1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "mmu.h" 4 #include "mmu_internal.h" 5 #include "mmutrace.h" 6 #include "tdp_iter.h" 7 #include "tdp_mmu.h" 8 #include "spte.h" 9 10 #include <asm/cmpxchg.h> 11 #include <trace/events/kvm.h> 12 13 static bool __read_mostly tdp_mmu_enabled = true; 14 module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644); 15 16 /* Initializes the TDP MMU for the VM, if enabled. */ 17 int kvm_mmu_init_tdp_mmu(struct kvm *kvm) 18 { 19 struct workqueue_struct *wq; 20 21 if (!tdp_enabled || !READ_ONCE(tdp_mmu_enabled)) 22 return 0; 23 24 wq = alloc_workqueue("kvm", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 0); 25 if (!wq) 26 return -ENOMEM; 27 28 /* This should not be changed for the lifetime of the VM. */ 29 kvm->arch.tdp_mmu_enabled = true; 30 INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots); 31 spin_lock_init(&kvm->arch.tdp_mmu_pages_lock); 32 INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages); 33 kvm->arch.tdp_mmu_zap_wq = wq; 34 return 1; 35 } 36 37 /* Arbitrarily returns true so that this may be used in if statements. */ 38 static __always_inline bool kvm_lockdep_assert_mmu_lock_held(struct kvm *kvm, 39 bool shared) 40 { 41 if (shared) 42 lockdep_assert_held_read(&kvm->mmu_lock); 43 else 44 lockdep_assert_held_write(&kvm->mmu_lock); 45 46 return true; 47 } 48 49 void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm) 50 { 51 if (!kvm->arch.tdp_mmu_enabled) 52 return; 53 54 /* Also waits for any queued work items. */ 55 destroy_workqueue(kvm->arch.tdp_mmu_zap_wq); 56 57 WARN_ON(!list_empty(&kvm->arch.tdp_mmu_pages)); 58 WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots)); 59 60 /* 61 * Ensure that all the outstanding RCU callbacks to free shadow pages 62 * can run before the VM is torn down. Work items on tdp_mmu_zap_wq 63 * can call kvm_tdp_mmu_put_root and create new callbacks. 64 */ 65 rcu_barrier(); 66 } 67 68 static void tdp_mmu_free_sp(struct kvm_mmu_page *sp) 69 { 70 free_page((unsigned long)sp->spt); 71 kmem_cache_free(mmu_page_header_cache, sp); 72 } 73 74 /* 75 * This is called through call_rcu in order to free TDP page table memory 76 * safely with respect to other kernel threads that may be operating on 77 * the memory. 78 * By only accessing TDP MMU page table memory in an RCU read critical 79 * section, and freeing it after a grace period, lockless access to that 80 * memory won't use it after it is freed. 81 */ 82 static void tdp_mmu_free_sp_rcu_callback(struct rcu_head *head) 83 { 84 struct kvm_mmu_page *sp = container_of(head, struct kvm_mmu_page, 85 rcu_head); 86 87 tdp_mmu_free_sp(sp); 88 } 89 90 static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root, 91 bool shared); 92 93 static void tdp_mmu_zap_root_work(struct work_struct *work) 94 { 95 struct kvm_mmu_page *root = container_of(work, struct kvm_mmu_page, 96 tdp_mmu_async_work); 97 struct kvm *kvm = root->tdp_mmu_async_data; 98 99 read_lock(&kvm->mmu_lock); 100 101 /* 102 * A TLB flush is not necessary as KVM performs a local TLB flush when 103 * allocating a new root (see kvm_mmu_load()), and when migrating vCPU 104 * to a different pCPU. Note, the local TLB flush on reuse also 105 * invalidates any paging-structure-cache entries, i.e. TLB entries for 106 * intermediate paging structures, that may be zapped, as such entries 107 * are associated with the ASID on both VMX and SVM. 108 */ 109 tdp_mmu_zap_root(kvm, root, true); 110 111 /* 112 * Drop the refcount using kvm_tdp_mmu_put_root() to test its logic for 113 * avoiding an infinite loop. By design, the root is reachable while 114 * it's being asynchronously zapped, thus a different task can put its 115 * last reference, i.e. flowing through kvm_tdp_mmu_put_root() for an 116 * asynchronously zapped root is unavoidable. 117 */ 118 kvm_tdp_mmu_put_root(kvm, root, true); 119 120 read_unlock(&kvm->mmu_lock); 121 } 122 123 static void tdp_mmu_schedule_zap_root(struct kvm *kvm, struct kvm_mmu_page *root) 124 { 125 root->tdp_mmu_async_data = kvm; 126 INIT_WORK(&root->tdp_mmu_async_work, tdp_mmu_zap_root_work); 127 queue_work(kvm->arch.tdp_mmu_zap_wq, &root->tdp_mmu_async_work); 128 } 129 130 static inline bool kvm_tdp_root_mark_invalid(struct kvm_mmu_page *page) 131 { 132 union kvm_mmu_page_role role = page->role; 133 role.invalid = true; 134 135 /* No need to use cmpxchg, only the invalid bit can change. */ 136 role.word = xchg(&page->role.word, role.word); 137 return role.invalid; 138 } 139 140 void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root, 141 bool shared) 142 { 143 kvm_lockdep_assert_mmu_lock_held(kvm, shared); 144 145 if (!refcount_dec_and_test(&root->tdp_mmu_root_count)) 146 return; 147 148 WARN_ON(!root->tdp_mmu_page); 149 150 /* 151 * The root now has refcount=0. It is valid, but readers already 152 * cannot acquire a reference to it because kvm_tdp_mmu_get_root() 153 * rejects it. This remains true for the rest of the execution 154 * of this function, because readers visit valid roots only 155 * (except for tdp_mmu_zap_root_work(), which however 156 * does not acquire any reference itself). 157 * 158 * Even though there are flows that need to visit all roots for 159 * correctness, they all take mmu_lock for write, so they cannot yet 160 * run concurrently. The same is true after kvm_tdp_root_mark_invalid, 161 * since the root still has refcount=0. 162 * 163 * However, tdp_mmu_zap_root can yield, and writers do not expect to 164 * see refcount=0 (see for example kvm_tdp_mmu_invalidate_all_roots()). 165 * So the root temporarily gets an extra reference, going to refcount=1 166 * while staying invalid. Readers still cannot acquire any reference; 167 * but writers are now allowed to run if tdp_mmu_zap_root yields and 168 * they might take an extra reference if they themselves yield. 169 * Therefore, when the reference is given back by the worker, 170 * there is no guarantee that the refcount is still 1. If not, whoever 171 * puts the last reference will free the page, but they will not have to 172 * zap the root because a root cannot go from invalid to valid. 173 */ 174 if (!kvm_tdp_root_mark_invalid(root)) { 175 refcount_set(&root->tdp_mmu_root_count, 1); 176 177 /* 178 * Zapping the root in a worker is not just "nice to have"; 179 * it is required because kvm_tdp_mmu_invalidate_all_roots() 180 * skips already-invalid roots. If kvm_tdp_mmu_put_root() did 181 * not add the root to the workqueue, kvm_tdp_mmu_zap_all_fast() 182 * might return with some roots not zapped yet. 183 */ 184 tdp_mmu_schedule_zap_root(kvm, root); 185 return; 186 } 187 188 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 189 list_del_rcu(&root->link); 190 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 191 call_rcu(&root->rcu_head, tdp_mmu_free_sp_rcu_callback); 192 } 193 194 /* 195 * Returns the next root after @prev_root (or the first root if @prev_root is 196 * NULL). A reference to the returned root is acquired, and the reference to 197 * @prev_root is released (the caller obviously must hold a reference to 198 * @prev_root if it's non-NULL). 199 * 200 * If @only_valid is true, invalid roots are skipped. 201 * 202 * Returns NULL if the end of tdp_mmu_roots was reached. 203 */ 204 static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm, 205 struct kvm_mmu_page *prev_root, 206 bool shared, bool only_valid) 207 { 208 struct kvm_mmu_page *next_root; 209 210 rcu_read_lock(); 211 212 if (prev_root) 213 next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots, 214 &prev_root->link, 215 typeof(*prev_root), link); 216 else 217 next_root = list_first_or_null_rcu(&kvm->arch.tdp_mmu_roots, 218 typeof(*next_root), link); 219 220 while (next_root) { 221 if ((!only_valid || !next_root->role.invalid) && 222 kvm_tdp_mmu_get_root(next_root)) 223 break; 224 225 next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots, 226 &next_root->link, typeof(*next_root), link); 227 } 228 229 rcu_read_unlock(); 230 231 if (prev_root) 232 kvm_tdp_mmu_put_root(kvm, prev_root, shared); 233 234 return next_root; 235 } 236 237 /* 238 * Note: this iterator gets and puts references to the roots it iterates over. 239 * This makes it safe to release the MMU lock and yield within the loop, but 240 * if exiting the loop early, the caller must drop the reference to the most 241 * recent root. (Unless keeping a live reference is desirable.) 242 * 243 * If shared is set, this function is operating under the MMU lock in read 244 * mode. In the unlikely event that this thread must free a root, the lock 245 * will be temporarily dropped and reacquired in write mode. 246 */ 247 #define __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared, _only_valid)\ 248 for (_root = tdp_mmu_next_root(_kvm, NULL, _shared, _only_valid); \ 249 _root; \ 250 _root = tdp_mmu_next_root(_kvm, _root, _shared, _only_valid)) \ 251 if (kvm_lockdep_assert_mmu_lock_held(_kvm, _shared) && \ 252 kvm_mmu_page_as_id(_root) != _as_id) { \ 253 } else 254 255 #define for_each_valid_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared) \ 256 __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared, true) 257 258 #define for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id) \ 259 __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, false, false) 260 261 /* 262 * Iterate over all TDP MMU roots. Requires that mmu_lock be held for write, 263 * the implication being that any flow that holds mmu_lock for read is 264 * inherently yield-friendly and should use the yield-safe variant above. 265 * Holding mmu_lock for write obviates the need for RCU protection as the list 266 * is guaranteed to be stable. 267 */ 268 #define for_each_tdp_mmu_root(_kvm, _root, _as_id) \ 269 list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link) \ 270 if (kvm_lockdep_assert_mmu_lock_held(_kvm, false) && \ 271 kvm_mmu_page_as_id(_root) != _as_id) { \ 272 } else 273 274 static struct kvm_mmu_page *tdp_mmu_alloc_sp(struct kvm_vcpu *vcpu) 275 { 276 struct kvm_mmu_page *sp; 277 278 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 279 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); 280 281 return sp; 282 } 283 284 static void tdp_mmu_init_sp(struct kvm_mmu_page *sp, tdp_ptep_t sptep, 285 gfn_t gfn, union kvm_mmu_page_role role) 286 { 287 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 288 289 sp->role = role; 290 sp->gfn = gfn; 291 sp->ptep = sptep; 292 sp->tdp_mmu_page = true; 293 294 trace_kvm_mmu_get_page(sp, true); 295 } 296 297 static void tdp_mmu_init_child_sp(struct kvm_mmu_page *child_sp, 298 struct tdp_iter *iter) 299 { 300 struct kvm_mmu_page *parent_sp; 301 union kvm_mmu_page_role role; 302 303 parent_sp = sptep_to_sp(rcu_dereference(iter->sptep)); 304 305 role = parent_sp->role; 306 role.level--; 307 308 tdp_mmu_init_sp(child_sp, iter->sptep, iter->gfn, role); 309 } 310 311 hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu) 312 { 313 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role; 314 struct kvm *kvm = vcpu->kvm; 315 struct kvm_mmu_page *root; 316 317 lockdep_assert_held_write(&kvm->mmu_lock); 318 319 /* 320 * Check for an existing root before allocating a new one. Note, the 321 * role check prevents consuming an invalid root. 322 */ 323 for_each_tdp_mmu_root(kvm, root, kvm_mmu_role_as_id(role)) { 324 if (root->role.word == role.word && 325 kvm_tdp_mmu_get_root(root)) 326 goto out; 327 } 328 329 root = tdp_mmu_alloc_sp(vcpu); 330 tdp_mmu_init_sp(root, NULL, 0, role); 331 332 refcount_set(&root->tdp_mmu_root_count, 1); 333 334 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 335 list_add_rcu(&root->link, &kvm->arch.tdp_mmu_roots); 336 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 337 338 out: 339 return __pa(root->spt); 340 } 341 342 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, 343 u64 old_spte, u64 new_spte, int level, 344 bool shared); 345 346 static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level) 347 { 348 if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level)) 349 return; 350 351 if (is_accessed_spte(old_spte) && 352 (!is_shadow_present_pte(new_spte) || !is_accessed_spte(new_spte) || 353 spte_to_pfn(old_spte) != spte_to_pfn(new_spte))) 354 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 355 } 356 357 static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn, 358 u64 old_spte, u64 new_spte, int level) 359 { 360 bool pfn_changed; 361 struct kvm_memory_slot *slot; 362 363 if (level > PG_LEVEL_4K) 364 return; 365 366 pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte); 367 368 if ((!is_writable_pte(old_spte) || pfn_changed) && 369 is_writable_pte(new_spte)) { 370 slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn); 371 mark_page_dirty_in_slot(kvm, slot, gfn); 372 } 373 } 374 375 /** 376 * tdp_mmu_unlink_sp() - Remove a shadow page from the list of used pages 377 * 378 * @kvm: kvm instance 379 * @sp: the page to be removed 380 * @shared: This operation may not be running under the exclusive use of 381 * the MMU lock and the operation must synchronize with other 382 * threads that might be adding or removing pages. 383 */ 384 static void tdp_mmu_unlink_sp(struct kvm *kvm, struct kvm_mmu_page *sp, 385 bool shared) 386 { 387 if (shared) 388 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 389 else 390 lockdep_assert_held_write(&kvm->mmu_lock); 391 392 list_del(&sp->link); 393 if (sp->lpage_disallowed) 394 unaccount_huge_nx_page(kvm, sp); 395 396 if (shared) 397 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 398 } 399 400 /** 401 * handle_removed_pt() - handle a page table removed from the TDP structure 402 * 403 * @kvm: kvm instance 404 * @pt: the page removed from the paging structure 405 * @shared: This operation may not be running under the exclusive use 406 * of the MMU lock and the operation must synchronize with other 407 * threads that might be modifying SPTEs. 408 * 409 * Given a page table that has been removed from the TDP paging structure, 410 * iterates through the page table to clear SPTEs and free child page tables. 411 * 412 * Note that pt is passed in as a tdp_ptep_t, but it does not need RCU 413 * protection. Since this thread removed it from the paging structure, 414 * this thread will be responsible for ensuring the page is freed. Hence the 415 * early rcu_dereferences in the function. 416 */ 417 static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared) 418 { 419 struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(pt)); 420 int level = sp->role.level; 421 gfn_t base_gfn = sp->gfn; 422 int i; 423 424 trace_kvm_mmu_prepare_zap_page(sp); 425 426 tdp_mmu_unlink_sp(kvm, sp, shared); 427 428 for (i = 0; i < PT64_ENT_PER_PAGE; i++) { 429 tdp_ptep_t sptep = pt + i; 430 gfn_t gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level); 431 u64 old_spte; 432 433 if (shared) { 434 /* 435 * Set the SPTE to a nonpresent value that other 436 * threads will not overwrite. If the SPTE was 437 * already marked as removed then another thread 438 * handling a page fault could overwrite it, so 439 * set the SPTE until it is set from some other 440 * value to the removed SPTE value. 441 */ 442 for (;;) { 443 old_spte = kvm_tdp_mmu_write_spte_atomic(sptep, REMOVED_SPTE); 444 if (!is_removed_spte(old_spte)) 445 break; 446 cpu_relax(); 447 } 448 } else { 449 /* 450 * If the SPTE is not MMU-present, there is no backing 451 * page associated with the SPTE and so no side effects 452 * that need to be recorded, and exclusive ownership of 453 * mmu_lock ensures the SPTE can't be made present. 454 * Note, zapping MMIO SPTEs is also unnecessary as they 455 * are guarded by the memslots generation, not by being 456 * unreachable. 457 */ 458 old_spte = kvm_tdp_mmu_read_spte(sptep); 459 if (!is_shadow_present_pte(old_spte)) 460 continue; 461 462 /* 463 * Use the common helper instead of a raw WRITE_ONCE as 464 * the SPTE needs to be updated atomically if it can be 465 * modified by a different vCPU outside of mmu_lock. 466 * Even though the parent SPTE is !PRESENT, the TLB 467 * hasn't yet been flushed, and both Intel and AMD 468 * document that A/D assists can use upper-level PxE 469 * entries that are cached in the TLB, i.e. the CPU can 470 * still access the page and mark it dirty. 471 * 472 * No retry is needed in the atomic update path as the 473 * sole concern is dropping a Dirty bit, i.e. no other 474 * task can zap/remove the SPTE as mmu_lock is held for 475 * write. Marking the SPTE as a removed SPTE is not 476 * strictly necessary for the same reason, but using 477 * the remove SPTE value keeps the shared/exclusive 478 * paths consistent and allows the handle_changed_spte() 479 * call below to hardcode the new value to REMOVED_SPTE. 480 * 481 * Note, even though dropping a Dirty bit is the only 482 * scenario where a non-atomic update could result in a 483 * functional bug, simply checking the Dirty bit isn't 484 * sufficient as a fast page fault could read the upper 485 * level SPTE before it is zapped, and then make this 486 * target SPTE writable, resume the guest, and set the 487 * Dirty bit between reading the SPTE above and writing 488 * it here. 489 */ 490 old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, 491 REMOVED_SPTE, level); 492 } 493 handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn, 494 old_spte, REMOVED_SPTE, level, shared); 495 } 496 497 call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback); 498 } 499 500 /** 501 * __handle_changed_spte - handle bookkeeping associated with an SPTE change 502 * @kvm: kvm instance 503 * @as_id: the address space of the paging structure the SPTE was a part of 504 * @gfn: the base GFN that was mapped by the SPTE 505 * @old_spte: The value of the SPTE before the change 506 * @new_spte: The value of the SPTE after the change 507 * @level: the level of the PT the SPTE is part of in the paging structure 508 * @shared: This operation may not be running under the exclusive use of 509 * the MMU lock and the operation must synchronize with other 510 * threads that might be modifying SPTEs. 511 * 512 * Handle bookkeeping that might result from the modification of a SPTE. 513 * This function must be called for all TDP SPTE modifications. 514 */ 515 static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, 516 u64 old_spte, u64 new_spte, int level, 517 bool shared) 518 { 519 bool was_present = is_shadow_present_pte(old_spte); 520 bool is_present = is_shadow_present_pte(new_spte); 521 bool was_leaf = was_present && is_last_spte(old_spte, level); 522 bool is_leaf = is_present && is_last_spte(new_spte, level); 523 bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte); 524 525 WARN_ON(level > PT64_ROOT_MAX_LEVEL); 526 WARN_ON(level < PG_LEVEL_4K); 527 WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1)); 528 529 /* 530 * If this warning were to trigger it would indicate that there was a 531 * missing MMU notifier or a race with some notifier handler. 532 * A present, leaf SPTE should never be directly replaced with another 533 * present leaf SPTE pointing to a different PFN. A notifier handler 534 * should be zapping the SPTE before the main MM's page table is 535 * changed, or the SPTE should be zeroed, and the TLBs flushed by the 536 * thread before replacement. 537 */ 538 if (was_leaf && is_leaf && pfn_changed) { 539 pr_err("Invalid SPTE change: cannot replace a present leaf\n" 540 "SPTE with another present leaf SPTE mapping a\n" 541 "different PFN!\n" 542 "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d", 543 as_id, gfn, old_spte, new_spte, level); 544 545 /* 546 * Crash the host to prevent error propagation and guest data 547 * corruption. 548 */ 549 BUG(); 550 } 551 552 if (old_spte == new_spte) 553 return; 554 555 trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte); 556 557 if (is_leaf) 558 check_spte_writable_invariants(new_spte); 559 560 /* 561 * The only times a SPTE should be changed from a non-present to 562 * non-present state is when an MMIO entry is installed/modified/ 563 * removed. In that case, there is nothing to do here. 564 */ 565 if (!was_present && !is_present) { 566 /* 567 * If this change does not involve a MMIO SPTE or removed SPTE, 568 * it is unexpected. Log the change, though it should not 569 * impact the guest since both the former and current SPTEs 570 * are nonpresent. 571 */ 572 if (WARN_ON(!is_mmio_spte(old_spte) && 573 !is_mmio_spte(new_spte) && 574 !is_removed_spte(new_spte))) 575 pr_err("Unexpected SPTE change! Nonpresent SPTEs\n" 576 "should not be replaced with another,\n" 577 "different nonpresent SPTE, unless one or both\n" 578 "are MMIO SPTEs, or the new SPTE is\n" 579 "a temporary removed SPTE.\n" 580 "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d", 581 as_id, gfn, old_spte, new_spte, level); 582 return; 583 } 584 585 if (is_leaf != was_leaf) 586 kvm_update_page_stats(kvm, level, is_leaf ? 1 : -1); 587 588 if (was_leaf && is_dirty_spte(old_spte) && 589 (!is_present || !is_dirty_spte(new_spte) || pfn_changed)) 590 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 591 592 /* 593 * Recursively handle child PTs if the change removed a subtree from 594 * the paging structure. Note the WARN on the PFN changing without the 595 * SPTE being converted to a hugepage (leaf) or being zapped. Shadow 596 * pages are kernel allocations and should never be migrated. 597 */ 598 if (was_present && !was_leaf && 599 (is_leaf || !is_present || WARN_ON_ONCE(pfn_changed))) 600 handle_removed_pt(kvm, spte_to_child_pt(old_spte, level), shared); 601 } 602 603 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, 604 u64 old_spte, u64 new_spte, int level, 605 bool shared) 606 { 607 __handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, 608 shared); 609 handle_changed_spte_acc_track(old_spte, new_spte, level); 610 handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte, 611 new_spte, level); 612 } 613 614 /* 615 * tdp_mmu_set_spte_atomic - Set a TDP MMU SPTE atomically 616 * and handle the associated bookkeeping. Do not mark the page dirty 617 * in KVM's dirty bitmaps. 618 * 619 * If setting the SPTE fails because it has changed, iter->old_spte will be 620 * refreshed to the current value of the spte. 621 * 622 * @kvm: kvm instance 623 * @iter: a tdp_iter instance currently on the SPTE that should be set 624 * @new_spte: The value the SPTE should be set to 625 * Return: 626 * * 0 - If the SPTE was set. 627 * * -EBUSY - If the SPTE cannot be set. In this case this function will have 628 * no side-effects other than setting iter->old_spte to the last 629 * known value of the spte. 630 */ 631 static inline int tdp_mmu_set_spte_atomic(struct kvm *kvm, 632 struct tdp_iter *iter, 633 u64 new_spte) 634 { 635 u64 *sptep = rcu_dereference(iter->sptep); 636 u64 old_spte; 637 638 /* 639 * The caller is responsible for ensuring the old SPTE is not a REMOVED 640 * SPTE. KVM should never attempt to zap or manipulate a REMOVED SPTE, 641 * and pre-checking before inserting a new SPTE is advantageous as it 642 * avoids unnecessary work. 643 */ 644 WARN_ON_ONCE(iter->yielded || is_removed_spte(iter->old_spte)); 645 646 lockdep_assert_held_read(&kvm->mmu_lock); 647 648 /* 649 * Note, fast_pf_fix_direct_spte() can also modify TDP MMU SPTEs and 650 * does not hold the mmu_lock. 651 */ 652 old_spte = cmpxchg64(sptep, iter->old_spte, new_spte); 653 if (old_spte != iter->old_spte) { 654 /* 655 * The page table entry was modified by a different logical 656 * CPU. Refresh iter->old_spte with the current value so the 657 * caller operates on fresh data, e.g. if it retries 658 * tdp_mmu_set_spte_atomic(). 659 */ 660 iter->old_spte = old_spte; 661 return -EBUSY; 662 } 663 664 __handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte, 665 new_spte, iter->level, true); 666 handle_changed_spte_acc_track(iter->old_spte, new_spte, iter->level); 667 668 return 0; 669 } 670 671 static inline int tdp_mmu_zap_spte_atomic(struct kvm *kvm, 672 struct tdp_iter *iter) 673 { 674 int ret; 675 676 /* 677 * Freeze the SPTE by setting it to a special, 678 * non-present value. This will stop other threads from 679 * immediately installing a present entry in its place 680 * before the TLBs are flushed. 681 */ 682 ret = tdp_mmu_set_spte_atomic(kvm, iter, REMOVED_SPTE); 683 if (ret) 684 return ret; 685 686 kvm_flush_remote_tlbs_with_address(kvm, iter->gfn, 687 KVM_PAGES_PER_HPAGE(iter->level)); 688 689 /* 690 * No other thread can overwrite the removed SPTE as they must either 691 * wait on the MMU lock or use tdp_mmu_set_spte_atomic() which will not 692 * overwrite the special removed SPTE value. No bookkeeping is needed 693 * here since the SPTE is going from non-present to non-present. Use 694 * the raw write helper to avoid an unnecessary check on volatile bits. 695 */ 696 __kvm_tdp_mmu_write_spte(iter->sptep, 0); 697 698 return 0; 699 } 700 701 702 /* 703 * __tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping 704 * @kvm: KVM instance 705 * @as_id: Address space ID, i.e. regular vs. SMM 706 * @sptep: Pointer to the SPTE 707 * @old_spte: The current value of the SPTE 708 * @new_spte: The new value that will be set for the SPTE 709 * @gfn: The base GFN that was (or will be) mapped by the SPTE 710 * @level: The level _containing_ the SPTE (its parent PT's level) 711 * @record_acc_track: Notify the MM subsystem of changes to the accessed state 712 * of the page. Should be set unless handling an MMU 713 * notifier for access tracking. Leaving record_acc_track 714 * unset in that case prevents page accesses from being 715 * double counted. 716 * @record_dirty_log: Record the page as dirty in the dirty bitmap if 717 * appropriate for the change being made. Should be set 718 * unless performing certain dirty logging operations. 719 * Leaving record_dirty_log unset in that case prevents page 720 * writes from being double counted. 721 * 722 * Returns the old SPTE value, which _may_ be different than @old_spte if the 723 * SPTE had voldatile bits. 724 */ 725 static u64 __tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep, 726 u64 old_spte, u64 new_spte, gfn_t gfn, int level, 727 bool record_acc_track, bool record_dirty_log) 728 { 729 lockdep_assert_held_write(&kvm->mmu_lock); 730 731 /* 732 * No thread should be using this function to set SPTEs to or from the 733 * temporary removed SPTE value. 734 * If operating under the MMU lock in read mode, tdp_mmu_set_spte_atomic 735 * should be used. If operating under the MMU lock in write mode, the 736 * use of the removed SPTE should not be necessary. 737 */ 738 WARN_ON(is_removed_spte(old_spte) || is_removed_spte(new_spte)); 739 740 old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, new_spte, level); 741 742 __handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false); 743 744 if (record_acc_track) 745 handle_changed_spte_acc_track(old_spte, new_spte, level); 746 if (record_dirty_log) 747 handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte, 748 new_spte, level); 749 return old_spte; 750 } 751 752 static inline void _tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter, 753 u64 new_spte, bool record_acc_track, 754 bool record_dirty_log) 755 { 756 WARN_ON_ONCE(iter->yielded); 757 758 iter->old_spte = __tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep, 759 iter->old_spte, new_spte, 760 iter->gfn, iter->level, 761 record_acc_track, record_dirty_log); 762 } 763 764 static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter, 765 u64 new_spte) 766 { 767 _tdp_mmu_set_spte(kvm, iter, new_spte, true, true); 768 } 769 770 static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm, 771 struct tdp_iter *iter, 772 u64 new_spte) 773 { 774 _tdp_mmu_set_spte(kvm, iter, new_spte, false, true); 775 } 776 777 static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm, 778 struct tdp_iter *iter, 779 u64 new_spte) 780 { 781 _tdp_mmu_set_spte(kvm, iter, new_spte, true, false); 782 } 783 784 #define tdp_root_for_each_pte(_iter, _root, _start, _end) \ 785 for_each_tdp_pte(_iter, _root, _start, _end) 786 787 #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end) \ 788 tdp_root_for_each_pte(_iter, _root, _start, _end) \ 789 if (!is_shadow_present_pte(_iter.old_spte) || \ 790 !is_last_spte(_iter.old_spte, _iter.level)) \ 791 continue; \ 792 else 793 794 #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end) \ 795 for_each_tdp_pte(_iter, to_shadow_page(_mmu->root.hpa), _start, _end) 796 797 /* 798 * Yield if the MMU lock is contended or this thread needs to return control 799 * to the scheduler. 800 * 801 * If this function should yield and flush is set, it will perform a remote 802 * TLB flush before yielding. 803 * 804 * If this function yields, iter->yielded is set and the caller must skip to 805 * the next iteration, where tdp_iter_next() will reset the tdp_iter's walk 806 * over the paging structures to allow the iterator to continue its traversal 807 * from the paging structure root. 808 * 809 * Returns true if this function yielded. 810 */ 811 static inline bool __must_check tdp_mmu_iter_cond_resched(struct kvm *kvm, 812 struct tdp_iter *iter, 813 bool flush, bool shared) 814 { 815 WARN_ON(iter->yielded); 816 817 /* Ensure forward progress has been made before yielding. */ 818 if (iter->next_last_level_gfn == iter->yielded_gfn) 819 return false; 820 821 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 822 if (flush) 823 kvm_flush_remote_tlbs(kvm); 824 825 rcu_read_unlock(); 826 827 if (shared) 828 cond_resched_rwlock_read(&kvm->mmu_lock); 829 else 830 cond_resched_rwlock_write(&kvm->mmu_lock); 831 832 rcu_read_lock(); 833 834 WARN_ON(iter->gfn > iter->next_last_level_gfn); 835 836 iter->yielded = true; 837 } 838 839 return iter->yielded; 840 } 841 842 static inline gfn_t tdp_mmu_max_gfn_exclusive(void) 843 { 844 /* 845 * Bound TDP MMU walks at host.MAXPHYADDR. KVM disallows memslots with 846 * a gpa range that would exceed the max gfn, and KVM does not create 847 * MMIO SPTEs for "impossible" gfns, instead sending such accesses down 848 * the slow emulation path every time. 849 */ 850 return kvm_mmu_max_gfn() + 1; 851 } 852 853 static void __tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root, 854 bool shared, int zap_level) 855 { 856 struct tdp_iter iter; 857 858 gfn_t end = tdp_mmu_max_gfn_exclusive(); 859 gfn_t start = 0; 860 861 for_each_tdp_pte_min_level(iter, root, zap_level, start, end) { 862 retry: 863 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared)) 864 continue; 865 866 if (!is_shadow_present_pte(iter.old_spte)) 867 continue; 868 869 if (iter.level > zap_level) 870 continue; 871 872 if (!shared) 873 tdp_mmu_set_spte(kvm, &iter, 0); 874 else if (tdp_mmu_set_spte_atomic(kvm, &iter, 0)) 875 goto retry; 876 } 877 } 878 879 static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root, 880 bool shared) 881 { 882 883 /* 884 * The root must have an elevated refcount so that it's reachable via 885 * mmu_notifier callbacks, which allows this path to yield and drop 886 * mmu_lock. When handling an unmap/release mmu_notifier command, KVM 887 * must drop all references to relevant pages prior to completing the 888 * callback. Dropping mmu_lock with an unreachable root would result 889 * in zapping SPTEs after a relevant mmu_notifier callback completes 890 * and lead to use-after-free as zapping a SPTE triggers "writeback" of 891 * dirty accessed bits to the SPTE's associated struct page. 892 */ 893 WARN_ON_ONCE(!refcount_read(&root->tdp_mmu_root_count)); 894 895 kvm_lockdep_assert_mmu_lock_held(kvm, shared); 896 897 rcu_read_lock(); 898 899 /* 900 * To avoid RCU stalls due to recursively removing huge swaths of SPs, 901 * split the zap into two passes. On the first pass, zap at the 1gb 902 * level, and then zap top-level SPs on the second pass. "1gb" is not 903 * arbitrary, as KVM must be able to zap a 1gb shadow page without 904 * inducing a stall to allow in-place replacement with a 1gb hugepage. 905 * 906 * Because zapping a SP recurses on its children, stepping down to 907 * PG_LEVEL_4K in the iterator itself is unnecessary. 908 */ 909 __tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_1G); 910 __tdp_mmu_zap_root(kvm, root, shared, root->role.level); 911 912 rcu_read_unlock(); 913 } 914 915 bool kvm_tdp_mmu_zap_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 916 { 917 u64 old_spte; 918 919 /* 920 * This helper intentionally doesn't allow zapping a root shadow page, 921 * which doesn't have a parent page table and thus no associated entry. 922 */ 923 if (WARN_ON_ONCE(!sp->ptep)) 924 return false; 925 926 old_spte = kvm_tdp_mmu_read_spte(sp->ptep); 927 if (WARN_ON_ONCE(!is_shadow_present_pte(old_spte))) 928 return false; 929 930 __tdp_mmu_set_spte(kvm, kvm_mmu_page_as_id(sp), sp->ptep, old_spte, 0, 931 sp->gfn, sp->role.level + 1, true, true); 932 933 return true; 934 } 935 936 /* 937 * Zap leafs SPTEs for the range of gfns, [start, end). Returns true if SPTEs 938 * have been cleared and a TLB flush is needed before releasing the MMU lock. 939 * 940 * If can_yield is true, will release the MMU lock and reschedule if the 941 * scheduler needs the CPU or there is contention on the MMU lock. If this 942 * function cannot yield, it will not release the MMU lock or reschedule and 943 * the caller must ensure it does not supply too large a GFN range, or the 944 * operation can cause a soft lockup. 945 */ 946 static bool tdp_mmu_zap_leafs(struct kvm *kvm, struct kvm_mmu_page *root, 947 gfn_t start, gfn_t end, bool can_yield, bool flush) 948 { 949 struct tdp_iter iter; 950 951 end = min(end, tdp_mmu_max_gfn_exclusive()); 952 953 lockdep_assert_held_write(&kvm->mmu_lock); 954 955 rcu_read_lock(); 956 957 for_each_tdp_pte_min_level(iter, root, PG_LEVEL_4K, start, end) { 958 if (can_yield && 959 tdp_mmu_iter_cond_resched(kvm, &iter, flush, false)) { 960 flush = false; 961 continue; 962 } 963 964 if (!is_shadow_present_pte(iter.old_spte) || 965 !is_last_spte(iter.old_spte, iter.level)) 966 continue; 967 968 tdp_mmu_set_spte(kvm, &iter, 0); 969 flush = true; 970 } 971 972 rcu_read_unlock(); 973 974 /* 975 * Because this flow zaps _only_ leaf SPTEs, the caller doesn't need 976 * to provide RCU protection as no 'struct kvm_mmu_page' will be freed. 977 */ 978 return flush; 979 } 980 981 /* 982 * Tears down the mappings for the range of gfns, [start, end), and frees the 983 * non-root pages mapping GFNs strictly within that range. Returns true if 984 * SPTEs have been cleared and a TLB flush is needed before releasing the 985 * MMU lock. 986 */ 987 bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, int as_id, gfn_t start, gfn_t end, 988 bool can_yield, bool flush) 989 { 990 struct kvm_mmu_page *root; 991 992 for_each_tdp_mmu_root_yield_safe(kvm, root, as_id) 993 flush = tdp_mmu_zap_leafs(kvm, root, start, end, can_yield, flush); 994 995 return flush; 996 } 997 998 void kvm_tdp_mmu_zap_all(struct kvm *kvm) 999 { 1000 struct kvm_mmu_page *root; 1001 int i; 1002 1003 /* 1004 * Zap all roots, including invalid roots, as all SPTEs must be dropped 1005 * before returning to the caller. Zap directly even if the root is 1006 * also being zapped by a worker. Walking zapped top-level SPTEs isn't 1007 * all that expensive and mmu_lock is already held, which means the 1008 * worker has yielded, i.e. flushing the work instead of zapping here 1009 * isn't guaranteed to be any faster. 1010 * 1011 * A TLB flush is unnecessary, KVM zaps everything if and only the VM 1012 * is being destroyed or the userspace VMM has exited. In both cases, 1013 * KVM_RUN is unreachable, i.e. no vCPUs will ever service the request. 1014 */ 1015 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1016 for_each_tdp_mmu_root_yield_safe(kvm, root, i) 1017 tdp_mmu_zap_root(kvm, root, false); 1018 } 1019 } 1020 1021 /* 1022 * Zap all invalidated roots to ensure all SPTEs are dropped before the "fast 1023 * zap" completes. 1024 */ 1025 void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm) 1026 { 1027 flush_workqueue(kvm->arch.tdp_mmu_zap_wq); 1028 } 1029 1030 /* 1031 * Mark each TDP MMU root as invalid to prevent vCPUs from reusing a root that 1032 * is about to be zapped, e.g. in response to a memslots update. The actual 1033 * zapping is performed asynchronously, so a reference is taken on all roots. 1034 * Using a separate workqueue makes it easy to ensure that the destruction is 1035 * performed before the "fast zap" completes, without keeping a separate list 1036 * of invalidated roots; the list is effectively the list of work items in 1037 * the workqueue. 1038 * 1039 * Get a reference even if the root is already invalid, the asynchronous worker 1040 * assumes it was gifted a reference to the root it processes. Because mmu_lock 1041 * is held for write, it should be impossible to observe a root with zero refcount, 1042 * i.e. the list of roots cannot be stale. 1043 * 1044 * This has essentially the same effect for the TDP MMU 1045 * as updating mmu_valid_gen does for the shadow MMU. 1046 */ 1047 void kvm_tdp_mmu_invalidate_all_roots(struct kvm *kvm) 1048 { 1049 struct kvm_mmu_page *root; 1050 1051 lockdep_assert_held_write(&kvm->mmu_lock); 1052 list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) { 1053 if (!root->role.invalid && 1054 !WARN_ON_ONCE(!kvm_tdp_mmu_get_root(root))) { 1055 root->role.invalid = true; 1056 tdp_mmu_schedule_zap_root(kvm, root); 1057 } 1058 } 1059 } 1060 1061 /* 1062 * Installs a last-level SPTE to handle a TDP page fault. 1063 * (NPT/EPT violation/misconfiguration) 1064 */ 1065 static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, 1066 struct kvm_page_fault *fault, 1067 struct tdp_iter *iter) 1068 { 1069 struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(iter->sptep)); 1070 u64 new_spte; 1071 int ret = RET_PF_FIXED; 1072 bool wrprot = false; 1073 1074 WARN_ON(sp->role.level != fault->goal_level); 1075 if (unlikely(!fault->slot)) 1076 new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL); 1077 else 1078 wrprot = make_spte(vcpu, sp, fault->slot, ACC_ALL, iter->gfn, 1079 fault->pfn, iter->old_spte, fault->prefetch, true, 1080 fault->map_writable, &new_spte); 1081 1082 if (new_spte == iter->old_spte) 1083 ret = RET_PF_SPURIOUS; 1084 else if (tdp_mmu_set_spte_atomic(vcpu->kvm, iter, new_spte)) 1085 return RET_PF_RETRY; 1086 else if (is_shadow_present_pte(iter->old_spte) && 1087 !is_last_spte(iter->old_spte, iter->level)) 1088 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1089 KVM_PAGES_PER_HPAGE(iter->level + 1)); 1090 1091 /* 1092 * If the page fault was caused by a write but the page is write 1093 * protected, emulation is needed. If the emulation was skipped, 1094 * the vCPU would have the same fault again. 1095 */ 1096 if (wrprot) { 1097 if (fault->write) 1098 ret = RET_PF_EMULATE; 1099 } 1100 1101 /* If a MMIO SPTE is installed, the MMIO will need to be emulated. */ 1102 if (unlikely(is_mmio_spte(new_spte))) { 1103 vcpu->stat.pf_mmio_spte_created++; 1104 trace_mark_mmio_spte(rcu_dereference(iter->sptep), iter->gfn, 1105 new_spte); 1106 ret = RET_PF_EMULATE; 1107 } else { 1108 trace_kvm_mmu_set_spte(iter->level, iter->gfn, 1109 rcu_dereference(iter->sptep)); 1110 } 1111 1112 return ret; 1113 } 1114 1115 /* 1116 * tdp_mmu_link_sp - Replace the given spte with an spte pointing to the 1117 * provided page table. 1118 * 1119 * @kvm: kvm instance 1120 * @iter: a tdp_iter instance currently on the SPTE that should be set 1121 * @sp: The new TDP page table to install. 1122 * @account_nx: True if this page table is being installed to split a 1123 * non-executable huge page. 1124 * @shared: This operation is running under the MMU lock in read mode. 1125 * 1126 * Returns: 0 if the new page table was installed. Non-0 if the page table 1127 * could not be installed (e.g. the atomic compare-exchange failed). 1128 */ 1129 static int tdp_mmu_link_sp(struct kvm *kvm, struct tdp_iter *iter, 1130 struct kvm_mmu_page *sp, bool account_nx, 1131 bool shared) 1132 { 1133 u64 spte = make_nonleaf_spte(sp->spt, !kvm_ad_enabled()); 1134 int ret = 0; 1135 1136 if (shared) { 1137 ret = tdp_mmu_set_spte_atomic(kvm, iter, spte); 1138 if (ret) 1139 return ret; 1140 } else { 1141 tdp_mmu_set_spte(kvm, iter, spte); 1142 } 1143 1144 spin_lock(&kvm->arch.tdp_mmu_pages_lock); 1145 list_add(&sp->link, &kvm->arch.tdp_mmu_pages); 1146 if (account_nx) 1147 account_huge_nx_page(kvm, sp); 1148 spin_unlock(&kvm->arch.tdp_mmu_pages_lock); 1149 1150 return 0; 1151 } 1152 1153 /* 1154 * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing 1155 * page tables and SPTEs to translate the faulting guest physical address. 1156 */ 1157 int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) 1158 { 1159 struct kvm_mmu *mmu = vcpu->arch.mmu; 1160 struct tdp_iter iter; 1161 struct kvm_mmu_page *sp; 1162 int ret; 1163 1164 kvm_mmu_hugepage_adjust(vcpu, fault); 1165 1166 trace_kvm_mmu_spte_requested(fault); 1167 1168 rcu_read_lock(); 1169 1170 tdp_mmu_for_each_pte(iter, mmu, fault->gfn, fault->gfn + 1) { 1171 if (fault->nx_huge_page_workaround_enabled) 1172 disallowed_hugepage_adjust(fault, iter.old_spte, iter.level); 1173 1174 if (iter.level == fault->goal_level) 1175 break; 1176 1177 /* 1178 * If there is an SPTE mapping a large page at a higher level 1179 * than the target, that SPTE must be cleared and replaced 1180 * with a non-leaf SPTE. 1181 */ 1182 if (is_shadow_present_pte(iter.old_spte) && 1183 is_large_pte(iter.old_spte)) { 1184 if (tdp_mmu_zap_spte_atomic(vcpu->kvm, &iter)) 1185 break; 1186 1187 /* 1188 * The iter must explicitly re-read the spte here 1189 * because the new value informs the !present 1190 * path below. 1191 */ 1192 iter.old_spte = kvm_tdp_mmu_read_spte(iter.sptep); 1193 } 1194 1195 if (!is_shadow_present_pte(iter.old_spte)) { 1196 bool account_nx = fault->huge_page_disallowed && 1197 fault->req_level >= iter.level; 1198 1199 /* 1200 * If SPTE has been frozen by another thread, just 1201 * give up and retry, avoiding unnecessary page table 1202 * allocation and free. 1203 */ 1204 if (is_removed_spte(iter.old_spte)) 1205 break; 1206 1207 sp = tdp_mmu_alloc_sp(vcpu); 1208 tdp_mmu_init_child_sp(sp, &iter); 1209 1210 if (tdp_mmu_link_sp(vcpu->kvm, &iter, sp, account_nx, true)) { 1211 tdp_mmu_free_sp(sp); 1212 break; 1213 } 1214 } 1215 } 1216 1217 /* 1218 * Force the guest to retry the access if the upper level SPTEs aren't 1219 * in place, or if the target leaf SPTE is frozen by another CPU. 1220 */ 1221 if (iter.level != fault->goal_level || is_removed_spte(iter.old_spte)) { 1222 rcu_read_unlock(); 1223 return RET_PF_RETRY; 1224 } 1225 1226 ret = tdp_mmu_map_handle_target_level(vcpu, fault, &iter); 1227 rcu_read_unlock(); 1228 1229 return ret; 1230 } 1231 1232 bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range, 1233 bool flush) 1234 { 1235 return kvm_tdp_mmu_zap_leafs(kvm, range->slot->as_id, range->start, 1236 range->end, range->may_block, flush); 1237 } 1238 1239 typedef bool (*tdp_handler_t)(struct kvm *kvm, struct tdp_iter *iter, 1240 struct kvm_gfn_range *range); 1241 1242 static __always_inline bool kvm_tdp_mmu_handle_gfn(struct kvm *kvm, 1243 struct kvm_gfn_range *range, 1244 tdp_handler_t handler) 1245 { 1246 struct kvm_mmu_page *root; 1247 struct tdp_iter iter; 1248 bool ret = false; 1249 1250 /* 1251 * Don't support rescheduling, none of the MMU notifiers that funnel 1252 * into this helper allow blocking; it'd be dead, wasteful code. 1253 */ 1254 for_each_tdp_mmu_root(kvm, root, range->slot->as_id) { 1255 rcu_read_lock(); 1256 1257 tdp_root_for_each_leaf_pte(iter, root, range->start, range->end) 1258 ret |= handler(kvm, &iter, range); 1259 1260 rcu_read_unlock(); 1261 } 1262 1263 return ret; 1264 } 1265 1266 /* 1267 * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero 1268 * if any of the GFNs in the range have been accessed. 1269 */ 1270 static bool age_gfn_range(struct kvm *kvm, struct tdp_iter *iter, 1271 struct kvm_gfn_range *range) 1272 { 1273 u64 new_spte = 0; 1274 1275 /* If we have a non-accessed entry we don't need to change the pte. */ 1276 if (!is_accessed_spte(iter->old_spte)) 1277 return false; 1278 1279 new_spte = iter->old_spte; 1280 1281 if (spte_ad_enabled(new_spte)) { 1282 new_spte &= ~shadow_accessed_mask; 1283 } else { 1284 /* 1285 * Capture the dirty status of the page, so that it doesn't get 1286 * lost when the SPTE is marked for access tracking. 1287 */ 1288 if (is_writable_pte(new_spte)) 1289 kvm_set_pfn_dirty(spte_to_pfn(new_spte)); 1290 1291 new_spte = mark_spte_for_access_track(new_spte); 1292 } 1293 1294 tdp_mmu_set_spte_no_acc_track(kvm, iter, new_spte); 1295 1296 return true; 1297 } 1298 1299 bool kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1300 { 1301 return kvm_tdp_mmu_handle_gfn(kvm, range, age_gfn_range); 1302 } 1303 1304 static bool test_age_gfn(struct kvm *kvm, struct tdp_iter *iter, 1305 struct kvm_gfn_range *range) 1306 { 1307 return is_accessed_spte(iter->old_spte); 1308 } 1309 1310 bool kvm_tdp_mmu_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1311 { 1312 return kvm_tdp_mmu_handle_gfn(kvm, range, test_age_gfn); 1313 } 1314 1315 static bool set_spte_gfn(struct kvm *kvm, struct tdp_iter *iter, 1316 struct kvm_gfn_range *range) 1317 { 1318 u64 new_spte; 1319 1320 /* Huge pages aren't expected to be modified without first being zapped. */ 1321 WARN_ON(pte_huge(range->pte) || range->start + 1 != range->end); 1322 1323 if (iter->level != PG_LEVEL_4K || 1324 !is_shadow_present_pte(iter->old_spte)) 1325 return false; 1326 1327 /* 1328 * Note, when changing a read-only SPTE, it's not strictly necessary to 1329 * zero the SPTE before setting the new PFN, but doing so preserves the 1330 * invariant that the PFN of a present * leaf SPTE can never change. 1331 * See __handle_changed_spte(). 1332 */ 1333 tdp_mmu_set_spte(kvm, iter, 0); 1334 1335 if (!pte_write(range->pte)) { 1336 new_spte = kvm_mmu_changed_pte_notifier_make_spte(iter->old_spte, 1337 pte_pfn(range->pte)); 1338 1339 tdp_mmu_set_spte(kvm, iter, new_spte); 1340 } 1341 1342 return true; 1343 } 1344 1345 /* 1346 * Handle the changed_pte MMU notifier for the TDP MMU. 1347 * data is a pointer to the new pte_t mapping the HVA specified by the MMU 1348 * notifier. 1349 * Returns non-zero if a flush is needed before releasing the MMU lock. 1350 */ 1351 bool kvm_tdp_mmu_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1352 { 1353 /* 1354 * No need to handle the remote TLB flush under RCU protection, the 1355 * target SPTE _must_ be a leaf SPTE, i.e. cannot result in freeing a 1356 * shadow page. See the WARN on pfn_changed in __handle_changed_spte(). 1357 */ 1358 return kvm_tdp_mmu_handle_gfn(kvm, range, set_spte_gfn); 1359 } 1360 1361 /* 1362 * Remove write access from all SPTEs at or above min_level that map GFNs 1363 * [start, end). Returns true if an SPTE has been changed and the TLBs need to 1364 * be flushed. 1365 */ 1366 static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, 1367 gfn_t start, gfn_t end, int min_level) 1368 { 1369 struct tdp_iter iter; 1370 u64 new_spte; 1371 bool spte_set = false; 1372 1373 rcu_read_lock(); 1374 1375 BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL); 1376 1377 for_each_tdp_pte_min_level(iter, root, min_level, start, end) { 1378 retry: 1379 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) 1380 continue; 1381 1382 if (!is_shadow_present_pte(iter.old_spte) || 1383 !is_last_spte(iter.old_spte, iter.level) || 1384 !(iter.old_spte & PT_WRITABLE_MASK)) 1385 continue; 1386 1387 new_spte = iter.old_spte & ~PT_WRITABLE_MASK; 1388 1389 if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte)) 1390 goto retry; 1391 1392 spte_set = true; 1393 } 1394 1395 rcu_read_unlock(); 1396 return spte_set; 1397 } 1398 1399 /* 1400 * Remove write access from all the SPTEs mapping GFNs in the memslot. Will 1401 * only affect leaf SPTEs down to min_level. 1402 * Returns true if an SPTE has been changed and the TLBs need to be flushed. 1403 */ 1404 bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, 1405 const struct kvm_memory_slot *slot, int min_level) 1406 { 1407 struct kvm_mmu_page *root; 1408 bool spte_set = false; 1409 1410 lockdep_assert_held_read(&kvm->mmu_lock); 1411 1412 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true) 1413 spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn, 1414 slot->base_gfn + slot->npages, min_level); 1415 1416 return spte_set; 1417 } 1418 1419 static struct kvm_mmu_page *__tdp_mmu_alloc_sp_for_split(gfp_t gfp) 1420 { 1421 struct kvm_mmu_page *sp; 1422 1423 gfp |= __GFP_ZERO; 1424 1425 sp = kmem_cache_alloc(mmu_page_header_cache, gfp); 1426 if (!sp) 1427 return NULL; 1428 1429 sp->spt = (void *)__get_free_page(gfp); 1430 if (!sp->spt) { 1431 kmem_cache_free(mmu_page_header_cache, sp); 1432 return NULL; 1433 } 1434 1435 return sp; 1436 } 1437 1438 static struct kvm_mmu_page *tdp_mmu_alloc_sp_for_split(struct kvm *kvm, 1439 struct tdp_iter *iter, 1440 bool shared) 1441 { 1442 struct kvm_mmu_page *sp; 1443 1444 /* 1445 * Since we are allocating while under the MMU lock we have to be 1446 * careful about GFP flags. Use GFP_NOWAIT to avoid blocking on direct 1447 * reclaim and to avoid making any filesystem callbacks (which can end 1448 * up invoking KVM MMU notifiers, resulting in a deadlock). 1449 * 1450 * If this allocation fails we drop the lock and retry with reclaim 1451 * allowed. 1452 */ 1453 sp = __tdp_mmu_alloc_sp_for_split(GFP_NOWAIT | __GFP_ACCOUNT); 1454 if (sp) 1455 return sp; 1456 1457 rcu_read_unlock(); 1458 1459 if (shared) 1460 read_unlock(&kvm->mmu_lock); 1461 else 1462 write_unlock(&kvm->mmu_lock); 1463 1464 iter->yielded = true; 1465 sp = __tdp_mmu_alloc_sp_for_split(GFP_KERNEL_ACCOUNT); 1466 1467 if (shared) 1468 read_lock(&kvm->mmu_lock); 1469 else 1470 write_lock(&kvm->mmu_lock); 1471 1472 rcu_read_lock(); 1473 1474 return sp; 1475 } 1476 1477 static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter, 1478 struct kvm_mmu_page *sp, bool shared) 1479 { 1480 const u64 huge_spte = iter->old_spte; 1481 const int level = iter->level; 1482 int ret, i; 1483 1484 tdp_mmu_init_child_sp(sp, iter); 1485 1486 /* 1487 * No need for atomics when writing to sp->spt since the page table has 1488 * not been linked in yet and thus is not reachable from any other CPU. 1489 */ 1490 for (i = 0; i < PT64_ENT_PER_PAGE; i++) 1491 sp->spt[i] = make_huge_page_split_spte(huge_spte, level, i); 1492 1493 /* 1494 * Replace the huge spte with a pointer to the populated lower level 1495 * page table. Since we are making this change without a TLB flush vCPUs 1496 * will see a mix of the split mappings and the original huge mapping, 1497 * depending on what's currently in their TLB. This is fine from a 1498 * correctness standpoint since the translation will be the same either 1499 * way. 1500 */ 1501 ret = tdp_mmu_link_sp(kvm, iter, sp, false, shared); 1502 if (ret) 1503 goto out; 1504 1505 /* 1506 * tdp_mmu_link_sp_atomic() will handle subtracting the huge page we 1507 * are overwriting from the page stats. But we have to manually update 1508 * the page stats with the new present child pages. 1509 */ 1510 kvm_update_page_stats(kvm, level - 1, PT64_ENT_PER_PAGE); 1511 1512 out: 1513 trace_kvm_mmu_split_huge_page(iter->gfn, huge_spte, level, ret); 1514 return ret; 1515 } 1516 1517 static int tdp_mmu_split_huge_pages_root(struct kvm *kvm, 1518 struct kvm_mmu_page *root, 1519 gfn_t start, gfn_t end, 1520 int target_level, bool shared) 1521 { 1522 struct kvm_mmu_page *sp = NULL; 1523 struct tdp_iter iter; 1524 int ret = 0; 1525 1526 rcu_read_lock(); 1527 1528 /* 1529 * Traverse the page table splitting all huge pages above the target 1530 * level into one lower level. For example, if we encounter a 1GB page 1531 * we split it into 512 2MB pages. 1532 * 1533 * Since the TDP iterator uses a pre-order traversal, we are guaranteed 1534 * to visit an SPTE before ever visiting its children, which means we 1535 * will correctly recursively split huge pages that are more than one 1536 * level above the target level (e.g. splitting a 1GB to 512 2MB pages, 1537 * and then splitting each of those to 512 4KB pages). 1538 */ 1539 for_each_tdp_pte_min_level(iter, root, target_level + 1, start, end) { 1540 retry: 1541 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared)) 1542 continue; 1543 1544 if (!is_shadow_present_pte(iter.old_spte) || !is_large_pte(iter.old_spte)) 1545 continue; 1546 1547 if (!sp) { 1548 sp = tdp_mmu_alloc_sp_for_split(kvm, &iter, shared); 1549 if (!sp) { 1550 ret = -ENOMEM; 1551 trace_kvm_mmu_split_huge_page(iter.gfn, 1552 iter.old_spte, 1553 iter.level, ret); 1554 break; 1555 } 1556 1557 if (iter.yielded) 1558 continue; 1559 } 1560 1561 if (tdp_mmu_split_huge_page(kvm, &iter, sp, shared)) 1562 goto retry; 1563 1564 sp = NULL; 1565 } 1566 1567 rcu_read_unlock(); 1568 1569 /* 1570 * It's possible to exit the loop having never used the last sp if, for 1571 * example, a vCPU doing HugePage NX splitting wins the race and 1572 * installs its own sp in place of the last sp we tried to split. 1573 */ 1574 if (sp) 1575 tdp_mmu_free_sp(sp); 1576 1577 return ret; 1578 } 1579 1580 1581 /* 1582 * Try to split all huge pages mapped by the TDP MMU down to the target level. 1583 */ 1584 void kvm_tdp_mmu_try_split_huge_pages(struct kvm *kvm, 1585 const struct kvm_memory_slot *slot, 1586 gfn_t start, gfn_t end, 1587 int target_level, bool shared) 1588 { 1589 struct kvm_mmu_page *root; 1590 int r = 0; 1591 1592 kvm_lockdep_assert_mmu_lock_held(kvm, shared); 1593 1594 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, shared) { 1595 r = tdp_mmu_split_huge_pages_root(kvm, root, start, end, target_level, shared); 1596 if (r) { 1597 kvm_tdp_mmu_put_root(kvm, root, shared); 1598 break; 1599 } 1600 } 1601 } 1602 1603 /* 1604 * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If 1605 * AD bits are enabled, this will involve clearing the dirty bit on each SPTE. 1606 * If AD bits are not enabled, this will require clearing the writable bit on 1607 * each SPTE. Returns true if an SPTE has been changed and the TLBs need to 1608 * be flushed. 1609 */ 1610 static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, 1611 gfn_t start, gfn_t end) 1612 { 1613 struct tdp_iter iter; 1614 u64 new_spte; 1615 bool spte_set = false; 1616 1617 rcu_read_lock(); 1618 1619 tdp_root_for_each_leaf_pte(iter, root, start, end) { 1620 retry: 1621 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) 1622 continue; 1623 1624 if (!is_shadow_present_pte(iter.old_spte)) 1625 continue; 1626 1627 if (spte_ad_need_write_protect(iter.old_spte)) { 1628 if (is_writable_pte(iter.old_spte)) 1629 new_spte = iter.old_spte & ~PT_WRITABLE_MASK; 1630 else 1631 continue; 1632 } else { 1633 if (iter.old_spte & shadow_dirty_mask) 1634 new_spte = iter.old_spte & ~shadow_dirty_mask; 1635 else 1636 continue; 1637 } 1638 1639 if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte)) 1640 goto retry; 1641 1642 spte_set = true; 1643 } 1644 1645 rcu_read_unlock(); 1646 return spte_set; 1647 } 1648 1649 /* 1650 * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If 1651 * AD bits are enabled, this will involve clearing the dirty bit on each SPTE. 1652 * If AD bits are not enabled, this will require clearing the writable bit on 1653 * each SPTE. Returns true if an SPTE has been changed and the TLBs need to 1654 * be flushed. 1655 */ 1656 bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, 1657 const struct kvm_memory_slot *slot) 1658 { 1659 struct kvm_mmu_page *root; 1660 bool spte_set = false; 1661 1662 lockdep_assert_held_read(&kvm->mmu_lock); 1663 1664 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true) 1665 spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn, 1666 slot->base_gfn + slot->npages); 1667 1668 return spte_set; 1669 } 1670 1671 /* 1672 * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is 1673 * set in mask, starting at gfn. The given memslot is expected to contain all 1674 * the GFNs represented by set bits in the mask. If AD bits are enabled, 1675 * clearing the dirty status will involve clearing the dirty bit on each SPTE 1676 * or, if AD bits are not enabled, clearing the writable bit on each SPTE. 1677 */ 1678 static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root, 1679 gfn_t gfn, unsigned long mask, bool wrprot) 1680 { 1681 struct tdp_iter iter; 1682 u64 new_spte; 1683 1684 rcu_read_lock(); 1685 1686 tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask), 1687 gfn + BITS_PER_LONG) { 1688 if (!mask) 1689 break; 1690 1691 if (iter.level > PG_LEVEL_4K || 1692 !(mask & (1UL << (iter.gfn - gfn)))) 1693 continue; 1694 1695 mask &= ~(1UL << (iter.gfn - gfn)); 1696 1697 if (wrprot || spte_ad_need_write_protect(iter.old_spte)) { 1698 if (is_writable_pte(iter.old_spte)) 1699 new_spte = iter.old_spte & ~PT_WRITABLE_MASK; 1700 else 1701 continue; 1702 } else { 1703 if (iter.old_spte & shadow_dirty_mask) 1704 new_spte = iter.old_spte & ~shadow_dirty_mask; 1705 else 1706 continue; 1707 } 1708 1709 tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte); 1710 } 1711 1712 rcu_read_unlock(); 1713 } 1714 1715 /* 1716 * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is 1717 * set in mask, starting at gfn. The given memslot is expected to contain all 1718 * the GFNs represented by set bits in the mask. If AD bits are enabled, 1719 * clearing the dirty status will involve clearing the dirty bit on each SPTE 1720 * or, if AD bits are not enabled, clearing the writable bit on each SPTE. 1721 */ 1722 void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1723 struct kvm_memory_slot *slot, 1724 gfn_t gfn, unsigned long mask, 1725 bool wrprot) 1726 { 1727 struct kvm_mmu_page *root; 1728 1729 lockdep_assert_held_write(&kvm->mmu_lock); 1730 for_each_tdp_mmu_root(kvm, root, slot->as_id) 1731 clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot); 1732 } 1733 1734 /* 1735 * Clear leaf entries which could be replaced by large mappings, for 1736 * GFNs within the slot. 1737 */ 1738 static void zap_collapsible_spte_range(struct kvm *kvm, 1739 struct kvm_mmu_page *root, 1740 const struct kvm_memory_slot *slot) 1741 { 1742 gfn_t start = slot->base_gfn; 1743 gfn_t end = start + slot->npages; 1744 struct tdp_iter iter; 1745 kvm_pfn_t pfn; 1746 1747 rcu_read_lock(); 1748 1749 tdp_root_for_each_pte(iter, root, start, end) { 1750 retry: 1751 if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true)) 1752 continue; 1753 1754 if (!is_shadow_present_pte(iter.old_spte) || 1755 !is_last_spte(iter.old_spte, iter.level)) 1756 continue; 1757 1758 pfn = spte_to_pfn(iter.old_spte); 1759 if (kvm_is_reserved_pfn(pfn) || 1760 iter.level >= kvm_mmu_max_mapping_level(kvm, slot, iter.gfn, 1761 pfn, PG_LEVEL_NUM)) 1762 continue; 1763 1764 /* Note, a successful atomic zap also does a remote TLB flush. */ 1765 if (tdp_mmu_zap_spte_atomic(kvm, &iter)) 1766 goto retry; 1767 } 1768 1769 rcu_read_unlock(); 1770 } 1771 1772 /* 1773 * Clear non-leaf entries (and free associated page tables) which could 1774 * be replaced by large mappings, for GFNs within the slot. 1775 */ 1776 void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm, 1777 const struct kvm_memory_slot *slot) 1778 { 1779 struct kvm_mmu_page *root; 1780 1781 lockdep_assert_held_read(&kvm->mmu_lock); 1782 1783 for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true) 1784 zap_collapsible_spte_range(kvm, root, slot); 1785 } 1786 1787 /* 1788 * Removes write access on the last level SPTE mapping this GFN and unsets the 1789 * MMU-writable bit to ensure future writes continue to be intercepted. 1790 * Returns true if an SPTE was set and a TLB flush is needed. 1791 */ 1792 static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root, 1793 gfn_t gfn, int min_level) 1794 { 1795 struct tdp_iter iter; 1796 u64 new_spte; 1797 bool spte_set = false; 1798 1799 BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL); 1800 1801 rcu_read_lock(); 1802 1803 for_each_tdp_pte_min_level(iter, root, min_level, gfn, gfn + 1) { 1804 if (!is_shadow_present_pte(iter.old_spte) || 1805 !is_last_spte(iter.old_spte, iter.level)) 1806 continue; 1807 1808 new_spte = iter.old_spte & 1809 ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask); 1810 1811 if (new_spte == iter.old_spte) 1812 break; 1813 1814 tdp_mmu_set_spte(kvm, &iter, new_spte); 1815 spte_set = true; 1816 } 1817 1818 rcu_read_unlock(); 1819 1820 return spte_set; 1821 } 1822 1823 /* 1824 * Removes write access on the last level SPTE mapping this GFN and unsets the 1825 * MMU-writable bit to ensure future writes continue to be intercepted. 1826 * Returns true if an SPTE was set and a TLB flush is needed. 1827 */ 1828 bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm, 1829 struct kvm_memory_slot *slot, gfn_t gfn, 1830 int min_level) 1831 { 1832 struct kvm_mmu_page *root; 1833 bool spte_set = false; 1834 1835 lockdep_assert_held_write(&kvm->mmu_lock); 1836 for_each_tdp_mmu_root(kvm, root, slot->as_id) 1837 spte_set |= write_protect_gfn(kvm, root, gfn, min_level); 1838 1839 return spte_set; 1840 } 1841 1842 /* 1843 * Return the level of the lowest level SPTE added to sptes. 1844 * That SPTE may be non-present. 1845 * 1846 * Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}. 1847 */ 1848 int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, 1849 int *root_level) 1850 { 1851 struct tdp_iter iter; 1852 struct kvm_mmu *mmu = vcpu->arch.mmu; 1853 gfn_t gfn = addr >> PAGE_SHIFT; 1854 int leaf = -1; 1855 1856 *root_level = vcpu->arch.mmu->root_role.level; 1857 1858 tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) { 1859 leaf = iter.level; 1860 sptes[leaf] = iter.old_spte; 1861 } 1862 1863 return leaf; 1864 } 1865 1866 /* 1867 * Returns the last level spte pointer of the shadow page walk for the given 1868 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no 1869 * walk could be performed, returns NULL and *spte does not contain valid data. 1870 * 1871 * Contract: 1872 * - Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}. 1873 * - The returned sptep must not be used after kvm_tdp_mmu_walk_lockless_end. 1874 * 1875 * WARNING: This function is only intended to be called during fast_page_fault. 1876 */ 1877 u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, u64 addr, 1878 u64 *spte) 1879 { 1880 struct tdp_iter iter; 1881 struct kvm_mmu *mmu = vcpu->arch.mmu; 1882 gfn_t gfn = addr >> PAGE_SHIFT; 1883 tdp_ptep_t sptep = NULL; 1884 1885 tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) { 1886 *spte = iter.old_spte; 1887 sptep = iter.sptep; 1888 } 1889 1890 /* 1891 * Perform the rcu_dereference to get the raw spte pointer value since 1892 * we are passing it up to fast_page_fault, which is shared with the 1893 * legacy MMU and thus does not retain the TDP MMU-specific __rcu 1894 * annotation. 1895 * 1896 * This is safe since fast_page_fault obeys the contracts of this 1897 * function as well as all TDP MMU contracts around modifying SPTEs 1898 * outside of mmu_lock. 1899 */ 1900 return rcu_dereference(sptep); 1901 } 1902