_atomic().
659 		 */
660 		iter->old_spte = old_spte;
661 		return -EBUSY;
662 	}
663 
664 	__handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte,
665 			      new_spte, iter->level, true);
666 	handle_changed_spte_acc_track(iter->old_spte, new_spte, iter->level);
667 
668 	return 0;
669 }
670 
671 static inline int tdp_mmu_zap_spte_atomic(struct kvm *kvm,
672 					  struct tdp_iter *iter)
673 {
674 	int ret;
675 
676 	/*
677 	 * Freeze the SPTE by setting it to a special,
678 	 * non-present value. This will stop other threads from
679 	 * immediately installing a present entry in its place
680 	 * before the TLBs are flushed.
681 	 */
682 	ret = tdp_mmu_set_spte_atomic(kvm, iter, REMOVED_SPTE);
683 	if (ret)
684 		return ret;
685 
686 	kvm_flush_remote_tlbs_with_address(kvm, iter->gfn,
687 					   KVM_PAGES_PER_HPAGE(iter->level));
688 
689 	/*
690 	 * No other thread can overwrite the removed SPTE as they must either
691 	 * wait on the MMU lock or use tdp_mmu_set_spte_atomic() which will not
692 	 * overwrite the special removed SPTE value. No bookkeeping is needed
693 	 * here since the SPTE is going from non-present to non-present.  Use
694 	 * the raw write helper to avoid an unnecessary check on volatile bits.
695 	 */
696 	__kvm_tdp_mmu_write_spte(iter->sptep, 0);
697 
698 	return 0;
699 }
700 
701 
702 /*
703  * __tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping
704  * @kvm:	      KVM instance
705  * @as_id:	      Address space ID, i.e. regular vs. SMM
706  * @sptep:	      Pointer to the SPTE
707  * @old_spte:	      The current value of the SPTE
708  * @new_spte:	      The new value that will be set for the SPTE
709  * @gfn:	      The base GFN that was (or will be) mapped by the SPTE
710  * @level:	      The level _containing_ the SPTE (its parent PT's level)
711  * @record_acc_track: Notify the MM subsystem of changes to the accessed state
712  *		      of the page. Should be set unless handling an MMU
713  *		      notifier for access tracking. Leaving record_acc_track
714  *		      unset in that case prevents page accesses from being
715  *		      double counted.
716  * @record_dirty_log: Record the page as dirty in the dirty bitmap if
717  *		      appropriate for the change being made. Should be set
718  *		      unless performing certain dirty logging operations.
719  *		      Leaving record_dirty_log unset in that case prevents page
720  *		      writes from being double counted.
721  *
722  * Returns the old SPTE value, which _may_ be different than @old_spte if the
723  * SPTE had voldatile bits.
724  */
725 static u64 __tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
726 			      u64 old_spte, u64 new_spte, gfn_t gfn, int level,
727 			      bool record_acc_track, bool record_dirty_log)
728 {
729 	lockdep_assert_held_write(&kvm->mmu_lock);
730 
731 	/*
732 	 * No thread should be using this function to set SPTEs to or from the
733 	 * temporary removed SPTE value.
734 	 * If operating under the MMU lock in read mode, tdp_mmu_set_spte_atomic
735 	 * should be used. If operating under the MMU lock in write mode, the
736 	 * use of the removed SPTE should not be necessary.
737 	 */
738 	WARN_ON(is_removed_spte(old_spte) || is_removed_spte(new_spte));
739 
740 	old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, new_spte, level);
741 
742 	__handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false);
743 
744 	if (record_acc_track)
745 		handle_changed_spte_acc_track(old_spte, new_spte, level);
746 	if (record_dirty_log)
747 		handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
748 					      new_spte, level);
749 	return old_spte;
750 }
751 
752 static inline void _tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
753 				     u64 new_spte, bool record_acc_track,
754 				     bool record_dirty_log)
755 {
756 	WARN_ON_ONCE(iter->yielded);
757 
758 	iter->old_spte = __tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep,
759 					    iter->old_spte, new_spte,
760 					    iter->gfn, iter->level,
761 					    record_acc_track, record_dirty_log);
762 }
763 
764 static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
765 				    u64 new_spte)
766 {
767 	_tdp_mmu_set_spte(kvm, iter, new_spte, true, true);
768 }
769 
770 static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm,
771 						 struct tdp_iter *iter,
772 						 u64 new_spte)
773 {
774 	_tdp_mmu_set_spte(kvm, iter, new_spte, false, true);
775 }
776 
777 static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm,
778 						 struct tdp_iter *iter,
779 						 u64 new_spte)
780 {
781 	_tdp_mmu_set_spte(kvm, iter, new_spte, true, false);
782 }
783 
784 #define tdp_root_for_each_pte(_iter, _root, _start, _end) \
785 	for_each_tdp_pte(_iter, _root, _start, _end)
786 
787 #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end)	\
788 	tdp_root_for_each_pte(_iter, _root, _start, _end)		\
789 		if (!is_shadow_present_pte(_iter.old_spte) ||		\
790 		    !is_last_spte(_iter.old_spte, _iter.level))		\
791 			continue;					\
792 		else
793 
794 #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end)		\
795 	for_each_tdp_pte(_iter, to_shadow_page(_mmu->root.hpa), _start, _end)
796 
797 /*
798  * Yield if the MMU lock is contended or this thread needs to return control
799  * to the scheduler.
800  *
801  * If this function should yield and flush is set, it will perform a remote
802  * TLB flush before yielding.
803  *
804  * If this function yields, iter->yielded is set and the caller must skip to
805  * the next iteration, where tdp_iter_next() will reset the tdp_iter's walk
806  * over the paging structures to allow the iterator to continue its traversal
807  * from the paging structure root.
808  *
809  * Returns true if this function yielded.
810  */
811 static inline bool __must_check tdp_mmu_iter_cond_resched(struct kvm *kvm,
812 							  struct tdp_iter *iter,
813 							  bool flush, bool shared)
814 {
815 	WARN_ON(iter->yielded);
816 
817 	/* Ensure forward progress has been made before yielding. */
818 	if (iter->next_last_level_gfn == iter->yielded_gfn)
819 		return false;
820 
821 	if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
822 		if (flush)
823 			kvm_flush_remote_tlbs(kvm);
824 
825 		rcu_read_unlock();
826 
827 		if (shared)
828 			cond_resched_rwlock_read(&kvm->mmu_lock);
829 		else
830 			cond_resched_rwlock_write(&kvm->mmu_lock);
831 
832 		rcu_read_lock();
833 
834 		WARN_ON(iter->gfn > iter->next_last_level_gfn);
835 
836 		iter->yielded = true;
837 	}
838 
839 	return iter->yielded;
840 }
841 
842 static inline gfn_t tdp_mmu_max_gfn_exclusive(void)
843 {
844 	/*
845 	 * Bound TDP MMU walks at host.MAXPHYADDR.  KVM disallows memslots with
846 	 * a gpa range that would exceed the max gfn, and KVM does not create
847 	 * MMIO SPTEs for "impossible" gfns, instead sending such accesses down
848 	 * the slow emulation path every time.
849 	 */
850 	return kvm_mmu_max_gfn() + 1;
851 }
852 
853 static void __tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
854 			       bool shared, int zap_level)
855 {
856 	struct tdp_iter iter;
857 
858 	gfn_t end = tdp_mmu_max_gfn_exclusive();
859 	gfn_t start = 0;
860 
861 	for_each_tdp_pte_min_level(iter, root, zap_level, start, end) {
862 retry:
863 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared))
864 			continue;
865 
866 		if (!is_shadow_present_pte(iter.old_spte))
867 			continue;
868 
869 		if (iter.level > zap_level)
870 			continue;
871 
872 		if (!shared)
873 			tdp_mmu_set_spte(kvm, &iter, 0);
874 		else if (tdp_mmu_set_spte_atomic(kvm, &iter, 0))
875 			goto retry;
876 	}
877 }
878 
879 static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
880 			     bool shared)
881 {
882 
883 	/*
884 	 * The root must have an elevated refcount so that it's reachable via
885 	 * mmu_notifier callbacks, which allows this path to yield and drop
886 	 * mmu_lock.  When handling an unmap/release mmu_notifier command, KVM
887 	 * must drop all references to relevant pages prior to completing the
888 	 * callback.  Dropping mmu_lock with an unreachable root would result
889 	 * in zapping SPTEs after a relevant mmu_notifier callback completes
890 	 * and lead to use-after-free as zapping a SPTE triggers "writeback" of
891 	 * dirty accessed bits to the SPTE's associated struct page.
892 	 */
893 	WARN_ON_ONCE(!refcount_read(&root->tdp_mmu_root_count));
894 
895 	kvm_lockdep_assert_mmu_lock_held(kvm, shared);
896 
897 	rcu_read_lock();
898 
899 	/*
900 	 * To avoid RCU stalls due to recursively removing huge swaths of SPs,
901 	 * split the zap into two passes.  On the first pass, zap at the 1gb
902 	 * level, and then zap top-level SPs on the second pass.  "1gb" is not
903 	 * arbitrary, as KVM must be able to zap a 1gb shadow page without
904 	 * inducing a stall to allow in-place replacement with a 1gb hugepage.
905 	 *
906 	 * Because zapping a SP recurses on its children, stepping down to
907 	 * PG_LEVEL_4K in the iterator itself is unnecessary.
908 	 */
909 	__tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_1G);
910 	__tdp_mmu_zap_root(kvm, root, shared, root->role.level);
911 
912 	rcu_read_unlock();
913 }
914 
915 bool kvm_tdp_mmu_zap_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
916 {
917 	u64 old_spte;
918 
919 	/*
920 	 * This helper intentionally doesn't allow zapping a root shadow page,
921 	 * which doesn't have a parent page table and thus no associated entry.
922 	 */
923 	if (WARN_ON_ONCE(!sp->ptep))
924 		return false;
925 
926 	old_spte = kvm_tdp_mmu_read_spte(sp->ptep);
927 	if (WARN_ON_ONCE(!is_shadow_present_pte(old_spte)))
928 		return false;
929 
930 	__tdp_mmu_set_spte(kvm, kvm_mmu_page_as_id(sp), sp->ptep, old_spte, 0,
931 			   sp->gfn, sp->role.level + 1, true, true);
932 
933 	return true;
934 }
935 
936 /*
937  * Zap leafs SPTEs for the range of gfns, [start, end). Returns true if SPTEs
938  * have been cleared and a TLB flush is needed before releasing the MMU lock.
939  *
940  * If can_yield is true, will release the MMU lock and reschedule if the
941  * scheduler needs the CPU or there is contention on the MMU lock. If this
942  * function cannot yield, it will not release the MMU lock or reschedule and
943  * the caller must ensure it does not supply too large a GFN range, or the
944  * operation can cause a soft lockup.
945  */
946 static bool tdp_mmu_zap_leafs(struct kvm *kvm, struct kvm_mmu_page *root,
947 			      gfn_t start, gfn_t end, bool can_yield, bool flush)
948 {
949 	struct tdp_iter iter;
950 
951 	end = min(end, tdp_mmu_max_gfn_exclusive());
952 
953 	lockdep_assert_held_write(&kvm->mmu_lock);
954 
955 	rcu_read_lock();
956 
957 	for_each_tdp_pte_min_level(iter, root, PG_LEVEL_4K, start, end) {
958 		if (can_yield &&
959 		    tdp_mmu_iter_cond_resched(kvm, &iter, flush, false)) {
960 			flush = false;
961 			continue;
962 		}
963 
964 		if (!is_shadow_present_pte(iter.old_spte) ||
965 		    !is_last_spte(iter.old_spte, iter.level))
966 			continue;
967 
968 		tdp_mmu_set_spte(kvm, &iter, 0);
969 		flush = true;
970 	}
971 
972 	rcu_read_unlock();
973 
974 	/*
975 	 * Because this flow zaps _only_ leaf SPTEs, the caller doesn't need
976 	 * to provide RCU protection as no 'struct kvm_mmu_page' will be freed.
977 	 */
978 	return flush;
979 }
980 
981 /*
982  * Tears down the mappings for the range of gfns, [start, end), and frees the
983  * non-root pages mapping GFNs strictly within that range. Returns true if
984  * SPTEs have been cleared and a TLB flush is needed before releasing the
985  * MMU lock.
986  */
987 bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, int as_id, gfn_t start, gfn_t end,
988 			   bool can_yield, bool flush)
989 {
990 	struct kvm_mmu_page *root;
991 
992 	for_each_tdp_mmu_root_yield_safe(kvm, root, as_id)
993 		flush = tdp_mmu_zap_leafs(kvm, root, start, end, can_yield, flush);
994 
995 	return flush;
996 }
997 
998 void kvm_tdp_mmu_zap_all(struct kvm *kvm)
999 {
1000 	struct kvm_mmu_page *root;
1001 	int i;
1002 
1003 	/*
1004 	 * Zap all roots, including invalid roots, as all SPTEs must be dropped
1005 	 * before returning to the caller.  Zap directly even if the root is
1006 	 * also being zapped by a worker.  Walking zapped top-level SPTEs isn't
1007 	 * all that expensive and mmu_lock is already held, which means the
1008 	 * worker has yielded, i.e. flushing the work instead of zapping here
1009 	 * isn't guaranteed to be any faster.
1010 	 *
1011 	 * A TLB flush is unnecessary, KVM zaps everything if and only the VM
1012 	 * is being destroyed or the userspace VMM has exited.  In both cases,
1013 	 * KVM_RUN is unreachable, i.e. no vCPUs will ever service the request.
1014 	 */
1015 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1016 		for_each_tdp_mmu_root_yield_safe(kvm, root, i)
1017 			tdp_mmu_zap_root(kvm, root, false);
1018 	}
1019 }
1020 
1021 /*
1022  * Zap all invalidated roots to ensure all SPTEs are dropped before the "fast
1023  * zap" completes.
1024  */
1025 void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm)
1026 {
1027 	flush_workqueue(kvm->arch.tdp_mmu_zap_wq);
1028 }
1029 
1030 /*
1031  * Mark each TDP MMU root as invalid to prevent vCPUs from reusing a root that
1032  * is about to be zapped, e.g. in response to a memslots update.  The actual
1033  * zapping is performed asynchronously, so a reference is taken on all roots.
1034  * Using a separate workqueue makes it easy to ensure that the destruction is
1035  * performed before the "fast zap" completes, without keeping a separate list
1036  * of invalidated roots; the list is effectively the list of work items in
1037  * the workqueue.
1038  *
1039  * Get a reference even if the root is already invalid, the asynchronous worker
1040  * assumes it was gifted a reference to the root it processes.  Because mmu_lock
1041  * is held for write, it should be impossible to observe a root with zero refcount,
1042  * i.e. the list of roots cannot be stale.
1043  *
1044  * This has essentially the same effect for the TDP MMU
1045  * as updating mmu_valid_gen does for the shadow MMU.
1046  */
1047 void kvm_tdp_mmu_invalidate_all_roots(struct kvm *kvm)
1048 {
1049 	struct kvm_mmu_page *root;
1050 
1051 	lockdep_assert_held_write(&kvm->mmu_lock);
1052 	list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) {
1053 		if (!root->role.invalid &&
1054 		    !WARN_ON_ONCE(!kvm_tdp_mmu_get_root(root))) {
1055 			root->role.invalid = true;
1056 			tdp_mmu_schedule_zap_root(kvm, root);
1057 		}
1058 	}
1059 }
1060 
1061 /*
1062  * Installs a last-level SPTE to handle a TDP page fault.
1063  * (NPT/EPT violation/misconfiguration)
1064  */
1065 static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu,
1066 					  struct kvm_page_fault *fault,
1067 					  struct tdp_iter *iter)
1068 {
1069 	struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(iter->sptep));
1070 	u64 new_spte;
1071 	int ret = RET_PF_FIXED;
1072 	bool wrprot = false;
1073 
1074 	WARN_ON(sp->role.level != fault->goal_level);
1075 	if (unlikely(!fault->slot))
1076 		new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
1077 	else
1078 		wrprot = make_spte(vcpu, sp, fault->slot, ACC_ALL, iter->gfn,
1079 					 fault->pfn, iter->old_spte, fault->prefetch, true,
1080 					 fault->map_writable, &new_spte);
1081 
1082 	if (new_spte == iter->old_spte)
1083 		ret = RET_PF_SPURIOUS;
1084 	else if (tdp_mmu_set_spte_atomic(vcpu->kvm, iter, new_spte))
1085 		return RET_PF_RETRY;
1086 	else if (is_shadow_present_pte(iter->old_spte) &&
1087 		 !is_last_spte(iter->old_spte, iter->level))
1088 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1089 						   KVM_PAGES_PER_HPAGE(iter->level + 1));
1090 
1091 	/*
1092 	 * If the page fault was caused by a write but the page is write
1093 	 * protected, emulation is needed. If the emulation was skipped,
1094 	 * the vCPU would have the same fault again.
1095 	 */
1096 	if (wrprot) {
1097 		if (fault->write)
1098 			ret = RET_PF_EMULATE;
1099 	}
1100 
1101 	/* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
1102 	if (unlikely(is_mmio_spte(new_spte))) {
1103 		trace_mark_mmio_spte(rcu_dereference(iter->sptep), iter->gfn,
1104 				     new_spte);
1105 		ret = RET_PF_EMULATE;
1106 	} else {
1107 		trace_kvm_mmu_set_spte(iter->level, iter->gfn,
1108 				       rcu_dereference(iter->sptep));
1109 	}
1110 
1111 	/*
1112 	 * Increase pf_fixed in both RET_PF_EMULATE and RET_PF_FIXED to be
1113 	 * consistent with legacy MMU behavior.
1114 	 */
1115 	if (ret != RET_PF_SPURIOUS)
1116 		vcpu->stat.pf_fixed++;
1117 
1118 	return ret;
1119 }
1120 
1121 /*
1122  * tdp_mmu_link_sp - Replace the given spte with an spte pointing to the
1123  * provided page table.
1124  *
1125  * @kvm: kvm instance
1126  * @iter: a tdp_iter instance currently on the SPTE that should be set
1127  * @sp: The new TDP page table to install.
1128  * @account_nx: True if this page table is being installed to split a
1129  *              non-executable huge page.
1130  * @shared: This operation is running under the MMU lock in read mode.
1131  *
1132  * Returns: 0 if the new page table was installed. Non-0 if the page table
1133  *          could not be installed (e.g. the atomic compare-exchange failed).
1134  */
1135 static int tdp_mmu_link_sp(struct kvm *kvm, struct tdp_iter *iter,
1136 			   struct kvm_mmu_page *sp, bool account_nx,
1137 			   bool shared)
1138 {
1139 	u64 spte = make_nonleaf_spte(sp->spt, !shadow_accessed_mask);
1140 	int ret = 0;
1141 
1142 	if (shared) {
1143 		ret = tdp_mmu_set_spte_atomic(kvm, iter, spte);
1144 		if (ret)
1145 			return ret;
1146 	} else {
1147 		tdp_mmu_set_spte(kvm, iter, spte);
1148 	}
1149 
1150 	spin_lock(&kvm->arch.tdp_mmu_pages_lock);
1151 	list_add(&sp->link, &kvm->arch.tdp_mmu_pages);
1152 	if (account_nx)
1153 		account_huge_nx_page(kvm, sp);
1154 	spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
1155 
1156 	return 0;
1157 }
1158 
1159 /*
1160  * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
1161  * page tables and SPTEs to translate the faulting guest physical address.
1162  */
1163 int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
1164 {
1165 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1166 	struct tdp_iter iter;
1167 	struct kvm_mmu_page *sp;
1168 	int ret;
1169 
1170 	kvm_mmu_hugepage_adjust(vcpu, fault);
1171 
1172 	trace_kvm_mmu_spte_requested(fault);
1173 
1174 	rcu_read_lock();
1175 
1176 	tdp_mmu_for_each_pte(iter, mmu, fault->gfn, fault->gfn + 1) {
1177 		if (fault->nx_huge_page_workaround_enabled)
1178 			disallowed_hugepage_adjust(fault, iter.old_spte, iter.level);
1179 
1180 		if (iter.level == fault->goal_level)
1181 			break;
1182 
1183 		/*
1184 		 * If there is an SPTE mapping a large page at a higher level
1185 		 * than the target, that SPTE must be cleared and replaced
1186 		 * with a non-leaf SPTE.
1187 		 */
1188 		if (is_shadow_present_pte(iter.old_spte) &&
1189 		    is_large_pte(iter.old_spte)) {
1190 			if (tdp_mmu_zap_spte_atomic(vcpu->kvm, &iter))
1191 				break;
1192 
1193 			/*
1194 			 * The iter must explicitly re-read the spte here
1195 			 * because the new value informs the !present
1196 			 * path below.
1197 			 */
1198 			iter.old_spte = kvm_tdp_mmu_read_spte(iter.sptep);
1199 		}
1200 
1201 		if (!is_shadow_present_pte(iter.old_spte)) {
1202 			bool account_nx = fault->huge_page_disallowed &&
1203 					  fault->req_level >= iter.level;
1204 
1205 			/*
1206 			 * If SPTE has been frozen by another thread, just
1207 			 * give up and retry, avoiding unnecessary page table
1208 			 * allocation and free.
1209 			 */
1210 			if (is_removed_spte(iter.old_spte))
1211 				break;
1212 
1213 			sp = tdp_mmu_alloc_sp(vcpu);
1214 			tdp_mmu_init_child_sp(sp, &iter);
1215 
1216 			if (tdp_mmu_link_sp(vcpu->kvm, &iter, sp, account_nx, true)) {
1217 				tdp_mmu_free_sp(sp);
1218 				break;
1219 			}
1220 		}
1221 	}
1222 
1223 	/*
1224 	 * Force the guest to retry the access if the upper level SPTEs aren't
1225 	 * in place, or if the target leaf SPTE is frozen by another CPU.
1226 	 */
1227 	if (iter.level != fault->goal_level || is_removed_spte(iter.old_spte)) {
1228 		rcu_read_unlock();
1229 		return RET_PF_RETRY;
1230 	}
1231 
1232 	ret = tdp_mmu_map_handle_target_level(vcpu, fault, &iter);
1233 	rcu_read_unlock();
1234 
1235 	return ret;
1236 }
1237 
1238 bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range,
1239 				 bool flush)
1240 {
1241 	return kvm_tdp_mmu_zap_leafs(kvm, range->slot->as_id, range->start,
1242 				     range->end, range->may_block, flush);
1243 }
1244 
1245 typedef bool (*tdp_handler_t)(struct kvm *kvm, struct tdp_iter *iter,
1246 			      struct kvm_gfn_range *range);
1247 
1248 static __always_inline bool kvm_tdp_mmu_handle_gfn(struct kvm *kvm,
1249 						   struct kvm_gfn_range *range,
1250 						   tdp_handler_t handler)
1251 {
1252 	struct kvm_mmu_page *root;
1253 	struct tdp_iter iter;
1254 	bool ret = false;
1255 
1256 	/*
1257 	 * Don't support rescheduling, none of the MMU notifiers that funnel
1258 	 * into this helper allow blocking; it'd be dead, wasteful code.
1259 	 */
1260 	for_each_tdp_mmu_root(kvm, root, range->slot->as_id) {
1261 		rcu_read_lock();
1262 
1263 		tdp_root_for_each_leaf_pte(iter, root, range->start, range->end)
1264 			ret |= handler(kvm, &iter, range);
1265 
1266 		rcu_read_unlock();
1267 	}
1268 
1269 	return ret;
1270 }
1271 
1272 /*
1273  * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
1274  * if any of the GFNs in the range have been accessed.
1275  */
1276 static bool age_gfn_range(struct kvm *kvm, struct tdp_iter *iter,
1277 			  struct kvm_gfn_range *range)
1278 {
1279 	u64 new_spte = 0;
1280 
1281 	/* If we have a non-accessed entry we don't need to change the pte. */
1282 	if (!is_accessed_spte(iter->old_spte))
1283 		return false;
1284 
1285 	new_spte = iter->old_spte;
1286 
1287 	if (spte_ad_enabled(new_spte)) {
1288 		new_spte &= ~shadow_accessed_mask;
1289 	} else {
1290 		/*
1291 		 * Capture the dirty status of the page, so that it doesn't get
1292 		 * lost when the SPTE is marked for access tracking.
1293 		 */
1294 		if (is_writable_pte(new_spte))
1295 			kvm_set_pfn_dirty(spte_to_pfn(new_spte));
1296 
1297 		new_spte = mark_spte_for_access_track(new_spte);
1298 	}
1299 
1300 	tdp_mmu_set_spte_no_acc_track(kvm, iter, new_spte);
1301 
1302 	return true;
1303 }
1304 
1305 bool kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1306 {
1307 	return kvm_tdp_mmu_handle_gfn(kvm, range, age_gfn_range);
1308 }
1309 
1310 static bool test_age_gfn(struct kvm *kvm, struct tdp_iter *iter,
1311 			 struct kvm_gfn_range *range)
1312 {
1313 	return is_accessed_spte(iter->old_spte);
1314 }
1315 
1316 bool kvm_tdp_mmu_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1317 {
1318 	return kvm_tdp_mmu_handle_gfn(kvm, range, test_age_gfn);
1319 }
1320 
1321 static bool set_spte_gfn(struct kvm *kvm, struct tdp_iter *iter,
1322 			 struct kvm_gfn_range *range)
1323 {
1324 	u64 new_spte;
1325 
1326 	/* Huge pages aren't expected to be modified without first being zapped. */
1327 	WARN_ON(pte_huge(range->pte) || range->start + 1 != range->end);
1328 
1329 	if (iter->level != PG_LEVEL_4K ||
1330 	    !is_shadow_present_pte(iter->old_spte))
1331 		return false;
1332 
1333 	/*
1334 	 * Note, when changing a read-only SPTE, it's not strictly necessary to
1335 	 * zero the SPTE before setting the new PFN, but doing so preserves the
1336 	 * invariant that the PFN of a present * leaf SPTE can never change.
1337 	 * See __handle_changed_spte().
1338 	 */
1339 	tdp_mmu_set_spte(kvm, iter, 0);
1340 
1341 	if (!pte_write(range->pte)) {
1342 		new_spte = kvm_mmu_changed_pte_notifier_make_spte(iter->old_spte,
1343 								  pte_pfn(range->pte));
1344 
1345 		tdp_mmu_set_spte(kvm, iter, new_spte);
1346 	}
1347 
1348 	return true;
1349 }
1350 
1351 /*
1352  * Handle the changed_pte MMU notifier for the TDP MMU.
1353  * data is a pointer to the new pte_t mapping the HVA specified by the MMU
1354  * notifier.
1355  * Returns non-zero if a flush is needed before releasing the MMU lock.
1356  */
1357 bool kvm_tdp_mmu_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1358 {
1359 	/*
1360 	 * No need to handle the remote TLB flush under RCU protection, the
1361 	 * target SPTE _must_ be a leaf SPTE, i.e. cannot result in freeing a
1362 	 * shadow page.  See the WARN on pfn_changed in __handle_changed_spte().
1363 	 */
1364 	return kvm_tdp_mmu_handle_gfn(kvm, range, set_spte_gfn);
1365 }
1366 
1367 /*
1368  * Remove write access from all SPTEs at or above min_level that map GFNs
1369  * [start, end). Returns true if an SPTE has been changed and the TLBs need to
1370  * be flushed.
1371  */
1372 static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1373 			     gfn_t start, gfn_t end, int min_level)
1374 {
1375 	struct tdp_iter iter;
1376 	u64 new_spte;
1377 	bool spte_set = false;
1378 
1379 	rcu_read_lock();
1380 
1381 	BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
1382 
1383 	for_each_tdp_pte_min_level(iter, root, min_level, start, end) {
1384 retry:
1385 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1386 			continue;
1387 
1388 		if (!is_shadow_present_pte(iter.old_spte) ||
1389 		    !is_last_spte(iter.old_spte, iter.level) ||
1390 		    !(iter.old_spte & PT_WRITABLE_MASK))
1391 			continue;
1392 
1393 		new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
1394 
1395 		if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte))
1396 			goto retry;
1397 
1398 		spte_set = true;
1399 	}
1400 
1401 	rcu_read_unlock();
1402 	return spte_set;
1403 }
1404 
1405 /*
1406  * Remove write access from all the SPTEs mapping GFNs in the memslot. Will
1407  * only affect leaf SPTEs down to min_level.
1408  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1409  */
1410 bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm,
1411 			     const struct kvm_memory_slot *slot, int min_level)
1412 {
1413 	struct kvm_mmu_page *root;
1414 	bool spte_set = false;
1415 
1416 	lockdep_assert_held_read(&kvm->mmu_lock);
1417 
1418 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true)
1419 		spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
1420 			     slot->base_gfn + slot->npages, min_level);
1421 
1422 	return spte_set;
1423 }
1424 
1425 static struct kvm_mmu_page *__tdp_mmu_alloc_sp_for_split(gfp_t gfp)
1426 {
1427 	struct kvm_mmu_page *sp;
1428 
1429 	gfp |= __GFP_ZERO;
1430 
1431 	sp = kmem_cache_alloc(mmu_page_header_cache, gfp);
1432 	if (!sp)
1433 		return NULL;
1434 
1435 	sp->spt = (void *)__get_free_page(gfp);
1436 	if (!sp->spt) {
1437 		kmem_cache_free(mmu_page_header_cache, sp);
1438 		return NULL;
1439 	}
1440 
1441 	return sp;
1442 }
1443 
1444 static struct kvm_mmu_page *tdp_mmu_alloc_sp_for_split(struct kvm *kvm,
1445 						       struct tdp_iter *iter,
1446 						       bool shared)
1447 {
1448 	struct kvm_mmu_page *sp;
1449 
1450 	/*
1451 	 * Since we are allocating while under the MMU lock we have to be
1452 	 * careful about GFP flags. Use GFP_NOWAIT to avoid blocking on direct
1453 	 * reclaim and to avoid making any filesystem callbacks (which can end
1454 	 * up invoking KVM MMU notifiers, resulting in a deadlock).
1455 	 *
1456 	 * If this allocation fails we drop the lock and retry with reclaim
1457 	 * allowed.
1458 	 */
1459 	sp = __tdp_mmu_alloc_sp_for_split(GFP_NOWAIT | __GFP_ACCOUNT);
1460 	if (sp)
1461 		return sp;
1462 
1463 	rcu_read_unlock();
1464 
1465 	if (shared)
1466 		read_unlock(&kvm->mmu_lock);
1467 	else
1468 		write_unlock(&kvm->mmu_lock);
1469 
1470 	iter->yielded = true;
1471 	sp = __tdp_mmu_alloc_sp_for_split(GFP_KERNEL_ACCOUNT);
1472 
1473 	if (shared)
1474 		read_lock(&kvm->mmu_lock);
1475 	else
1476 		write_lock(&kvm->mmu_lock);
1477 
1478 	rcu_read_lock();
1479 
1480 	return sp;
1481 }
1482 
1483 static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter,
1484 				   struct kvm_mmu_page *sp, bool shared)
1485 {
1486 	const u64 huge_spte = iter->old_spte;
1487 	const int level = iter->level;
1488 	int ret, i;
1489 
1490 	tdp_mmu_init_child_sp(sp, iter);
1491 
1492 	/*
1493 	 * No need for atomics when writing to sp->spt since the page table has
1494 	 * not been linked in yet and thus is not reachable from any other CPU.
1495 	 */
1496 	for (i = 0; i < PT64_ENT_PER_PAGE; i++)
1497 		sp->spt[i] = make_huge_page_split_spte(huge_spte, level, i);
1498 
1499 	/*
1500 	 * Replace the huge spte with a pointer to the populated lower level
1501 	 * page table. Since we are making this change without a TLB flush vCPUs
1502 	 * will see a mix of the split mappings and the original huge mapping,
1503 	 * depending on what's currently in their TLB. This is fine from a
1504 	 * correctness standpoint since the translation will be the same either
1505 	 * way.
1506 	 */
1507 	ret = tdp_mmu_link_sp(kvm, iter, sp, false, shared);
1508 	if (ret)
1509 		goto out;
1510 
1511 	/*
1512 	 * tdp_mmu_link_sp_atomic() will handle subtracting the huge page we
1513 	 * are overwriting from the page stats. But we have to manually update
1514 	 * the page stats with the new present child pages.
1515 	 */
1516 	kvm_update_page_stats(kvm, level - 1, PT64_ENT_PER_PAGE);
1517 
1518 out:
1519 	trace_kvm_mmu_split_huge_page(iter->gfn, huge_spte, level, ret);
1520 	return ret;
1521 }
1522 
1523 static int tdp_mmu_split_huge_pages_root(struct kvm *kvm,
1524 					 struct kvm_mmu_page *root,
1525 					 gfn_t start, gfn_t end,
1526 					 int target_level, bool shared)
1527 {
1528 	struct kvm_mmu_page *sp = NULL;
1529 	struct tdp_iter iter;
1530 	int ret = 0;
1531 
1532 	rcu_read_lock();
1533 
1534 	/*
1535 	 * Traverse the page table splitting all huge pages above the target
1536 	 * level into one lower level. For example, if we encounter a 1GB page
1537 	 * we split it into 512 2MB pages.
1538 	 *
1539 	 * Since the TDP iterator uses a pre-order traversal, we are guaranteed
1540 	 * to visit an SPTE before ever visiting its children, which means we
1541 	 * will correctly recursively split huge pages that are more than one
1542 	 * level above the target level (e.g. splitting a 1GB to 512 2MB pages,
1543 	 * and then splitting each of those to 512 4KB pages).
1544 	 */
1545 	for_each_tdp_pte_min_level(iter, root, target_level + 1, start, end) {
1546 retry:
1547 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared))
1548 			continue;
1549 
1550 		if (!is_shadow_present_pte(iter.old_spte) || !is_large_pte(iter.old_spte))
1551 			continue;
1552 
1553 		if (!sp) {
1554 			sp = tdp_mmu_alloc_sp_for_split(kvm, &iter, shared);
1555 			if (!sp) {
1556 				ret = -ENOMEM;
1557 				trace_kvm_mmu_split_huge_page(iter.gfn,
1558 							      iter.old_spte,
1559 							      iter.level, ret);
1560 				break;
1561 			}
1562 
1563 			if (iter.yielded)
1564 				continue;
1565 		}
1566 
1567 		if (tdp_mmu_split_huge_page(kvm, &iter, sp, shared))
1568 			goto retry;
1569 
1570 		sp = NULL;
1571 	}
1572 
1573 	rcu_read_unlock();
1574 
1575 	/*
1576 	 * It's possible to exit the loop having never used the last sp if, for
1577 	 * example, a vCPU doing HugePage NX splitting wins the race and
1578 	 * installs its own sp in place of the last sp we tried to split.
1579 	 */
1580 	if (sp)
1581 		tdp_mmu_free_sp(sp);
1582 
1583 	return ret;
1584 }
1585 
1586 
1587 /*
1588  * Try to split all huge pages mapped by the TDP MMU down to the target level.
1589  */
1590 void kvm_tdp_mmu_try_split_huge_pages(struct kvm *kvm,
1591 				      const struct kvm_memory_slot *slot,
1592 				      gfn_t start, gfn_t end,
1593 				      int target_level, bool shared)
1594 {
1595 	struct kvm_mmu_page *root;
1596 	int r = 0;
1597 
1598 	kvm_lockdep_assert_mmu_lock_held(kvm, shared);
1599 
1600 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, shared) {
1601 		r = tdp_mmu_split_huge_pages_root(kvm, root, start, end, target_level, shared);
1602 		if (r) {
1603 			kvm_tdp_mmu_put_root(kvm, root, shared);
1604 			break;
1605 		}
1606 	}
1607 }
1608 
1609 /*
1610  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
1611  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
1612  * If AD bits are not enabled, this will require clearing the writable bit on
1613  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
1614  * be flushed.
1615  */
1616 static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1617 			   gfn_t start, gfn_t end)
1618 {
1619 	struct tdp_iter iter;
1620 	u64 new_spte;
1621 	bool spte_set = false;
1622 
1623 	rcu_read_lock();
1624 
1625 	tdp_root_for_each_leaf_pte(iter, root, start, end) {
1626 retry:
1627 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1628 			continue;
1629 
1630 		if (!is_shadow_present_pte(iter.old_spte))
1631 			continue;
1632 
1633 		if (spte_ad_need_write_protect(iter.old_spte)) {
1634 			if (is_writable_pte(iter.old_spte))
1635 				new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
1636 			else
1637 				continue;
1638 		} else {
1639 			if (iter.old_spte & shadow_dirty_mask)
1640 				new_spte = iter.old_spte & ~shadow_dirty_mask;
1641 			else
1642 				continue;
1643 		}
1644 
1645 		if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte))
1646 			goto retry;
1647 
1648 		spte_set = true;
1649 	}
1650 
1651 	rcu_read_unlock();
1652 	return spte_set;
1653 }
1654 
1655 /*
1656  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
1657  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
1658  * If AD bits are not enabled, this will require clearing the writable bit on
1659  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
1660  * be flushed.
1661  */
1662 bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm,
1663 				  const struct kvm_memory_slot *slot)
1664 {
1665 	struct kvm_mmu_page *root;
1666 	bool spte_set = false;
1667 
1668 	lockdep_assert_held_read(&kvm->mmu_lock);
1669 
1670 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true)
1671 		spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
1672 				slot->base_gfn + slot->npages);
1673 
1674 	return spte_set;
1675 }
1676 
1677 /*
1678  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
1679  * set in mask, starting at gfn. The given memslot is expected to contain all
1680  * the GFNs represented by set bits in the mask. If AD bits are enabled,
1681  * clearing the dirty status will involve clearing the dirty bit on each SPTE
1682  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
1683  */
1684 static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
1685 				  gfn_t gfn, unsigned long mask, bool wrprot)
1686 {
1687 	struct tdp_iter iter;
1688 	u64 new_spte;
1689 
1690 	rcu_read_lock();
1691 
1692 	tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
1693 				    gfn + BITS_PER_LONG) {
1694 		if (!mask)
1695 			break;
1696 
1697 		if (iter.level > PG_LEVEL_4K ||
1698 		    !(mask & (1UL << (iter.gfn - gfn))))
1699 			continue;
1700 
1701 		mask &= ~(1UL << (iter.gfn - gfn));
1702 
1703 		if (wrprot || spte_ad_need_write_protect(iter.old_spte)) {
1704 			if (is_writable_pte(iter.old_spte))
1705 				new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
1706 			else
1707 				continue;
1708 		} else {
1709 			if (iter.old_spte & shadow_dirty_mask)
1710 				new_spte = iter.old_spte & ~shadow_dirty_mask;
1711 			else
1712 				continue;
1713 		}
1714 
1715 		tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
1716 	}
1717 
1718 	rcu_read_unlock();
1719 }
1720 
1721 /*
1722  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
1723  * set in mask, starting at gfn. The given memslot is expected to contain all
1724  * the GFNs represented by set bits in the mask. If AD bits are enabled,
1725  * clearing the dirty status will involve clearing the dirty bit on each SPTE
1726  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
1727  */
1728 void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1729 				       struct kvm_memory_slot *slot,
1730 				       gfn_t gfn, unsigned long mask,
1731 				       bool wrprot)
1732 {
1733 	struct kvm_mmu_page *root;
1734 
1735 	lockdep_assert_held_write(&kvm->mmu_lock);
1736 	for_each_tdp_mmu_root(kvm, root, slot->as_id)
1737 		clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
1738 }
1739 
1740 /*
1741  * Clear leaf entries which could be replaced by large mappings, for
1742  * GFNs within the slot.
1743  */
1744 static void zap_collapsible_spte_range(struct kvm *kvm,
1745 				       struct kvm_mmu_page *root,
1746 				       const struct kvm_memory_slot *slot)
1747 {
1748 	gfn_t start = slot->base_gfn;
1749 	gfn_t end = start + slot->npages;
1750 	struct tdp_iter iter;
1751 	kvm_pfn_t pfn;
1752 
1753 	rcu_read_lock();
1754 
1755 	tdp_root_for_each_pte(iter, root, start, end) {
1756 retry:
1757 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1758 			continue;
1759 
1760 		if (!is_shadow_present_pte(iter.old_spte) ||
1761 		    !is_last_spte(iter.old_spte, iter.level))
1762 			continue;
1763 
1764 		pfn = spte_to_pfn(iter.old_spte);
1765 		if (kvm_is_reserved_pfn(pfn) ||
1766 		    iter.level >= kvm_mmu_max_mapping_level(kvm, slot, iter.gfn,
1767 							    pfn, PG_LEVEL_NUM))
1768 			continue;
1769 
1770 		/* Note, a successful atomic zap also does a remote TLB flush. */
1771 		if (tdp_mmu_zap_spte_atomic(kvm, &iter))
1772 			goto retry;
1773 	}
1774 
1775 	rcu_read_unlock();
1776 }
1777 
1778 /*
1779  * Clear non-leaf entries (and free associated page tables) which could
1780  * be replaced by large mappings, for GFNs within the slot.
1781  */
1782 void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm,
1783 				       const struct kvm_memory_slot *slot)
1784 {
1785 	struct kvm_mmu_page *root;
1786 
1787 	lockdep_assert_held_read(&kvm->mmu_lock);
1788 
1789 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true)
1790 		zap_collapsible_spte_range(kvm, root, slot);
1791 }
1792 
1793 /*
1794  * Removes write access on the last level SPTE mapping this GFN and unsets the
1795  * MMU-writable bit to ensure future writes continue to be intercepted.
1796  * Returns true if an SPTE was set and a TLB flush is needed.
1797  */
1798 static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
1799 			      gfn_t gfn, int min_level)
1800 {
1801 	struct tdp_iter iter;
1802 	u64 new_spte;
1803 	bool spte_set = false;
1804 
1805 	BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
1806 
1807 	rcu_read_lock();
1808 
1809 	for_each_tdp_pte_min_level(iter, root, min_level, gfn, gfn + 1) {
1810 		if (!is_shadow_present_pte(iter.old_spte) ||
1811 		    !is_last_spte(iter.old_spte, iter.level))
1812 			continue;
1813 
1814 		new_spte = iter.old_spte &
1815 			~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
1816 
1817 		if (new_spte == iter.old_spte)
1818 			break;
1819 
1820 		tdp_mmu_set_spte(kvm, &iter, new_spte);
1821 		spte_set = true;
1822 	}
1823 
1824 	rcu_read_unlock();
1825 
1826 	return spte_set;
1827 }
1828 
1829 /*
1830  * Removes write access on the last level SPTE mapping this GFN and unsets the
1831  * MMU-writable bit to ensure future writes continue to be intercepted.
1832  * Returns true if an SPTE was set and a TLB flush is needed.
1833  */
1834 bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
1835 				   struct kvm_memory_slot *slot, gfn_t gfn,
1836 				   int min_level)
1837 {
1838 	struct kvm_mmu_page *root;
1839 	bool spte_set = false;
1840 
1841 	lockdep_assert_held_write(&kvm->mmu_lock);
1842 	for_each_tdp_mmu_root(kvm, root, slot->as_id)
1843 		spte_set |= write_protect_gfn(kvm, root, gfn, min_level);
1844 
1845 	return spte_set;
1846 }
1847 
1848 /*
1849  * Return the level of the lowest level SPTE added to sptes.
1850  * That SPTE may be non-present.
1851  *
1852  * Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}.
1853  */
1854 int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
1855 			 int *root_level)
1856 {
1857 	struct tdp_iter iter;
1858 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1859 	gfn_t gfn = addr >> PAGE_SHIFT;
1860 	int leaf = -1;
1861 
1862 	*root_level = vcpu->arch.mmu->shadow_root_level;
1863 
1864 	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1865 		leaf = iter.level;
1866 		sptes[leaf] = iter.old_spte;
1867 	}
1868 
1869 	return leaf;
1870 }
1871 
1872 /*
1873  * Returns the last level spte pointer of the shadow page walk for the given
1874  * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
1875  * walk could be performed, returns NULL and *spte does not contain valid data.
1876  *
1877  * Contract:
1878  *  - Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}.
1879  *  - The returned sptep must not be used after kvm_tdp_mmu_walk_lockless_end.
1880  *
1881  * WARNING: This function is only intended to be called during fast_page_fault.
1882  */
1883 u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, u64 addr,
1884 					u64 *spte)
1885 {
1886 	struct tdp_iter iter;
1887 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1888 	gfn_t gfn = addr >> PAGE_SHIFT;
1889 	tdp_ptep_t sptep = NULL;
1890 
1891 	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1892 		*spte = iter.old_spte;
1893 		sptep = iter.sptep;
1894 	}
1895 
1896 	/*
1897 	 * Perform the rcu_dereference to get the raw spte pointer value since
1898 	 * we are passing it up to fast_page_fault, which is shared with the
1899 	 * legacy MMU and thus does not retain the TDP MMU-specific __rcu
1900 	 * annotation.
1901 	 *
1902 	 * This is safe since fast_page_fault obeys the contracts of this
1903 	 * function as well as all TDP MMU contracts around modifying SPTEs
1904 	 * outside of mmu_lock.
1905 	 */
1906 	return rcu_dereference(sptep);
1907 }
1908