xref: /openbmc/linux/arch/x86/kvm/mmu/tdp_mmu.c (revision 384e338a)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include "mmu.h"
5 #include "mmu_internal.h"
6 #include "mmutrace.h"
7 #include "tdp_iter.h"
8 #include "tdp_mmu.h"
9 #include "spte.h"
10 
11 #include <asm/cmpxchg.h>
12 #include <trace/events/kvm.h>
13 
14 /* Initializes the TDP MMU for the VM, if enabled. */
15 int kvm_mmu_init_tdp_mmu(struct kvm *kvm)
16 {
17 	struct workqueue_struct *wq;
18 
19 	wq = alloc_workqueue("kvm", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 0);
20 	if (!wq)
21 		return -ENOMEM;
22 
23 	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
24 	spin_lock_init(&kvm->arch.tdp_mmu_pages_lock);
25 	kvm->arch.tdp_mmu_zap_wq = wq;
26 	return 1;
27 }
28 
29 /* Arbitrarily returns true so that this may be used in if statements. */
30 static __always_inline bool kvm_lockdep_assert_mmu_lock_held(struct kvm *kvm,
31 							     bool shared)
32 {
33 	if (shared)
34 		lockdep_assert_held_read(&kvm->mmu_lock);
35 	else
36 		lockdep_assert_held_write(&kvm->mmu_lock);
37 
38 	return true;
39 }
40 
41 void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
42 {
43 	/*
44 	 * Invalidate all roots, which besides the obvious, schedules all roots
45 	 * for zapping and thus puts the TDP MMU's reference to each root, i.e.
46 	 * ultimately frees all roots.
47 	 */
48 	kvm_tdp_mmu_invalidate_all_roots(kvm);
49 
50 	/*
51 	 * Destroying a workqueue also first flushes the workqueue, i.e. no
52 	 * need to invoke kvm_tdp_mmu_zap_invalidated_roots().
53 	 */
54 	destroy_workqueue(kvm->arch.tdp_mmu_zap_wq);
55 
56 	WARN_ON(atomic64_read(&kvm->arch.tdp_mmu_pages));
57 	WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
58 
59 	/*
60 	 * Ensure that all the outstanding RCU callbacks to free shadow pages
61 	 * can run before the VM is torn down.  Work items on tdp_mmu_zap_wq
62 	 * can call kvm_tdp_mmu_put_root and create new callbacks.
63 	 */
64 	rcu_barrier();
65 }
66 
67 static void tdp_mmu_free_sp(struct kvm_mmu_page *sp)
68 {
69 	free_page((unsigned long)sp->spt);
70 	kmem_cache_free(mmu_page_header_cache, sp);
71 }
72 
73 /*
74  * This is called through call_rcu in order to free TDP page table memory
75  * safely with respect to other kernel threads that may be operating on
76  * the memory.
77  * By only accessing TDP MMU page table memory in an RCU read critical
78  * section, and freeing it after a grace period, lockless access to that
79  * memory won't use it after it is freed.
80  */
81 static void tdp_mmu_free_sp_rcu_callback(struct rcu_head *head)
82 {
83 	struct kvm_mmu_page *sp = container_of(head, struct kvm_mmu_page,
84 					       rcu_head);
85 
86 	tdp_mmu_free_sp(sp);
87 }
88 
89 static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
90 			     bool shared);
91 
92 static void tdp_mmu_zap_root_work(struct work_struct *work)
93 {
94 	struct kvm_mmu_page *root = container_of(work, struct kvm_mmu_page,
95 						 tdp_mmu_async_work);
96 	struct kvm *kvm = root->tdp_mmu_async_data;
97 
98 	read_lock(&kvm->mmu_lock);
99 
100 	/*
101 	 * A TLB flush is not necessary as KVM performs a local TLB flush when
102 	 * allocating a new root (see kvm_mmu_load()), and when migrating vCPU
103 	 * to a different pCPU.  Note, the local TLB flush on reuse also
104 	 * invalidates any paging-structure-cache entries, i.e. TLB entries for
105 	 * intermediate paging structures, that may be zapped, as such entries
106 	 * are associated with the ASID on both VMX and SVM.
107 	 */
108 	tdp_mmu_zap_root(kvm, root, true);
109 
110 	/*
111 	 * Drop the refcount using kvm_tdp_mmu_put_root() to test its logic for
112 	 * avoiding an infinite loop.  By design, the root is reachable while
113 	 * it's being asynchronously zapped, thus a different task can put its
114 	 * last reference, i.e. flowing through kvm_tdp_mmu_put_root() for an
115 	 * asynchronously zapped root is unavoidable.
116 	 */
117 	kvm_tdp_mmu_put_root(kvm, root, true);
118 
119 	read_unlock(&kvm->mmu_lock);
120 }
121 
122 static void tdp_mmu_schedule_zap_root(struct kvm *kvm, struct kvm_mmu_page *root)
123 {
124 	root->tdp_mmu_async_data = kvm;
125 	INIT_WORK(&root->tdp_mmu_async_work, tdp_mmu_zap_root_work);
126 	queue_work(kvm->arch.tdp_mmu_zap_wq, &root->tdp_mmu_async_work);
127 }
128 
129 void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root,
130 			  bool shared)
131 {
132 	kvm_lockdep_assert_mmu_lock_held(kvm, shared);
133 
134 	if (!refcount_dec_and_test(&root->tdp_mmu_root_count))
135 		return;
136 
137 	/*
138 	 * The TDP MMU itself holds a reference to each root until the root is
139 	 * explicitly invalidated, i.e. the final reference should be never be
140 	 * put for a valid root.
141 	 */
142 	KVM_BUG_ON(!is_tdp_mmu_page(root) || !root->role.invalid, kvm);
143 
144 	spin_lock(&kvm->arch.tdp_mmu_pages_lock);
145 	list_del_rcu(&root->link);
146 	spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
147 	call_rcu(&root->rcu_head, tdp_mmu_free_sp_rcu_callback);
148 }
149 
150 /*
151  * Returns the next root after @prev_root (or the first root if @prev_root is
152  * NULL).  A reference to the returned root is acquired, and the reference to
153  * @prev_root is released (the caller obviously must hold a reference to
154  * @prev_root if it's non-NULL).
155  *
156  * If @only_valid is true, invalid roots are skipped.
157  *
158  * Returns NULL if the end of tdp_mmu_roots was reached.
159  */
160 static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm,
161 					      struct kvm_mmu_page *prev_root,
162 					      bool shared, bool only_valid)
163 {
164 	struct kvm_mmu_page *next_root;
165 
166 	rcu_read_lock();
167 
168 	if (prev_root)
169 		next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
170 						  &prev_root->link,
171 						  typeof(*prev_root), link);
172 	else
173 		next_root = list_first_or_null_rcu(&kvm->arch.tdp_mmu_roots,
174 						   typeof(*next_root), link);
175 
176 	while (next_root) {
177 		if ((!only_valid || !next_root->role.invalid) &&
178 		    kvm_tdp_mmu_get_root(next_root))
179 			break;
180 
181 		next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
182 				&next_root->link, typeof(*next_root), link);
183 	}
184 
185 	rcu_read_unlock();
186 
187 	if (prev_root)
188 		kvm_tdp_mmu_put_root(kvm, prev_root, shared);
189 
190 	return next_root;
191 }
192 
193 /*
194  * Note: this iterator gets and puts references to the roots it iterates over.
195  * This makes it safe to release the MMU lock and yield within the loop, but
196  * if exiting the loop early, the caller must drop the reference to the most
197  * recent root. (Unless keeping a live reference is desirable.)
198  *
199  * If shared is set, this function is operating under the MMU lock in read
200  * mode. In the unlikely event that this thread must free a root, the lock
201  * will be temporarily dropped and reacquired in write mode.
202  */
203 #define __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared, _only_valid)\
204 	for (_root = tdp_mmu_next_root(_kvm, NULL, _shared, _only_valid);	\
205 	     _root;								\
206 	     _root = tdp_mmu_next_root(_kvm, _root, _shared, _only_valid))	\
207 		if (kvm_lockdep_assert_mmu_lock_held(_kvm, _shared) &&		\
208 		    kvm_mmu_page_as_id(_root) != _as_id) {			\
209 		} else
210 
211 #define for_each_valid_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared)	\
212 	__for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared, true)
213 
214 #define for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id)			\
215 	__for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, false, false)
216 
217 /*
218  * Iterate over all TDP MMU roots.  Requires that mmu_lock be held for write,
219  * the implication being that any flow that holds mmu_lock for read is
220  * inherently yield-friendly and should use the yield-safe variant above.
221  * Holding mmu_lock for write obviates the need for RCU protection as the list
222  * is guaranteed to be stable.
223  */
224 #define for_each_tdp_mmu_root(_kvm, _root, _as_id)			\
225 	list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link)	\
226 		if (kvm_lockdep_assert_mmu_lock_held(_kvm, false) &&	\
227 		    kvm_mmu_page_as_id(_root) != _as_id) {		\
228 		} else
229 
230 static struct kvm_mmu_page *tdp_mmu_alloc_sp(struct kvm_vcpu *vcpu)
231 {
232 	struct kvm_mmu_page *sp;
233 
234 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
235 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
236 
237 	return sp;
238 }
239 
240 static void tdp_mmu_init_sp(struct kvm_mmu_page *sp, tdp_ptep_t sptep,
241 			    gfn_t gfn, union kvm_mmu_page_role role)
242 {
243 	INIT_LIST_HEAD(&sp->possible_nx_huge_page_link);
244 
245 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
246 
247 	sp->role = role;
248 	sp->gfn = gfn;
249 	sp->ptep = sptep;
250 	sp->tdp_mmu_page = true;
251 
252 	trace_kvm_mmu_get_page(sp, true);
253 }
254 
255 static void tdp_mmu_init_child_sp(struct kvm_mmu_page *child_sp,
256 				  struct tdp_iter *iter)
257 {
258 	struct kvm_mmu_page *parent_sp;
259 	union kvm_mmu_page_role role;
260 
261 	parent_sp = sptep_to_sp(rcu_dereference(iter->sptep));
262 
263 	role = parent_sp->role;
264 	role.level--;
265 
266 	tdp_mmu_init_sp(child_sp, iter->sptep, iter->gfn, role);
267 }
268 
269 hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu)
270 {
271 	union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
272 	struct kvm *kvm = vcpu->kvm;
273 	struct kvm_mmu_page *root;
274 
275 	lockdep_assert_held_write(&kvm->mmu_lock);
276 
277 	/*
278 	 * Check for an existing root before allocating a new one.  Note, the
279 	 * role check prevents consuming an invalid root.
280 	 */
281 	for_each_tdp_mmu_root(kvm, root, kvm_mmu_role_as_id(role)) {
282 		if (root->role.word == role.word &&
283 		    kvm_tdp_mmu_get_root(root))
284 			goto out;
285 	}
286 
287 	root = tdp_mmu_alloc_sp(vcpu);
288 	tdp_mmu_init_sp(root, NULL, 0, role);
289 
290 	/*
291 	 * TDP MMU roots are kept until they are explicitly invalidated, either
292 	 * by a memslot update or by the destruction of the VM.  Initialize the
293 	 * refcount to two; one reference for the vCPU, and one reference for
294 	 * the TDP MMU itself, which is held until the root is invalidated and
295 	 * is ultimately put by tdp_mmu_zap_root_work().
296 	 */
297 	refcount_set(&root->tdp_mmu_root_count, 2);
298 
299 	spin_lock(&kvm->arch.tdp_mmu_pages_lock);
300 	list_add_rcu(&root->link, &kvm->arch.tdp_mmu_roots);
301 	spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
302 
303 out:
304 	return __pa(root->spt);
305 }
306 
307 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
308 				u64 old_spte, u64 new_spte, int level,
309 				bool shared);
310 
311 static void tdp_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
312 {
313 	kvm_account_pgtable_pages((void *)sp->spt, +1);
314 	atomic64_inc(&kvm->arch.tdp_mmu_pages);
315 }
316 
317 static void tdp_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
318 {
319 	kvm_account_pgtable_pages((void *)sp->spt, -1);
320 	atomic64_dec(&kvm->arch.tdp_mmu_pages);
321 }
322 
323 /**
324  * tdp_mmu_unlink_sp() - Remove a shadow page from the list of used pages
325  *
326  * @kvm: kvm instance
327  * @sp: the page to be removed
328  * @shared: This operation may not be running under the exclusive use of
329  *	    the MMU lock and the operation must synchronize with other
330  *	    threads that might be adding or removing pages.
331  */
332 static void tdp_mmu_unlink_sp(struct kvm *kvm, struct kvm_mmu_page *sp,
333 			      bool shared)
334 {
335 	tdp_unaccount_mmu_page(kvm, sp);
336 
337 	if (!sp->nx_huge_page_disallowed)
338 		return;
339 
340 	if (shared)
341 		spin_lock(&kvm->arch.tdp_mmu_pages_lock);
342 	else
343 		lockdep_assert_held_write(&kvm->mmu_lock);
344 
345 	sp->nx_huge_page_disallowed = false;
346 	untrack_possible_nx_huge_page(kvm, sp);
347 
348 	if (shared)
349 		spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
350 }
351 
352 /**
353  * handle_removed_pt() - handle a page table removed from the TDP structure
354  *
355  * @kvm: kvm instance
356  * @pt: the page removed from the paging structure
357  * @shared: This operation may not be running under the exclusive use
358  *	    of the MMU lock and the operation must synchronize with other
359  *	    threads that might be modifying SPTEs.
360  *
361  * Given a page table that has been removed from the TDP paging structure,
362  * iterates through the page table to clear SPTEs and free child page tables.
363  *
364  * Note that pt is passed in as a tdp_ptep_t, but it does not need RCU
365  * protection. Since this thread removed it from the paging structure,
366  * this thread will be responsible for ensuring the page is freed. Hence the
367  * early rcu_dereferences in the function.
368  */
369 static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared)
370 {
371 	struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(pt));
372 	int level = sp->role.level;
373 	gfn_t base_gfn = sp->gfn;
374 	int i;
375 
376 	trace_kvm_mmu_prepare_zap_page(sp);
377 
378 	tdp_mmu_unlink_sp(kvm, sp, shared);
379 
380 	for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
381 		tdp_ptep_t sptep = pt + i;
382 		gfn_t gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level);
383 		u64 old_spte;
384 
385 		if (shared) {
386 			/*
387 			 * Set the SPTE to a nonpresent value that other
388 			 * threads will not overwrite. If the SPTE was
389 			 * already marked as removed then another thread
390 			 * handling a page fault could overwrite it, so
391 			 * set the SPTE until it is set from some other
392 			 * value to the removed SPTE value.
393 			 */
394 			for (;;) {
395 				old_spte = kvm_tdp_mmu_write_spte_atomic(sptep, REMOVED_SPTE);
396 				if (!is_removed_spte(old_spte))
397 					break;
398 				cpu_relax();
399 			}
400 		} else {
401 			/*
402 			 * If the SPTE is not MMU-present, there is no backing
403 			 * page associated with the SPTE and so no side effects
404 			 * that need to be recorded, and exclusive ownership of
405 			 * mmu_lock ensures the SPTE can't be made present.
406 			 * Note, zapping MMIO SPTEs is also unnecessary as they
407 			 * are guarded by the memslots generation, not by being
408 			 * unreachable.
409 			 */
410 			old_spte = kvm_tdp_mmu_read_spte(sptep);
411 			if (!is_shadow_present_pte(old_spte))
412 				continue;
413 
414 			/*
415 			 * Use the common helper instead of a raw WRITE_ONCE as
416 			 * the SPTE needs to be updated atomically if it can be
417 			 * modified by a different vCPU outside of mmu_lock.
418 			 * Even though the parent SPTE is !PRESENT, the TLB
419 			 * hasn't yet been flushed, and both Intel and AMD
420 			 * document that A/D assists can use upper-level PxE
421 			 * entries that are cached in the TLB, i.e. the CPU can
422 			 * still access the page and mark it dirty.
423 			 *
424 			 * No retry is needed in the atomic update path as the
425 			 * sole concern is dropping a Dirty bit, i.e. no other
426 			 * task can zap/remove the SPTE as mmu_lock is held for
427 			 * write.  Marking the SPTE as a removed SPTE is not
428 			 * strictly necessary for the same reason, but using
429 			 * the remove SPTE value keeps the shared/exclusive
430 			 * paths consistent and allows the handle_changed_spte()
431 			 * call below to hardcode the new value to REMOVED_SPTE.
432 			 *
433 			 * Note, even though dropping a Dirty bit is the only
434 			 * scenario where a non-atomic update could result in a
435 			 * functional bug, simply checking the Dirty bit isn't
436 			 * sufficient as a fast page fault could read the upper
437 			 * level SPTE before it is zapped, and then make this
438 			 * target SPTE writable, resume the guest, and set the
439 			 * Dirty bit between reading the SPTE above and writing
440 			 * it here.
441 			 */
442 			old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte,
443 							  REMOVED_SPTE, level);
444 		}
445 		handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn,
446 				    old_spte, REMOVED_SPTE, level, shared);
447 	}
448 
449 	call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback);
450 }
451 
452 /**
453  * handle_changed_spte - handle bookkeeping associated with an SPTE change
454  * @kvm: kvm instance
455  * @as_id: the address space of the paging structure the SPTE was a part of
456  * @gfn: the base GFN that was mapped by the SPTE
457  * @old_spte: The value of the SPTE before the change
458  * @new_spte: The value of the SPTE after the change
459  * @level: the level of the PT the SPTE is part of in the paging structure
460  * @shared: This operation may not be running under the exclusive use of
461  *	    the MMU lock and the operation must synchronize with other
462  *	    threads that might be modifying SPTEs.
463  *
464  * Handle bookkeeping that might result from the modification of a SPTE.  Note,
465  * dirty logging updates are handled in common code, not here (see make_spte()
466  * and fast_pf_fix_direct_spte()).
467  */
468 static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
469 				u64 old_spte, u64 new_spte, int level,
470 				bool shared)
471 {
472 	bool was_present = is_shadow_present_pte(old_spte);
473 	bool is_present = is_shadow_present_pte(new_spte);
474 	bool was_leaf = was_present && is_last_spte(old_spte, level);
475 	bool is_leaf = is_present && is_last_spte(new_spte, level);
476 	bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
477 
478 	WARN_ON(level > PT64_ROOT_MAX_LEVEL);
479 	WARN_ON(level < PG_LEVEL_4K);
480 	WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
481 
482 	/*
483 	 * If this warning were to trigger it would indicate that there was a
484 	 * missing MMU notifier or a race with some notifier handler.
485 	 * A present, leaf SPTE should never be directly replaced with another
486 	 * present leaf SPTE pointing to a different PFN. A notifier handler
487 	 * should be zapping the SPTE before the main MM's page table is
488 	 * changed, or the SPTE should be zeroed, and the TLBs flushed by the
489 	 * thread before replacement.
490 	 */
491 	if (was_leaf && is_leaf && pfn_changed) {
492 		pr_err("Invalid SPTE change: cannot replace a present leaf\n"
493 		       "SPTE with another present leaf SPTE mapping a\n"
494 		       "different PFN!\n"
495 		       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
496 		       as_id, gfn, old_spte, new_spte, level);
497 
498 		/*
499 		 * Crash the host to prevent error propagation and guest data
500 		 * corruption.
501 		 */
502 		BUG();
503 	}
504 
505 	if (old_spte == new_spte)
506 		return;
507 
508 	trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte);
509 
510 	if (is_leaf)
511 		check_spte_writable_invariants(new_spte);
512 
513 	/*
514 	 * The only times a SPTE should be changed from a non-present to
515 	 * non-present state is when an MMIO entry is installed/modified/
516 	 * removed. In that case, there is nothing to do here.
517 	 */
518 	if (!was_present && !is_present) {
519 		/*
520 		 * If this change does not involve a MMIO SPTE or removed SPTE,
521 		 * it is unexpected. Log the change, though it should not
522 		 * impact the guest since both the former and current SPTEs
523 		 * are nonpresent.
524 		 */
525 		if (WARN_ON(!is_mmio_spte(old_spte) &&
526 			    !is_mmio_spte(new_spte) &&
527 			    !is_removed_spte(new_spte)))
528 			pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
529 			       "should not be replaced with another,\n"
530 			       "different nonpresent SPTE, unless one or both\n"
531 			       "are MMIO SPTEs, or the new SPTE is\n"
532 			       "a temporary removed SPTE.\n"
533 			       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
534 			       as_id, gfn, old_spte, new_spte, level);
535 		return;
536 	}
537 
538 	if (is_leaf != was_leaf)
539 		kvm_update_page_stats(kvm, level, is_leaf ? 1 : -1);
540 
541 	if (was_leaf && is_dirty_spte(old_spte) &&
542 	    (!is_present || !is_dirty_spte(new_spte) || pfn_changed))
543 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
544 
545 	/*
546 	 * Recursively handle child PTs if the change removed a subtree from
547 	 * the paging structure.  Note the WARN on the PFN changing without the
548 	 * SPTE being converted to a hugepage (leaf) or being zapped.  Shadow
549 	 * pages are kernel allocations and should never be migrated.
550 	 */
551 	if (was_present && !was_leaf &&
552 	    (is_leaf || !is_present || WARN_ON_ONCE(pfn_changed)))
553 		handle_removed_pt(kvm, spte_to_child_pt(old_spte, level), shared);
554 
555 	if (was_leaf && is_accessed_spte(old_spte) &&
556 	    (!is_present || !is_accessed_spte(new_spte) || pfn_changed))
557 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
558 }
559 
560 /*
561  * tdp_mmu_set_spte_atomic - Set a TDP MMU SPTE atomically
562  * and handle the associated bookkeeping.  Do not mark the page dirty
563  * in KVM's dirty bitmaps.
564  *
565  * If setting the SPTE fails because it has changed, iter->old_spte will be
566  * refreshed to the current value of the spte.
567  *
568  * @kvm: kvm instance
569  * @iter: a tdp_iter instance currently on the SPTE that should be set
570  * @new_spte: The value the SPTE should be set to
571  * Return:
572  * * 0      - If the SPTE was set.
573  * * -EBUSY - If the SPTE cannot be set. In this case this function will have
574  *            no side-effects other than setting iter->old_spte to the last
575  *            known value of the spte.
576  */
577 static inline int tdp_mmu_set_spte_atomic(struct kvm *kvm,
578 					  struct tdp_iter *iter,
579 					  u64 new_spte)
580 {
581 	u64 *sptep = rcu_dereference(iter->sptep);
582 
583 	/*
584 	 * The caller is responsible for ensuring the old SPTE is not a REMOVED
585 	 * SPTE.  KVM should never attempt to zap or manipulate a REMOVED SPTE,
586 	 * and pre-checking before inserting a new SPTE is advantageous as it
587 	 * avoids unnecessary work.
588 	 */
589 	WARN_ON_ONCE(iter->yielded || is_removed_spte(iter->old_spte));
590 
591 	lockdep_assert_held_read(&kvm->mmu_lock);
592 
593 	/*
594 	 * Note, fast_pf_fix_direct_spte() can also modify TDP MMU SPTEs and
595 	 * does not hold the mmu_lock.
596 	 */
597 	if (!try_cmpxchg64(sptep, &iter->old_spte, new_spte))
598 		return -EBUSY;
599 
600 	handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte,
601 			    new_spte, iter->level, true);
602 
603 	return 0;
604 }
605 
606 static inline int tdp_mmu_zap_spte_atomic(struct kvm *kvm,
607 					  struct tdp_iter *iter)
608 {
609 	int ret;
610 
611 	/*
612 	 * Freeze the SPTE by setting it to a special,
613 	 * non-present value. This will stop other threads from
614 	 * immediately installing a present entry in its place
615 	 * before the TLBs are flushed.
616 	 */
617 	ret = tdp_mmu_set_spte_atomic(kvm, iter, REMOVED_SPTE);
618 	if (ret)
619 		return ret;
620 
621 	kvm_flush_remote_tlbs_gfn(kvm, iter->gfn, iter->level);
622 
623 	/*
624 	 * No other thread can overwrite the removed SPTE as they must either
625 	 * wait on the MMU lock or use tdp_mmu_set_spte_atomic() which will not
626 	 * overwrite the special removed SPTE value. No bookkeeping is needed
627 	 * here since the SPTE is going from non-present to non-present.  Use
628 	 * the raw write helper to avoid an unnecessary check on volatile bits.
629 	 */
630 	__kvm_tdp_mmu_write_spte(iter->sptep, 0);
631 
632 	return 0;
633 }
634 
635 
636 /*
637  * tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping
638  * @kvm:	      KVM instance
639  * @as_id:	      Address space ID, i.e. regular vs. SMM
640  * @sptep:	      Pointer to the SPTE
641  * @old_spte:	      The current value of the SPTE
642  * @new_spte:	      The new value that will be set for the SPTE
643  * @gfn:	      The base GFN that was (or will be) mapped by the SPTE
644  * @level:	      The level _containing_ the SPTE (its parent PT's level)
645  *
646  * Returns the old SPTE value, which _may_ be different than @old_spte if the
647  * SPTE had voldatile bits.
648  */
649 static u64 tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
650 			    u64 old_spte, u64 new_spte, gfn_t gfn, int level)
651 {
652 	lockdep_assert_held_write(&kvm->mmu_lock);
653 
654 	/*
655 	 * No thread should be using this function to set SPTEs to or from the
656 	 * temporary removed SPTE value.
657 	 * If operating under the MMU lock in read mode, tdp_mmu_set_spte_atomic
658 	 * should be used. If operating under the MMU lock in write mode, the
659 	 * use of the removed SPTE should not be necessary.
660 	 */
661 	WARN_ON(is_removed_spte(old_spte) || is_removed_spte(new_spte));
662 
663 	old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, new_spte, level);
664 
665 	handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false);
666 	return old_spte;
667 }
668 
669 static inline void tdp_mmu_iter_set_spte(struct kvm *kvm, struct tdp_iter *iter,
670 					 u64 new_spte)
671 {
672 	WARN_ON_ONCE(iter->yielded);
673 	iter->old_spte = tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep,
674 					  iter->old_spte, new_spte,
675 					  iter->gfn, iter->level);
676 }
677 
678 #define tdp_root_for_each_pte(_iter, _root, _start, _end) \
679 	for_each_tdp_pte(_iter, _root, _start, _end)
680 
681 #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end)	\
682 	tdp_root_for_each_pte(_iter, _root, _start, _end)		\
683 		if (!is_shadow_present_pte(_iter.old_spte) ||		\
684 		    !is_last_spte(_iter.old_spte, _iter.level))		\
685 			continue;					\
686 		else
687 
688 #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end)		\
689 	for_each_tdp_pte(_iter, to_shadow_page(_mmu->root.hpa), _start, _end)
690 
691 /*
692  * Yield if the MMU lock is contended or this thread needs to return control
693  * to the scheduler.
694  *
695  * If this function should yield and flush is set, it will perform a remote
696  * TLB flush before yielding.
697  *
698  * If this function yields, iter->yielded is set and the caller must skip to
699  * the next iteration, where tdp_iter_next() will reset the tdp_iter's walk
700  * over the paging structures to allow the iterator to continue its traversal
701  * from the paging structure root.
702  *
703  * Returns true if this function yielded.
704  */
705 static inline bool __must_check tdp_mmu_iter_cond_resched(struct kvm *kvm,
706 							  struct tdp_iter *iter,
707 							  bool flush, bool shared)
708 {
709 	WARN_ON(iter->yielded);
710 
711 	/* Ensure forward progress has been made before yielding. */
712 	if (iter->next_last_level_gfn == iter->yielded_gfn)
713 		return false;
714 
715 	if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
716 		if (flush)
717 			kvm_flush_remote_tlbs(kvm);
718 
719 		rcu_read_unlock();
720 
721 		if (shared)
722 			cond_resched_rwlock_read(&kvm->mmu_lock);
723 		else
724 			cond_resched_rwlock_write(&kvm->mmu_lock);
725 
726 		rcu_read_lock();
727 
728 		WARN_ON(iter->gfn > iter->next_last_level_gfn);
729 
730 		iter->yielded = true;
731 	}
732 
733 	return iter->yielded;
734 }
735 
736 static inline gfn_t tdp_mmu_max_gfn_exclusive(void)
737 {
738 	/*
739 	 * Bound TDP MMU walks at host.MAXPHYADDR.  KVM disallows memslots with
740 	 * a gpa range that would exceed the max gfn, and KVM does not create
741 	 * MMIO SPTEs for "impossible" gfns, instead sending such accesses down
742 	 * the slow emulation path every time.
743 	 */
744 	return kvm_mmu_max_gfn() + 1;
745 }
746 
747 static void __tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
748 			       bool shared, int zap_level)
749 {
750 	struct tdp_iter iter;
751 
752 	gfn_t end = tdp_mmu_max_gfn_exclusive();
753 	gfn_t start = 0;
754 
755 	for_each_tdp_pte_min_level(iter, root, zap_level, start, end) {
756 retry:
757 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared))
758 			continue;
759 
760 		if (!is_shadow_present_pte(iter.old_spte))
761 			continue;
762 
763 		if (iter.level > zap_level)
764 			continue;
765 
766 		if (!shared)
767 			tdp_mmu_iter_set_spte(kvm, &iter, 0);
768 		else if (tdp_mmu_set_spte_atomic(kvm, &iter, 0))
769 			goto retry;
770 	}
771 }
772 
773 static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
774 			     bool shared)
775 {
776 
777 	/*
778 	 * The root must have an elevated refcount so that it's reachable via
779 	 * mmu_notifier callbacks, which allows this path to yield and drop
780 	 * mmu_lock.  When handling an unmap/release mmu_notifier command, KVM
781 	 * must drop all references to relevant pages prior to completing the
782 	 * callback.  Dropping mmu_lock with an unreachable root would result
783 	 * in zapping SPTEs after a relevant mmu_notifier callback completes
784 	 * and lead to use-after-free as zapping a SPTE triggers "writeback" of
785 	 * dirty accessed bits to the SPTE's associated struct page.
786 	 */
787 	WARN_ON_ONCE(!refcount_read(&root->tdp_mmu_root_count));
788 
789 	kvm_lockdep_assert_mmu_lock_held(kvm, shared);
790 
791 	rcu_read_lock();
792 
793 	/*
794 	 * To avoid RCU stalls due to recursively removing huge swaths of SPs,
795 	 * split the zap into two passes.  On the first pass, zap at the 1gb
796 	 * level, and then zap top-level SPs on the second pass.  "1gb" is not
797 	 * arbitrary, as KVM must be able to zap a 1gb shadow page without
798 	 * inducing a stall to allow in-place replacement with a 1gb hugepage.
799 	 *
800 	 * Because zapping a SP recurses on its children, stepping down to
801 	 * PG_LEVEL_4K in the iterator itself is unnecessary.
802 	 */
803 	__tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_1G);
804 	__tdp_mmu_zap_root(kvm, root, shared, root->role.level);
805 
806 	rcu_read_unlock();
807 }
808 
809 bool kvm_tdp_mmu_zap_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
810 {
811 	u64 old_spte;
812 
813 	/*
814 	 * This helper intentionally doesn't allow zapping a root shadow page,
815 	 * which doesn't have a parent page table and thus no associated entry.
816 	 */
817 	if (WARN_ON_ONCE(!sp->ptep))
818 		return false;
819 
820 	old_spte = kvm_tdp_mmu_read_spte(sp->ptep);
821 	if (WARN_ON_ONCE(!is_shadow_present_pte(old_spte)))
822 		return false;
823 
824 	tdp_mmu_set_spte(kvm, kvm_mmu_page_as_id(sp), sp->ptep, old_spte, 0,
825 			 sp->gfn, sp->role.level + 1);
826 
827 	return true;
828 }
829 
830 /*
831  * If can_yield is true, will release the MMU lock and reschedule if the
832  * scheduler needs the CPU or there is contention on the MMU lock. If this
833  * function cannot yield, it will not release the MMU lock or reschedule and
834  * the caller must ensure it does not supply too large a GFN range, or the
835  * operation can cause a soft lockup.
836  */
837 static bool tdp_mmu_zap_leafs(struct kvm *kvm, struct kvm_mmu_page *root,
838 			      gfn_t start, gfn_t end, bool can_yield, bool flush)
839 {
840 	struct tdp_iter iter;
841 
842 	end = min(end, tdp_mmu_max_gfn_exclusive());
843 
844 	lockdep_assert_held_write(&kvm->mmu_lock);
845 
846 	rcu_read_lock();
847 
848 	for_each_tdp_pte_min_level(iter, root, PG_LEVEL_4K, start, end) {
849 		if (can_yield &&
850 		    tdp_mmu_iter_cond_resched(kvm, &iter, flush, false)) {
851 			flush = false;
852 			continue;
853 		}
854 
855 		if (!is_shadow_present_pte(iter.old_spte) ||
856 		    !is_last_spte(iter.old_spte, iter.level))
857 			continue;
858 
859 		tdp_mmu_iter_set_spte(kvm, &iter, 0);
860 		flush = true;
861 	}
862 
863 	rcu_read_unlock();
864 
865 	/*
866 	 * Because this flow zaps _only_ leaf SPTEs, the caller doesn't need
867 	 * to provide RCU protection as no 'struct kvm_mmu_page' will be freed.
868 	 */
869 	return flush;
870 }
871 
872 /*
873  * Zap leaf SPTEs for the range of gfns, [start, end), for all roots. Returns
874  * true if a TLB flush is needed before releasing the MMU lock, i.e. if one or
875  * more SPTEs were zapped since the MMU lock was last acquired.
876  */
877 bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, int as_id, gfn_t start, gfn_t end,
878 			   bool can_yield, bool flush)
879 {
880 	struct kvm_mmu_page *root;
881 
882 	for_each_tdp_mmu_root_yield_safe(kvm, root, as_id)
883 		flush = tdp_mmu_zap_leafs(kvm, root, start, end, can_yield, flush);
884 
885 	return flush;
886 }
887 
888 void kvm_tdp_mmu_zap_all(struct kvm *kvm)
889 {
890 	struct kvm_mmu_page *root;
891 	int i;
892 
893 	/*
894 	 * Zap all roots, including invalid roots, as all SPTEs must be dropped
895 	 * before returning to the caller.  Zap directly even if the root is
896 	 * also being zapped by a worker.  Walking zapped top-level SPTEs isn't
897 	 * all that expensive and mmu_lock is already held, which means the
898 	 * worker has yielded, i.e. flushing the work instead of zapping here
899 	 * isn't guaranteed to be any faster.
900 	 *
901 	 * A TLB flush is unnecessary, KVM zaps everything if and only the VM
902 	 * is being destroyed or the userspace VMM has exited.  In both cases,
903 	 * KVM_RUN is unreachable, i.e. no vCPUs will ever service the request.
904 	 */
905 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
906 		for_each_tdp_mmu_root_yield_safe(kvm, root, i)
907 			tdp_mmu_zap_root(kvm, root, false);
908 	}
909 }
910 
911 /*
912  * Zap all invalidated roots to ensure all SPTEs are dropped before the "fast
913  * zap" completes.
914  */
915 void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm)
916 {
917 	flush_workqueue(kvm->arch.tdp_mmu_zap_wq);
918 }
919 
920 /*
921  * Mark each TDP MMU root as invalid to prevent vCPUs from reusing a root that
922  * is about to be zapped, e.g. in response to a memslots update.  The actual
923  * zapping is performed asynchronously.  Using a separate workqueue makes it
924  * easy to ensure that the destruction is performed before the "fast zap"
925  * completes, without keeping a separate list of invalidated roots; the list is
926  * effectively the list of work items in the workqueue.
927  *
928  * Note, the asynchronous worker is gifted the TDP MMU's reference.
929  * See kvm_tdp_mmu_get_vcpu_root_hpa().
930  */
931 void kvm_tdp_mmu_invalidate_all_roots(struct kvm *kvm)
932 {
933 	struct kvm_mmu_page *root;
934 
935 	/*
936 	 * mmu_lock must be held for write to ensure that a root doesn't become
937 	 * invalid while there are active readers (invalidating a root while
938 	 * there are active readers may or may not be problematic in practice,
939 	 * but it's uncharted territory and not supported).
940 	 *
941 	 * Waive the assertion if there are no users of @kvm, i.e. the VM is
942 	 * being destroyed after all references have been put, or if no vCPUs
943 	 * have been created (which means there are no roots), i.e. the VM is
944 	 * being destroyed in an error path of KVM_CREATE_VM.
945 	 */
946 	if (IS_ENABLED(CONFIG_PROVE_LOCKING) &&
947 	    refcount_read(&kvm->users_count) && kvm->created_vcpus)
948 		lockdep_assert_held_write(&kvm->mmu_lock);
949 
950 	/*
951 	 * As above, mmu_lock isn't held when destroying the VM!  There can't
952 	 * be other references to @kvm, i.e. nothing else can invalidate roots
953 	 * or be consuming roots, but walking the list of roots does need to be
954 	 * guarded against roots being deleted by the asynchronous zap worker.
955 	 */
956 	rcu_read_lock();
957 
958 	list_for_each_entry_rcu(root, &kvm->arch.tdp_mmu_roots, link) {
959 		if (!root->role.invalid) {
960 			root->role.invalid = true;
961 			tdp_mmu_schedule_zap_root(kvm, root);
962 		}
963 	}
964 
965 	rcu_read_unlock();
966 }
967 
968 /*
969  * Installs a last-level SPTE to handle a TDP page fault.
970  * (NPT/EPT violation/misconfiguration)
971  */
972 static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu,
973 					  struct kvm_page_fault *fault,
974 					  struct tdp_iter *iter)
975 {
976 	struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(iter->sptep));
977 	u64 new_spte;
978 	int ret = RET_PF_FIXED;
979 	bool wrprot = false;
980 
981 	if (WARN_ON_ONCE(sp->role.level != fault->goal_level))
982 		return RET_PF_RETRY;
983 
984 	if (unlikely(!fault->slot))
985 		new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
986 	else
987 		wrprot = make_spte(vcpu, sp, fault->slot, ACC_ALL, iter->gfn,
988 					 fault->pfn, iter->old_spte, fault->prefetch, true,
989 					 fault->map_writable, &new_spte);
990 
991 	if (new_spte == iter->old_spte)
992 		ret = RET_PF_SPURIOUS;
993 	else if (tdp_mmu_set_spte_atomic(vcpu->kvm, iter, new_spte))
994 		return RET_PF_RETRY;
995 	else if (is_shadow_present_pte(iter->old_spte) &&
996 		 !is_last_spte(iter->old_spte, iter->level))
997 		kvm_flush_remote_tlbs_gfn(vcpu->kvm, iter->gfn, iter->level);
998 
999 	/*
1000 	 * If the page fault was caused by a write but the page is write
1001 	 * protected, emulation is needed. If the emulation was skipped,
1002 	 * the vCPU would have the same fault again.
1003 	 */
1004 	if (wrprot) {
1005 		if (fault->write)
1006 			ret = RET_PF_EMULATE;
1007 	}
1008 
1009 	/* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
1010 	if (unlikely(is_mmio_spte(new_spte))) {
1011 		vcpu->stat.pf_mmio_spte_created++;
1012 		trace_mark_mmio_spte(rcu_dereference(iter->sptep), iter->gfn,
1013 				     new_spte);
1014 		ret = RET_PF_EMULATE;
1015 	} else {
1016 		trace_kvm_mmu_set_spte(iter->level, iter->gfn,
1017 				       rcu_dereference(iter->sptep));
1018 	}
1019 
1020 	return ret;
1021 }
1022 
1023 /*
1024  * tdp_mmu_link_sp - Replace the given spte with an spte pointing to the
1025  * provided page table.
1026  *
1027  * @kvm: kvm instance
1028  * @iter: a tdp_iter instance currently on the SPTE that should be set
1029  * @sp: The new TDP page table to install.
1030  * @shared: This operation is running under the MMU lock in read mode.
1031  *
1032  * Returns: 0 if the new page table was installed. Non-0 if the page table
1033  *          could not be installed (e.g. the atomic compare-exchange failed).
1034  */
1035 static int tdp_mmu_link_sp(struct kvm *kvm, struct tdp_iter *iter,
1036 			   struct kvm_mmu_page *sp, bool shared)
1037 {
1038 	u64 spte = make_nonleaf_spte(sp->spt, !kvm_ad_enabled());
1039 	int ret = 0;
1040 
1041 	if (shared) {
1042 		ret = tdp_mmu_set_spte_atomic(kvm, iter, spte);
1043 		if (ret)
1044 			return ret;
1045 	} else {
1046 		tdp_mmu_iter_set_spte(kvm, iter, spte);
1047 	}
1048 
1049 	tdp_account_mmu_page(kvm, sp);
1050 
1051 	return 0;
1052 }
1053 
1054 static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter,
1055 				   struct kvm_mmu_page *sp, bool shared);
1056 
1057 /*
1058  * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
1059  * page tables and SPTEs to translate the faulting guest physical address.
1060  */
1061 int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
1062 {
1063 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1064 	struct kvm *kvm = vcpu->kvm;
1065 	struct tdp_iter iter;
1066 	struct kvm_mmu_page *sp;
1067 	int ret = RET_PF_RETRY;
1068 
1069 	kvm_mmu_hugepage_adjust(vcpu, fault);
1070 
1071 	trace_kvm_mmu_spte_requested(fault);
1072 
1073 	rcu_read_lock();
1074 
1075 	tdp_mmu_for_each_pte(iter, mmu, fault->gfn, fault->gfn + 1) {
1076 		int r;
1077 
1078 		if (fault->nx_huge_page_workaround_enabled)
1079 			disallowed_hugepage_adjust(fault, iter.old_spte, iter.level);
1080 
1081 		/*
1082 		 * If SPTE has been frozen by another thread, just give up and
1083 		 * retry, avoiding unnecessary page table allocation and free.
1084 		 */
1085 		if (is_removed_spte(iter.old_spte))
1086 			goto retry;
1087 
1088 		if (iter.level == fault->goal_level)
1089 			goto map_target_level;
1090 
1091 		/* Step down into the lower level page table if it exists. */
1092 		if (is_shadow_present_pte(iter.old_spte) &&
1093 		    !is_large_pte(iter.old_spte))
1094 			continue;
1095 
1096 		/*
1097 		 * The SPTE is either non-present or points to a huge page that
1098 		 * needs to be split.
1099 		 */
1100 		sp = tdp_mmu_alloc_sp(vcpu);
1101 		tdp_mmu_init_child_sp(sp, &iter);
1102 
1103 		sp->nx_huge_page_disallowed = fault->huge_page_disallowed;
1104 
1105 		if (is_shadow_present_pte(iter.old_spte))
1106 			r = tdp_mmu_split_huge_page(kvm, &iter, sp, true);
1107 		else
1108 			r = tdp_mmu_link_sp(kvm, &iter, sp, true);
1109 
1110 		/*
1111 		 * Force the guest to retry if installing an upper level SPTE
1112 		 * failed, e.g. because a different task modified the SPTE.
1113 		 */
1114 		if (r) {
1115 			tdp_mmu_free_sp(sp);
1116 			goto retry;
1117 		}
1118 
1119 		if (fault->huge_page_disallowed &&
1120 		    fault->req_level >= iter.level) {
1121 			spin_lock(&kvm->arch.tdp_mmu_pages_lock);
1122 			if (sp->nx_huge_page_disallowed)
1123 				track_possible_nx_huge_page(kvm, sp);
1124 			spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
1125 		}
1126 	}
1127 
1128 	/*
1129 	 * The walk aborted before reaching the target level, e.g. because the
1130 	 * iterator detected an upper level SPTE was frozen during traversal.
1131 	 */
1132 	WARN_ON_ONCE(iter.level == fault->goal_level);
1133 	goto retry;
1134 
1135 map_target_level:
1136 	ret = tdp_mmu_map_handle_target_level(vcpu, fault, &iter);
1137 
1138 retry:
1139 	rcu_read_unlock();
1140 	return ret;
1141 }
1142 
1143 bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range,
1144 				 bool flush)
1145 {
1146 	return kvm_tdp_mmu_zap_leafs(kvm, range->slot->as_id, range->start,
1147 				     range->end, range->may_block, flush);
1148 }
1149 
1150 typedef bool (*tdp_handler_t)(struct kvm *kvm, struct tdp_iter *iter,
1151 			      struct kvm_gfn_range *range);
1152 
1153 static __always_inline bool kvm_tdp_mmu_handle_gfn(struct kvm *kvm,
1154 						   struct kvm_gfn_range *range,
1155 						   tdp_handler_t handler)
1156 {
1157 	struct kvm_mmu_page *root;
1158 	struct tdp_iter iter;
1159 	bool ret = false;
1160 
1161 	/*
1162 	 * Don't support rescheduling, none of the MMU notifiers that funnel
1163 	 * into this helper allow blocking; it'd be dead, wasteful code.
1164 	 */
1165 	for_each_tdp_mmu_root(kvm, root, range->slot->as_id) {
1166 		rcu_read_lock();
1167 
1168 		tdp_root_for_each_leaf_pte(iter, root, range->start, range->end)
1169 			ret |= handler(kvm, &iter, range);
1170 
1171 		rcu_read_unlock();
1172 	}
1173 
1174 	return ret;
1175 }
1176 
1177 /*
1178  * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
1179  * if any of the GFNs in the range have been accessed.
1180  *
1181  * No need to mark the corresponding PFN as accessed as this call is coming
1182  * from the clear_young() or clear_flush_young() notifier, which uses the
1183  * return value to determine if the page has been accessed.
1184  */
1185 static bool age_gfn_range(struct kvm *kvm, struct tdp_iter *iter,
1186 			  struct kvm_gfn_range *range)
1187 {
1188 	u64 new_spte;
1189 
1190 	/* If we have a non-accessed entry we don't need to change the pte. */
1191 	if (!is_accessed_spte(iter->old_spte))
1192 		return false;
1193 
1194 	if (spte_ad_enabled(iter->old_spte)) {
1195 		iter->old_spte = tdp_mmu_clear_spte_bits(iter->sptep,
1196 							 iter->old_spte,
1197 							 shadow_accessed_mask,
1198 							 iter->level);
1199 		new_spte = iter->old_spte & ~shadow_accessed_mask;
1200 	} else {
1201 		/*
1202 		 * Capture the dirty status of the page, so that it doesn't get
1203 		 * lost when the SPTE is marked for access tracking.
1204 		 */
1205 		if (is_writable_pte(iter->old_spte))
1206 			kvm_set_pfn_dirty(spte_to_pfn(iter->old_spte));
1207 
1208 		new_spte = mark_spte_for_access_track(iter->old_spte);
1209 		iter->old_spte = kvm_tdp_mmu_write_spte(iter->sptep,
1210 							iter->old_spte, new_spte,
1211 							iter->level);
1212 	}
1213 
1214 	trace_kvm_tdp_mmu_spte_changed(iter->as_id, iter->gfn, iter->level,
1215 				       iter->old_spte, new_spte);
1216 	return true;
1217 }
1218 
1219 bool kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1220 {
1221 	return kvm_tdp_mmu_handle_gfn(kvm, range, age_gfn_range);
1222 }
1223 
1224 static bool test_age_gfn(struct kvm *kvm, struct tdp_iter *iter,
1225 			 struct kvm_gfn_range *range)
1226 {
1227 	return is_accessed_spte(iter->old_spte);
1228 }
1229 
1230 bool kvm_tdp_mmu_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1231 {
1232 	return kvm_tdp_mmu_handle_gfn(kvm, range, test_age_gfn);
1233 }
1234 
1235 static bool set_spte_gfn(struct kvm *kvm, struct tdp_iter *iter,
1236 			 struct kvm_gfn_range *range)
1237 {
1238 	u64 new_spte;
1239 
1240 	/* Huge pages aren't expected to be modified without first being zapped. */
1241 	WARN_ON(pte_huge(range->pte) || range->start + 1 != range->end);
1242 
1243 	if (iter->level != PG_LEVEL_4K ||
1244 	    !is_shadow_present_pte(iter->old_spte))
1245 		return false;
1246 
1247 	/*
1248 	 * Note, when changing a read-only SPTE, it's not strictly necessary to
1249 	 * zero the SPTE before setting the new PFN, but doing so preserves the
1250 	 * invariant that the PFN of a present * leaf SPTE can never change.
1251 	 * See handle_changed_spte().
1252 	 */
1253 	tdp_mmu_iter_set_spte(kvm, iter, 0);
1254 
1255 	if (!pte_write(range->pte)) {
1256 		new_spte = kvm_mmu_changed_pte_notifier_make_spte(iter->old_spte,
1257 								  pte_pfn(range->pte));
1258 
1259 		tdp_mmu_iter_set_spte(kvm, iter, new_spte);
1260 	}
1261 
1262 	return true;
1263 }
1264 
1265 /*
1266  * Handle the changed_pte MMU notifier for the TDP MMU.
1267  * data is a pointer to the new pte_t mapping the HVA specified by the MMU
1268  * notifier.
1269  * Returns non-zero if a flush is needed before releasing the MMU lock.
1270  */
1271 bool kvm_tdp_mmu_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1272 {
1273 	/*
1274 	 * No need to handle the remote TLB flush under RCU protection, the
1275 	 * target SPTE _must_ be a leaf SPTE, i.e. cannot result in freeing a
1276 	 * shadow page. See the WARN on pfn_changed in handle_changed_spte().
1277 	 */
1278 	return kvm_tdp_mmu_handle_gfn(kvm, range, set_spte_gfn);
1279 }
1280 
1281 /*
1282  * Remove write access from all SPTEs at or above min_level that map GFNs
1283  * [start, end). Returns true if an SPTE has been changed and the TLBs need to
1284  * be flushed.
1285  */
1286 static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1287 			     gfn_t start, gfn_t end, int min_level)
1288 {
1289 	struct tdp_iter iter;
1290 	u64 new_spte;
1291 	bool spte_set = false;
1292 
1293 	rcu_read_lock();
1294 
1295 	BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
1296 
1297 	for_each_tdp_pte_min_level(iter, root, min_level, start, end) {
1298 retry:
1299 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1300 			continue;
1301 
1302 		if (!is_shadow_present_pte(iter.old_spte) ||
1303 		    !is_last_spte(iter.old_spte, iter.level) ||
1304 		    !(iter.old_spte & PT_WRITABLE_MASK))
1305 			continue;
1306 
1307 		new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
1308 
1309 		if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte))
1310 			goto retry;
1311 
1312 		spte_set = true;
1313 	}
1314 
1315 	rcu_read_unlock();
1316 	return spte_set;
1317 }
1318 
1319 /*
1320  * Remove write access from all the SPTEs mapping GFNs in the memslot. Will
1321  * only affect leaf SPTEs down to min_level.
1322  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1323  */
1324 bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm,
1325 			     const struct kvm_memory_slot *slot, int min_level)
1326 {
1327 	struct kvm_mmu_page *root;
1328 	bool spte_set = false;
1329 
1330 	lockdep_assert_held_read(&kvm->mmu_lock);
1331 
1332 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true)
1333 		spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
1334 			     slot->base_gfn + slot->npages, min_level);
1335 
1336 	return spte_set;
1337 }
1338 
1339 static struct kvm_mmu_page *__tdp_mmu_alloc_sp_for_split(gfp_t gfp)
1340 {
1341 	struct kvm_mmu_page *sp;
1342 
1343 	gfp |= __GFP_ZERO;
1344 
1345 	sp = kmem_cache_alloc(mmu_page_header_cache, gfp);
1346 	if (!sp)
1347 		return NULL;
1348 
1349 	sp->spt = (void *)__get_free_page(gfp);
1350 	if (!sp->spt) {
1351 		kmem_cache_free(mmu_page_header_cache, sp);
1352 		return NULL;
1353 	}
1354 
1355 	return sp;
1356 }
1357 
1358 static struct kvm_mmu_page *tdp_mmu_alloc_sp_for_split(struct kvm *kvm,
1359 						       struct tdp_iter *iter,
1360 						       bool shared)
1361 {
1362 	struct kvm_mmu_page *sp;
1363 
1364 	/*
1365 	 * Since we are allocating while under the MMU lock we have to be
1366 	 * careful about GFP flags. Use GFP_NOWAIT to avoid blocking on direct
1367 	 * reclaim and to avoid making any filesystem callbacks (which can end
1368 	 * up invoking KVM MMU notifiers, resulting in a deadlock).
1369 	 *
1370 	 * If this allocation fails we drop the lock and retry with reclaim
1371 	 * allowed.
1372 	 */
1373 	sp = __tdp_mmu_alloc_sp_for_split(GFP_NOWAIT | __GFP_ACCOUNT);
1374 	if (sp)
1375 		return sp;
1376 
1377 	rcu_read_unlock();
1378 
1379 	if (shared)
1380 		read_unlock(&kvm->mmu_lock);
1381 	else
1382 		write_unlock(&kvm->mmu_lock);
1383 
1384 	iter->yielded = true;
1385 	sp = __tdp_mmu_alloc_sp_for_split(GFP_KERNEL_ACCOUNT);
1386 
1387 	if (shared)
1388 		read_lock(&kvm->mmu_lock);
1389 	else
1390 		write_lock(&kvm->mmu_lock);
1391 
1392 	rcu_read_lock();
1393 
1394 	return sp;
1395 }
1396 
1397 /* Note, the caller is responsible for initializing @sp. */
1398 static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter,
1399 				   struct kvm_mmu_page *sp, bool shared)
1400 {
1401 	const u64 huge_spte = iter->old_spte;
1402 	const int level = iter->level;
1403 	int ret, i;
1404 
1405 	/*
1406 	 * No need for atomics when writing to sp->spt since the page table has
1407 	 * not been linked in yet and thus is not reachable from any other CPU.
1408 	 */
1409 	for (i = 0; i < SPTE_ENT_PER_PAGE; i++)
1410 		sp->spt[i] = make_huge_page_split_spte(kvm, huge_spte, sp->role, i);
1411 
1412 	/*
1413 	 * Replace the huge spte with a pointer to the populated lower level
1414 	 * page table. Since we are making this change without a TLB flush vCPUs
1415 	 * will see a mix of the split mappings and the original huge mapping,
1416 	 * depending on what's currently in their TLB. This is fine from a
1417 	 * correctness standpoint since the translation will be the same either
1418 	 * way.
1419 	 */
1420 	ret = tdp_mmu_link_sp(kvm, iter, sp, shared);
1421 	if (ret)
1422 		goto out;
1423 
1424 	/*
1425 	 * tdp_mmu_link_sp_atomic() will handle subtracting the huge page we
1426 	 * are overwriting from the page stats. But we have to manually update
1427 	 * the page stats with the new present child pages.
1428 	 */
1429 	kvm_update_page_stats(kvm, level - 1, SPTE_ENT_PER_PAGE);
1430 
1431 out:
1432 	trace_kvm_mmu_split_huge_page(iter->gfn, huge_spte, level, ret);
1433 	return ret;
1434 }
1435 
1436 static int tdp_mmu_split_huge_pages_root(struct kvm *kvm,
1437 					 struct kvm_mmu_page *root,
1438 					 gfn_t start, gfn_t end,
1439 					 int target_level, bool shared)
1440 {
1441 	struct kvm_mmu_page *sp = NULL;
1442 	struct tdp_iter iter;
1443 	int ret = 0;
1444 
1445 	rcu_read_lock();
1446 
1447 	/*
1448 	 * Traverse the page table splitting all huge pages above the target
1449 	 * level into one lower level. For example, if we encounter a 1GB page
1450 	 * we split it into 512 2MB pages.
1451 	 *
1452 	 * Since the TDP iterator uses a pre-order traversal, we are guaranteed
1453 	 * to visit an SPTE before ever visiting its children, which means we
1454 	 * will correctly recursively split huge pages that are more than one
1455 	 * level above the target level (e.g. splitting a 1GB to 512 2MB pages,
1456 	 * and then splitting each of those to 512 4KB pages).
1457 	 */
1458 	for_each_tdp_pte_min_level(iter, root, target_level + 1, start, end) {
1459 retry:
1460 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared))
1461 			continue;
1462 
1463 		if (!is_shadow_present_pte(iter.old_spte) || !is_large_pte(iter.old_spte))
1464 			continue;
1465 
1466 		if (!sp) {
1467 			sp = tdp_mmu_alloc_sp_for_split(kvm, &iter, shared);
1468 			if (!sp) {
1469 				ret = -ENOMEM;
1470 				trace_kvm_mmu_split_huge_page(iter.gfn,
1471 							      iter.old_spte,
1472 							      iter.level, ret);
1473 				break;
1474 			}
1475 
1476 			if (iter.yielded)
1477 				continue;
1478 		}
1479 
1480 		tdp_mmu_init_child_sp(sp, &iter);
1481 
1482 		if (tdp_mmu_split_huge_page(kvm, &iter, sp, shared))
1483 			goto retry;
1484 
1485 		sp = NULL;
1486 	}
1487 
1488 	rcu_read_unlock();
1489 
1490 	/*
1491 	 * It's possible to exit the loop having never used the last sp if, for
1492 	 * example, a vCPU doing HugePage NX splitting wins the race and
1493 	 * installs its own sp in place of the last sp we tried to split.
1494 	 */
1495 	if (sp)
1496 		tdp_mmu_free_sp(sp);
1497 
1498 	return ret;
1499 }
1500 
1501 
1502 /*
1503  * Try to split all huge pages mapped by the TDP MMU down to the target level.
1504  */
1505 void kvm_tdp_mmu_try_split_huge_pages(struct kvm *kvm,
1506 				      const struct kvm_memory_slot *slot,
1507 				      gfn_t start, gfn_t end,
1508 				      int target_level, bool shared)
1509 {
1510 	struct kvm_mmu_page *root;
1511 	int r = 0;
1512 
1513 	kvm_lockdep_assert_mmu_lock_held(kvm, shared);
1514 
1515 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, shared) {
1516 		r = tdp_mmu_split_huge_pages_root(kvm, root, start, end, target_level, shared);
1517 		if (r) {
1518 			kvm_tdp_mmu_put_root(kvm, root, shared);
1519 			break;
1520 		}
1521 	}
1522 }
1523 
1524 /*
1525  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
1526  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
1527  * If AD bits are not enabled, this will require clearing the writable bit on
1528  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
1529  * be flushed.
1530  */
1531 static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1532 			   gfn_t start, gfn_t end)
1533 {
1534 	u64 dbit = kvm_ad_enabled() ? shadow_dirty_mask : PT_WRITABLE_MASK;
1535 	struct tdp_iter iter;
1536 	bool spte_set = false;
1537 
1538 	rcu_read_lock();
1539 
1540 	tdp_root_for_each_leaf_pte(iter, root, start, end) {
1541 retry:
1542 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1543 			continue;
1544 
1545 		if (!is_shadow_present_pte(iter.old_spte))
1546 			continue;
1547 
1548 		MMU_WARN_ON(kvm_ad_enabled() &&
1549 			    spte_ad_need_write_protect(iter.old_spte));
1550 
1551 		if (!(iter.old_spte & dbit))
1552 			continue;
1553 
1554 		if (tdp_mmu_set_spte_atomic(kvm, &iter, iter.old_spte & ~dbit))
1555 			goto retry;
1556 
1557 		spte_set = true;
1558 	}
1559 
1560 	rcu_read_unlock();
1561 	return spte_set;
1562 }
1563 
1564 /*
1565  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
1566  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
1567  * If AD bits are not enabled, this will require clearing the writable bit on
1568  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
1569  * be flushed.
1570  */
1571 bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm,
1572 				  const struct kvm_memory_slot *slot)
1573 {
1574 	struct kvm_mmu_page *root;
1575 	bool spte_set = false;
1576 
1577 	lockdep_assert_held_read(&kvm->mmu_lock);
1578 
1579 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true)
1580 		spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
1581 				slot->base_gfn + slot->npages);
1582 
1583 	return spte_set;
1584 }
1585 
1586 /*
1587  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
1588  * set in mask, starting at gfn. The given memslot is expected to contain all
1589  * the GFNs represented by set bits in the mask. If AD bits are enabled,
1590  * clearing the dirty status will involve clearing the dirty bit on each SPTE
1591  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
1592  */
1593 static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
1594 				  gfn_t gfn, unsigned long mask, bool wrprot)
1595 {
1596 	u64 dbit = (wrprot || !kvm_ad_enabled()) ? PT_WRITABLE_MASK :
1597 						   shadow_dirty_mask;
1598 	struct tdp_iter iter;
1599 
1600 	rcu_read_lock();
1601 
1602 	tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
1603 				    gfn + BITS_PER_LONG) {
1604 		if (!mask)
1605 			break;
1606 
1607 		MMU_WARN_ON(kvm_ad_enabled() &&
1608 			    spte_ad_need_write_protect(iter.old_spte));
1609 
1610 		if (iter.level > PG_LEVEL_4K ||
1611 		    !(mask & (1UL << (iter.gfn - gfn))))
1612 			continue;
1613 
1614 		mask &= ~(1UL << (iter.gfn - gfn));
1615 
1616 		if (!(iter.old_spte & dbit))
1617 			continue;
1618 
1619 		iter.old_spte = tdp_mmu_clear_spte_bits(iter.sptep,
1620 							iter.old_spte, dbit,
1621 							iter.level);
1622 
1623 		trace_kvm_tdp_mmu_spte_changed(iter.as_id, iter.gfn, iter.level,
1624 					       iter.old_spte,
1625 					       iter.old_spte & ~dbit);
1626 		kvm_set_pfn_dirty(spte_to_pfn(iter.old_spte));
1627 	}
1628 
1629 	rcu_read_unlock();
1630 }
1631 
1632 /*
1633  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
1634  * set in mask, starting at gfn. The given memslot is expected to contain all
1635  * the GFNs represented by set bits in the mask. If AD bits are enabled,
1636  * clearing the dirty status will involve clearing the dirty bit on each SPTE
1637  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
1638  */
1639 void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1640 				       struct kvm_memory_slot *slot,
1641 				       gfn_t gfn, unsigned long mask,
1642 				       bool wrprot)
1643 {
1644 	struct kvm_mmu_page *root;
1645 
1646 	lockdep_assert_held_write(&kvm->mmu_lock);
1647 	for_each_tdp_mmu_root(kvm, root, slot->as_id)
1648 		clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
1649 }
1650 
1651 static void zap_collapsible_spte_range(struct kvm *kvm,
1652 				       struct kvm_mmu_page *root,
1653 				       const struct kvm_memory_slot *slot)
1654 {
1655 	gfn_t start = slot->base_gfn;
1656 	gfn_t end = start + slot->npages;
1657 	struct tdp_iter iter;
1658 	int max_mapping_level;
1659 
1660 	rcu_read_lock();
1661 
1662 	for_each_tdp_pte_min_level(iter, root, PG_LEVEL_2M, start, end) {
1663 retry:
1664 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1665 			continue;
1666 
1667 		if (iter.level > KVM_MAX_HUGEPAGE_LEVEL ||
1668 		    !is_shadow_present_pte(iter.old_spte))
1669 			continue;
1670 
1671 		/*
1672 		 * Don't zap leaf SPTEs, if a leaf SPTE could be replaced with
1673 		 * a large page size, then its parent would have been zapped
1674 		 * instead of stepping down.
1675 		 */
1676 		if (is_last_spte(iter.old_spte, iter.level))
1677 			continue;
1678 
1679 		/*
1680 		 * If iter.gfn resides outside of the slot, i.e. the page for
1681 		 * the current level overlaps but is not contained by the slot,
1682 		 * then the SPTE can't be made huge.  More importantly, trying
1683 		 * to query that info from slot->arch.lpage_info will cause an
1684 		 * out-of-bounds access.
1685 		 */
1686 		if (iter.gfn < start || iter.gfn >= end)
1687 			continue;
1688 
1689 		max_mapping_level = kvm_mmu_max_mapping_level(kvm, slot,
1690 							      iter.gfn, PG_LEVEL_NUM);
1691 		if (max_mapping_level < iter.level)
1692 			continue;
1693 
1694 		/* Note, a successful atomic zap also does a remote TLB flush. */
1695 		if (tdp_mmu_zap_spte_atomic(kvm, &iter))
1696 			goto retry;
1697 	}
1698 
1699 	rcu_read_unlock();
1700 }
1701 
1702 /*
1703  * Zap non-leaf SPTEs (and free their associated page tables) which could
1704  * be replaced by huge pages, for GFNs within the slot.
1705  */
1706 void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm,
1707 				       const struct kvm_memory_slot *slot)
1708 {
1709 	struct kvm_mmu_page *root;
1710 
1711 	lockdep_assert_held_read(&kvm->mmu_lock);
1712 
1713 	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true)
1714 		zap_collapsible_spte_range(kvm, root, slot);
1715 }
1716 
1717 /*
1718  * Removes write access on the last level SPTE mapping this GFN and unsets the
1719  * MMU-writable bit to ensure future writes continue to be intercepted.
1720  * Returns true if an SPTE was set and a TLB flush is needed.
1721  */
1722 static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
1723 			      gfn_t gfn, int min_level)
1724 {
1725 	struct tdp_iter iter;
1726 	u64 new_spte;
1727 	bool spte_set = false;
1728 
1729 	BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
1730 
1731 	rcu_read_lock();
1732 
1733 	for_each_tdp_pte_min_level(iter, root, min_level, gfn, gfn + 1) {
1734 		if (!is_shadow_present_pte(iter.old_spte) ||
1735 		    !is_last_spte(iter.old_spte, iter.level))
1736 			continue;
1737 
1738 		new_spte = iter.old_spte &
1739 			~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
1740 
1741 		if (new_spte == iter.old_spte)
1742 			break;
1743 
1744 		tdp_mmu_iter_set_spte(kvm, &iter, new_spte);
1745 		spte_set = true;
1746 	}
1747 
1748 	rcu_read_unlock();
1749 
1750 	return spte_set;
1751 }
1752 
1753 /*
1754  * Removes write access on the last level SPTE mapping this GFN and unsets the
1755  * MMU-writable bit to ensure future writes continue to be intercepted.
1756  * Returns true if an SPTE was set and a TLB flush is needed.
1757  */
1758 bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
1759 				   struct kvm_memory_slot *slot, gfn_t gfn,
1760 				   int min_level)
1761 {
1762 	struct kvm_mmu_page *root;
1763 	bool spte_set = false;
1764 
1765 	lockdep_assert_held_write(&kvm->mmu_lock);
1766 	for_each_tdp_mmu_root(kvm, root, slot->as_id)
1767 		spte_set |= write_protect_gfn(kvm, root, gfn, min_level);
1768 
1769 	return spte_set;
1770 }
1771 
1772 /*
1773  * Return the level of the lowest level SPTE added to sptes.
1774  * That SPTE may be non-present.
1775  *
1776  * Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}.
1777  */
1778 int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
1779 			 int *root_level)
1780 {
1781 	struct tdp_iter iter;
1782 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1783 	gfn_t gfn = addr >> PAGE_SHIFT;
1784 	int leaf = -1;
1785 
1786 	*root_level = vcpu->arch.mmu->root_role.level;
1787 
1788 	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1789 		leaf = iter.level;
1790 		sptes[leaf] = iter.old_spte;
1791 	}
1792 
1793 	return leaf;
1794 }
1795 
1796 /*
1797  * Returns the last level spte pointer of the shadow page walk for the given
1798  * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
1799  * walk could be performed, returns NULL and *spte does not contain valid data.
1800  *
1801  * Contract:
1802  *  - Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}.
1803  *  - The returned sptep must not be used after kvm_tdp_mmu_walk_lockless_end.
1804  *
1805  * WARNING: This function is only intended to be called during fast_page_fault.
1806  */
1807 u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, u64 addr,
1808 					u64 *spte)
1809 {
1810 	struct tdp_iter iter;
1811 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1812 	gfn_t gfn = addr >> PAGE_SHIFT;
1813 	tdp_ptep_t sptep = NULL;
1814 
1815 	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1816 		*spte = iter.old_spte;
1817 		sptep = iter.sptep;
1818 	}
1819 
1820 	/*
1821 	 * Perform the rcu_dereference to get the raw spte pointer value since
1822 	 * we are passing it up to fast_page_fault, which is shared with the
1823 	 * legacy MMU and thus does not retain the TDP MMU-specific __rcu
1824 	 * annotation.
1825 	 *
1826 	 * This is safe since fast_page_fault obeys the contracts of this
1827 	 * function as well as all TDP MMU contracts around modifying SPTEs
1828 	 * outside of mmu_lock.
1829 	 */
1830 	return rcu_dereference(sptep);
1831 }
1832