xref: /openbmc/linux/arch/x86/kvm/mmu/tdp_mmu.c (revision a889ea54)
1fe5db27dSBen Gardon // SPDX-License-Identifier: GPL-2.0
2fe5db27dSBen Gardon 
302c00b3aSBen Gardon #include "mmu.h"
402c00b3aSBen Gardon #include "mmu_internal.h"
5bb18842eSBen Gardon #include "mmutrace.h"
62f2fad08SBen Gardon #include "tdp_iter.h"
7fe5db27dSBen Gardon #include "tdp_mmu.h"
802c00b3aSBen Gardon #include "spte.h"
9fe5db27dSBen Gardon 
1033dd3574SBen Gardon #include <trace/events/kvm.h>
1133dd3574SBen Gardon 
1295fb5b02SBen Gardon #ifdef CONFIG_X86_64
13fe5db27dSBen Gardon static bool __read_mostly tdp_mmu_enabled = false;
1495fb5b02SBen Gardon module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644);
1595fb5b02SBen Gardon #endif
16fe5db27dSBen Gardon 
17fe5db27dSBen Gardon static bool is_tdp_mmu_enabled(void)
18fe5db27dSBen Gardon {
19fe5db27dSBen Gardon #ifdef CONFIG_X86_64
20fe5db27dSBen Gardon 	return tdp_enabled && READ_ONCE(tdp_mmu_enabled);
21fe5db27dSBen Gardon #else
22fe5db27dSBen Gardon 	return false;
23fe5db27dSBen Gardon #endif /* CONFIG_X86_64 */
24fe5db27dSBen Gardon }
25fe5db27dSBen Gardon 
26fe5db27dSBen Gardon /* Initializes the TDP MMU for the VM, if enabled. */
27fe5db27dSBen Gardon void kvm_mmu_init_tdp_mmu(struct kvm *kvm)
28fe5db27dSBen Gardon {
29fe5db27dSBen Gardon 	if (!is_tdp_mmu_enabled())
30fe5db27dSBen Gardon 		return;
31fe5db27dSBen Gardon 
32fe5db27dSBen Gardon 	/* This should not be changed for the lifetime of the VM. */
33fe5db27dSBen Gardon 	kvm->arch.tdp_mmu_enabled = true;
3402c00b3aSBen Gardon 
3502c00b3aSBen Gardon 	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
3689c0fd49SBen Gardon 	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages);
37fe5db27dSBen Gardon }
38fe5db27dSBen Gardon 
39fe5db27dSBen Gardon void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
40fe5db27dSBen Gardon {
41fe5db27dSBen Gardon 	if (!kvm->arch.tdp_mmu_enabled)
42fe5db27dSBen Gardon 		return;
4302c00b3aSBen Gardon 
4402c00b3aSBen Gardon 	WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
4502c00b3aSBen Gardon }
4602c00b3aSBen Gardon 
47*a889ea54SBen Gardon static void tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root)
48*a889ea54SBen Gardon {
49*a889ea54SBen Gardon 	if (kvm_mmu_put_root(kvm, root))
50*a889ea54SBen Gardon 		kvm_tdp_mmu_free_root(kvm, root);
51*a889ea54SBen Gardon }
52*a889ea54SBen Gardon 
53*a889ea54SBen Gardon static inline bool tdp_mmu_next_root_valid(struct kvm *kvm,
54*a889ea54SBen Gardon 					   struct kvm_mmu_page *root)
55*a889ea54SBen Gardon {
56*a889ea54SBen Gardon 	lockdep_assert_held(&kvm->mmu_lock);
57*a889ea54SBen Gardon 
58*a889ea54SBen Gardon 	if (list_entry_is_head(root, &kvm->arch.tdp_mmu_roots, link))
59*a889ea54SBen Gardon 		return false;
60*a889ea54SBen Gardon 
61*a889ea54SBen Gardon 	kvm_mmu_get_root(kvm, root);
62*a889ea54SBen Gardon 	return true;
63*a889ea54SBen Gardon 
64*a889ea54SBen Gardon }
65*a889ea54SBen Gardon 
66*a889ea54SBen Gardon static inline struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm,
67*a889ea54SBen Gardon 						     struct kvm_mmu_page *root)
68*a889ea54SBen Gardon {
69*a889ea54SBen Gardon 	struct kvm_mmu_page *next_root;
70*a889ea54SBen Gardon 
71*a889ea54SBen Gardon 	next_root = list_next_entry(root, link);
72*a889ea54SBen Gardon 	tdp_mmu_put_root(kvm, root);
73*a889ea54SBen Gardon 	return next_root;
74*a889ea54SBen Gardon }
75*a889ea54SBen Gardon 
76*a889ea54SBen Gardon /*
77*a889ea54SBen Gardon  * Note: this iterator gets and puts references to the roots it iterates over.
78*a889ea54SBen Gardon  * This makes it safe to release the MMU lock and yield within the loop, but
79*a889ea54SBen Gardon  * if exiting the loop early, the caller must drop the reference to the most
80*a889ea54SBen Gardon  * recent root. (Unless keeping a live reference is desirable.)
81*a889ea54SBen Gardon  */
82*a889ea54SBen Gardon #define for_each_tdp_mmu_root_yield_safe(_kvm, _root)				\
83*a889ea54SBen Gardon 	for (_root = list_first_entry(&_kvm->arch.tdp_mmu_roots,	\
84*a889ea54SBen Gardon 				      typeof(*_root), link);		\
85*a889ea54SBen Gardon 	     tdp_mmu_next_root_valid(_kvm, _root);			\
86*a889ea54SBen Gardon 	     _root = tdp_mmu_next_root(_kvm, _root))
87*a889ea54SBen Gardon 
8802c00b3aSBen Gardon #define for_each_tdp_mmu_root(_kvm, _root)				\
8902c00b3aSBen Gardon 	list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link)
9002c00b3aSBen Gardon 
9102c00b3aSBen Gardon bool is_tdp_mmu_root(struct kvm *kvm, hpa_t hpa)
9202c00b3aSBen Gardon {
9302c00b3aSBen Gardon 	struct kvm_mmu_page *sp;
9402c00b3aSBen Gardon 
95c887c9b9SPaolo Bonzini 	if (!kvm->arch.tdp_mmu_enabled)
96c887c9b9SPaolo Bonzini 		return false;
97c887c9b9SPaolo Bonzini 	if (WARN_ON(!VALID_PAGE(hpa)))
98c887c9b9SPaolo Bonzini 		return false;
99c887c9b9SPaolo Bonzini 
10002c00b3aSBen Gardon 	sp = to_shadow_page(hpa);
101c887c9b9SPaolo Bonzini 	if (WARN_ON(!sp))
102c887c9b9SPaolo Bonzini 		return false;
10302c00b3aSBen Gardon 
10402c00b3aSBen Gardon 	return sp->tdp_mmu_page && sp->root_count;
10502c00b3aSBen Gardon }
10602c00b3aSBen Gardon 
107faaf05b0SBen Gardon static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
108063afacdSBen Gardon 			  gfn_t start, gfn_t end, bool can_yield);
109faaf05b0SBen Gardon 
11002c00b3aSBen Gardon void kvm_tdp_mmu_free_root(struct kvm *kvm, struct kvm_mmu_page *root)
11102c00b3aSBen Gardon {
112339f5a7fSRick Edgecombe 	gfn_t max_gfn = 1ULL << (shadow_phys_bits - PAGE_SHIFT);
113faaf05b0SBen Gardon 
11402c00b3aSBen Gardon 	lockdep_assert_held(&kvm->mmu_lock);
11502c00b3aSBen Gardon 
11602c00b3aSBen Gardon 	WARN_ON(root->root_count);
11702c00b3aSBen Gardon 	WARN_ON(!root->tdp_mmu_page);
11802c00b3aSBen Gardon 
11902c00b3aSBen Gardon 	list_del(&root->link);
12002c00b3aSBen Gardon 
121063afacdSBen Gardon 	zap_gfn_range(kvm, root, 0, max_gfn, false);
122faaf05b0SBen Gardon 
12302c00b3aSBen Gardon 	free_page((unsigned long)root->spt);
12402c00b3aSBen Gardon 	kmem_cache_free(mmu_page_header_cache, root);
12502c00b3aSBen Gardon }
12602c00b3aSBen Gardon 
12702c00b3aSBen Gardon static union kvm_mmu_page_role page_role_for_level(struct kvm_vcpu *vcpu,
12802c00b3aSBen Gardon 						   int level)
12902c00b3aSBen Gardon {
13002c00b3aSBen Gardon 	union kvm_mmu_page_role role;
13102c00b3aSBen Gardon 
13202c00b3aSBen Gardon 	role = vcpu->arch.mmu->mmu_role.base;
13302c00b3aSBen Gardon 	role.level = level;
13402c00b3aSBen Gardon 	role.direct = true;
13502c00b3aSBen Gardon 	role.gpte_is_8_bytes = true;
13602c00b3aSBen Gardon 	role.access = ACC_ALL;
13702c00b3aSBen Gardon 
13802c00b3aSBen Gardon 	return role;
13902c00b3aSBen Gardon }
14002c00b3aSBen Gardon 
14102c00b3aSBen Gardon static struct kvm_mmu_page *alloc_tdp_mmu_page(struct kvm_vcpu *vcpu, gfn_t gfn,
14202c00b3aSBen Gardon 					       int level)
14302c00b3aSBen Gardon {
14402c00b3aSBen Gardon 	struct kvm_mmu_page *sp;
14502c00b3aSBen Gardon 
14602c00b3aSBen Gardon 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
14702c00b3aSBen Gardon 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
14802c00b3aSBen Gardon 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
14902c00b3aSBen Gardon 
15002c00b3aSBen Gardon 	sp->role.word = page_role_for_level(vcpu, level).word;
15102c00b3aSBen Gardon 	sp->gfn = gfn;
15202c00b3aSBen Gardon 	sp->tdp_mmu_page = true;
15302c00b3aSBen Gardon 
15433dd3574SBen Gardon 	trace_kvm_mmu_get_page(sp, true);
15533dd3574SBen Gardon 
15602c00b3aSBen Gardon 	return sp;
15702c00b3aSBen Gardon }
15802c00b3aSBen Gardon 
15902c00b3aSBen Gardon static struct kvm_mmu_page *get_tdp_mmu_vcpu_root(struct kvm_vcpu *vcpu)
16002c00b3aSBen Gardon {
16102c00b3aSBen Gardon 	union kvm_mmu_page_role role;
16202c00b3aSBen Gardon 	struct kvm *kvm = vcpu->kvm;
16302c00b3aSBen Gardon 	struct kvm_mmu_page *root;
16402c00b3aSBen Gardon 
16502c00b3aSBen Gardon 	role = page_role_for_level(vcpu, vcpu->arch.mmu->shadow_root_level);
16602c00b3aSBen Gardon 
16702c00b3aSBen Gardon 	spin_lock(&kvm->mmu_lock);
16802c00b3aSBen Gardon 
16902c00b3aSBen Gardon 	/* Check for an existing root before allocating a new one. */
17002c00b3aSBen Gardon 	for_each_tdp_mmu_root(kvm, root) {
17102c00b3aSBen Gardon 		if (root->role.word == role.word) {
17202c00b3aSBen Gardon 			kvm_mmu_get_root(kvm, root);
17302c00b3aSBen Gardon 			spin_unlock(&kvm->mmu_lock);
17402c00b3aSBen Gardon 			return root;
17502c00b3aSBen Gardon 		}
17602c00b3aSBen Gardon 	}
17702c00b3aSBen Gardon 
17802c00b3aSBen Gardon 	root = alloc_tdp_mmu_page(vcpu, 0, vcpu->arch.mmu->shadow_root_level);
17902c00b3aSBen Gardon 	root->root_count = 1;
18002c00b3aSBen Gardon 
18102c00b3aSBen Gardon 	list_add(&root->link, &kvm->arch.tdp_mmu_roots);
18202c00b3aSBen Gardon 
18302c00b3aSBen Gardon 	spin_unlock(&kvm->mmu_lock);
18402c00b3aSBen Gardon 
18502c00b3aSBen Gardon 	return root;
18602c00b3aSBen Gardon }
18702c00b3aSBen Gardon 
18802c00b3aSBen Gardon hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu)
18902c00b3aSBen Gardon {
19002c00b3aSBen Gardon 	struct kvm_mmu_page *root;
19102c00b3aSBen Gardon 
19202c00b3aSBen Gardon 	root = get_tdp_mmu_vcpu_root(vcpu);
19302c00b3aSBen Gardon 	if (!root)
19402c00b3aSBen Gardon 		return INVALID_PAGE;
19502c00b3aSBen Gardon 
19602c00b3aSBen Gardon 	return __pa(root->spt);
197fe5db27dSBen Gardon }
1982f2fad08SBen Gardon 
1992f2fad08SBen Gardon static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
2002f2fad08SBen Gardon 				u64 old_spte, u64 new_spte, int level);
2012f2fad08SBen Gardon 
202faaf05b0SBen Gardon static int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
203faaf05b0SBen Gardon {
204faaf05b0SBen Gardon 	return sp->role.smm ? 1 : 0;
205faaf05b0SBen Gardon }
206faaf05b0SBen Gardon 
207f8e14497SBen Gardon static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level)
208f8e14497SBen Gardon {
209f8e14497SBen Gardon 	bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
210f8e14497SBen Gardon 
211f8e14497SBen Gardon 	if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level))
212f8e14497SBen Gardon 		return;
213f8e14497SBen Gardon 
214f8e14497SBen Gardon 	if (is_accessed_spte(old_spte) &&
215f8e14497SBen Gardon 	    (!is_accessed_spte(new_spte) || pfn_changed))
216f8e14497SBen Gardon 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
217f8e14497SBen Gardon }
218f8e14497SBen Gardon 
219a6a0b05dSBen Gardon static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn,
220a6a0b05dSBen Gardon 					  u64 old_spte, u64 new_spte, int level)
221a6a0b05dSBen Gardon {
222a6a0b05dSBen Gardon 	bool pfn_changed;
223a6a0b05dSBen Gardon 	struct kvm_memory_slot *slot;
224a6a0b05dSBen Gardon 
225a6a0b05dSBen Gardon 	if (level > PG_LEVEL_4K)
226a6a0b05dSBen Gardon 		return;
227a6a0b05dSBen Gardon 
228a6a0b05dSBen Gardon 	pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
229a6a0b05dSBen Gardon 
230a6a0b05dSBen Gardon 	if ((!is_writable_pte(old_spte) || pfn_changed) &&
231a6a0b05dSBen Gardon 	    is_writable_pte(new_spte)) {
232a6a0b05dSBen Gardon 		slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn);
233fb04a1edSPeter Xu 		mark_page_dirty_in_slot(kvm, slot, gfn);
234a6a0b05dSBen Gardon 	}
235a6a0b05dSBen Gardon }
236a6a0b05dSBen Gardon 
2372f2fad08SBen Gardon /**
2382f2fad08SBen Gardon  * handle_changed_spte - handle bookkeeping associated with an SPTE change
2392f2fad08SBen Gardon  * @kvm: kvm instance
2402f2fad08SBen Gardon  * @as_id: the address space of the paging structure the SPTE was a part of
2412f2fad08SBen Gardon  * @gfn: the base GFN that was mapped by the SPTE
2422f2fad08SBen Gardon  * @old_spte: The value of the SPTE before the change
2432f2fad08SBen Gardon  * @new_spte: The value of the SPTE after the change
2442f2fad08SBen Gardon  * @level: the level of the PT the SPTE is part of in the paging structure
2452f2fad08SBen Gardon  *
2462f2fad08SBen Gardon  * Handle bookkeeping that might result from the modification of a SPTE.
2472f2fad08SBen Gardon  * This function must be called for all TDP SPTE modifications.
2482f2fad08SBen Gardon  */
2492f2fad08SBen Gardon static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
2502f2fad08SBen Gardon 				u64 old_spte, u64 new_spte, int level)
2512f2fad08SBen Gardon {
2522f2fad08SBen Gardon 	bool was_present = is_shadow_present_pte(old_spte);
2532f2fad08SBen Gardon 	bool is_present = is_shadow_present_pte(new_spte);
2542f2fad08SBen Gardon 	bool was_leaf = was_present && is_last_spte(old_spte, level);
2552f2fad08SBen Gardon 	bool is_leaf = is_present && is_last_spte(new_spte, level);
2562f2fad08SBen Gardon 	bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
2572f2fad08SBen Gardon 	u64 *pt;
25889c0fd49SBen Gardon 	struct kvm_mmu_page *sp;
2592f2fad08SBen Gardon 	u64 old_child_spte;
2602f2fad08SBen Gardon 	int i;
2612f2fad08SBen Gardon 
2622f2fad08SBen Gardon 	WARN_ON(level > PT64_ROOT_MAX_LEVEL);
2632f2fad08SBen Gardon 	WARN_ON(level < PG_LEVEL_4K);
264764388ceSSean Christopherson 	WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
2652f2fad08SBen Gardon 
2662f2fad08SBen Gardon 	/*
2672f2fad08SBen Gardon 	 * If this warning were to trigger it would indicate that there was a
2682f2fad08SBen Gardon 	 * missing MMU notifier or a race with some notifier handler.
2692f2fad08SBen Gardon 	 * A present, leaf SPTE should never be directly replaced with another
2702f2fad08SBen Gardon 	 * present leaf SPTE pointing to a differnt PFN. A notifier handler
2712f2fad08SBen Gardon 	 * should be zapping the SPTE before the main MM's page table is
2722f2fad08SBen Gardon 	 * changed, or the SPTE should be zeroed, and the TLBs flushed by the
2732f2fad08SBen Gardon 	 * thread before replacement.
2742f2fad08SBen Gardon 	 */
2752f2fad08SBen Gardon 	if (was_leaf && is_leaf && pfn_changed) {
2762f2fad08SBen Gardon 		pr_err("Invalid SPTE change: cannot replace a present leaf\n"
2772f2fad08SBen Gardon 		       "SPTE with another present leaf SPTE mapping a\n"
2782f2fad08SBen Gardon 		       "different PFN!\n"
2792f2fad08SBen Gardon 		       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
2802f2fad08SBen Gardon 		       as_id, gfn, old_spte, new_spte, level);
2812f2fad08SBen Gardon 
2822f2fad08SBen Gardon 		/*
2832f2fad08SBen Gardon 		 * Crash the host to prevent error propagation and guest data
2842f2fad08SBen Gardon 		 * courruption.
2852f2fad08SBen Gardon 		 */
2862f2fad08SBen Gardon 		BUG();
2872f2fad08SBen Gardon 	}
2882f2fad08SBen Gardon 
2892f2fad08SBen Gardon 	if (old_spte == new_spte)
2902f2fad08SBen Gardon 		return;
2912f2fad08SBen Gardon 
292b9a98c34SBen Gardon 	trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte);
293b9a98c34SBen Gardon 
2942f2fad08SBen Gardon 	/*
2952f2fad08SBen Gardon 	 * The only times a SPTE should be changed from a non-present to
2962f2fad08SBen Gardon 	 * non-present state is when an MMIO entry is installed/modified/
2972f2fad08SBen Gardon 	 * removed. In that case, there is nothing to do here.
2982f2fad08SBen Gardon 	 */
2992f2fad08SBen Gardon 	if (!was_present && !is_present) {
3002f2fad08SBen Gardon 		/*
3012f2fad08SBen Gardon 		 * If this change does not involve a MMIO SPTE, it is
3022f2fad08SBen Gardon 		 * unexpected. Log the change, though it should not impact the
3032f2fad08SBen Gardon 		 * guest since both the former and current SPTEs are nonpresent.
3042f2fad08SBen Gardon 		 */
3052f2fad08SBen Gardon 		if (WARN_ON(!is_mmio_spte(old_spte) && !is_mmio_spte(new_spte)))
3062f2fad08SBen Gardon 			pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
3072f2fad08SBen Gardon 			       "should not be replaced with another,\n"
3082f2fad08SBen Gardon 			       "different nonpresent SPTE, unless one or both\n"
3092f2fad08SBen Gardon 			       "are MMIO SPTEs.\n"
3102f2fad08SBen Gardon 			       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
3112f2fad08SBen Gardon 			       as_id, gfn, old_spte, new_spte, level);
3122f2fad08SBen Gardon 		return;
3132f2fad08SBen Gardon 	}
3142f2fad08SBen Gardon 
3152f2fad08SBen Gardon 
3162f2fad08SBen Gardon 	if (was_leaf && is_dirty_spte(old_spte) &&
3172f2fad08SBen Gardon 	    (!is_dirty_spte(new_spte) || pfn_changed))
3182f2fad08SBen Gardon 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
3192f2fad08SBen Gardon 
3202f2fad08SBen Gardon 	/*
3212f2fad08SBen Gardon 	 * Recursively handle child PTs if the change removed a subtree from
3222f2fad08SBen Gardon 	 * the paging structure.
3232f2fad08SBen Gardon 	 */
3242f2fad08SBen Gardon 	if (was_present && !was_leaf && (pfn_changed || !is_present)) {
3252f2fad08SBen Gardon 		pt = spte_to_child_pt(old_spte, level);
32689c0fd49SBen Gardon 		sp = sptep_to_sp(pt);
32789c0fd49SBen Gardon 
32833dd3574SBen Gardon 		trace_kvm_mmu_prepare_zap_page(sp);
32933dd3574SBen Gardon 
33089c0fd49SBen Gardon 		list_del(&sp->link);
3312f2fad08SBen Gardon 
33229cf0f50SBen Gardon 		if (sp->lpage_disallowed)
33329cf0f50SBen Gardon 			unaccount_huge_nx_page(kvm, sp);
33429cf0f50SBen Gardon 
3352f2fad08SBen Gardon 		for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
3362f2fad08SBen Gardon 			old_child_spte = READ_ONCE(*(pt + i));
3372f2fad08SBen Gardon 			WRITE_ONCE(*(pt + i), 0);
3382f2fad08SBen Gardon 			handle_changed_spte(kvm, as_id,
3392f2fad08SBen Gardon 				gfn + (i * KVM_PAGES_PER_HPAGE(level - 1)),
3402f2fad08SBen Gardon 				old_child_spte, 0, level - 1);
3412f2fad08SBen Gardon 		}
3422f2fad08SBen Gardon 
3432f2fad08SBen Gardon 		kvm_flush_remote_tlbs_with_address(kvm, gfn,
3442f2fad08SBen Gardon 						   KVM_PAGES_PER_HPAGE(level));
3452f2fad08SBen Gardon 
3462f2fad08SBen Gardon 		free_page((unsigned long)pt);
34789c0fd49SBen Gardon 		kmem_cache_free(mmu_page_header_cache, sp);
3482f2fad08SBen Gardon 	}
3492f2fad08SBen Gardon }
3502f2fad08SBen Gardon 
3512f2fad08SBen Gardon static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
3522f2fad08SBen Gardon 				u64 old_spte, u64 new_spte, int level)
3532f2fad08SBen Gardon {
3542f2fad08SBen Gardon 	__handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level);
355f8e14497SBen Gardon 	handle_changed_spte_acc_track(old_spte, new_spte, level);
356a6a0b05dSBen Gardon 	handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
357a6a0b05dSBen Gardon 				      new_spte, level);
3582f2fad08SBen Gardon }
359faaf05b0SBen Gardon 
360f8e14497SBen Gardon static inline void __tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
361a6a0b05dSBen Gardon 				      u64 new_spte, bool record_acc_track,
362a6a0b05dSBen Gardon 				      bool record_dirty_log)
363faaf05b0SBen Gardon {
364faaf05b0SBen Gardon 	u64 *root_pt = tdp_iter_root_pt(iter);
365faaf05b0SBen Gardon 	struct kvm_mmu_page *root = sptep_to_sp(root_pt);
366faaf05b0SBen Gardon 	int as_id = kvm_mmu_page_as_id(root);
367faaf05b0SBen Gardon 
368f8e14497SBen Gardon 	WRITE_ONCE(*iter->sptep, new_spte);
369faaf05b0SBen Gardon 
370f8e14497SBen Gardon 	__handle_changed_spte(kvm, as_id, iter->gfn, iter->old_spte, new_spte,
371faaf05b0SBen Gardon 			      iter->level);
372f8e14497SBen Gardon 	if (record_acc_track)
373f8e14497SBen Gardon 		handle_changed_spte_acc_track(iter->old_spte, new_spte,
374f8e14497SBen Gardon 					      iter->level);
375a6a0b05dSBen Gardon 	if (record_dirty_log)
376a6a0b05dSBen Gardon 		handle_changed_spte_dirty_log(kvm, as_id, iter->gfn,
377a6a0b05dSBen Gardon 					      iter->old_spte, new_spte,
378a6a0b05dSBen Gardon 					      iter->level);
379f8e14497SBen Gardon }
380f8e14497SBen Gardon 
381f8e14497SBen Gardon static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
382f8e14497SBen Gardon 				    u64 new_spte)
383f8e14497SBen Gardon {
384a6a0b05dSBen Gardon 	__tdp_mmu_set_spte(kvm, iter, new_spte, true, true);
385f8e14497SBen Gardon }
386f8e14497SBen Gardon 
387f8e14497SBen Gardon static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm,
388f8e14497SBen Gardon 						 struct tdp_iter *iter,
389f8e14497SBen Gardon 						 u64 new_spte)
390f8e14497SBen Gardon {
391a6a0b05dSBen Gardon 	__tdp_mmu_set_spte(kvm, iter, new_spte, false, true);
392a6a0b05dSBen Gardon }
393a6a0b05dSBen Gardon 
394a6a0b05dSBen Gardon static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm,
395a6a0b05dSBen Gardon 						 struct tdp_iter *iter,
396a6a0b05dSBen Gardon 						 u64 new_spte)
397a6a0b05dSBen Gardon {
398a6a0b05dSBen Gardon 	__tdp_mmu_set_spte(kvm, iter, new_spte, true, false);
399faaf05b0SBen Gardon }
400faaf05b0SBen Gardon 
401faaf05b0SBen Gardon #define tdp_root_for_each_pte(_iter, _root, _start, _end) \
402faaf05b0SBen Gardon 	for_each_tdp_pte(_iter, _root->spt, _root->role.level, _start, _end)
403faaf05b0SBen Gardon 
404f8e14497SBen Gardon #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end)	\
405f8e14497SBen Gardon 	tdp_root_for_each_pte(_iter, _root, _start, _end)		\
406f8e14497SBen Gardon 		if (!is_shadow_present_pte(_iter.old_spte) ||		\
407f8e14497SBen Gardon 		    !is_last_spte(_iter.old_spte, _iter.level))		\
408f8e14497SBen Gardon 			continue;					\
409f8e14497SBen Gardon 		else
410f8e14497SBen Gardon 
411bb18842eSBen Gardon #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end)		\
412bb18842eSBen Gardon 	for_each_tdp_pte(_iter, __va(_mmu->root_hpa),		\
413bb18842eSBen Gardon 			 _mmu->shadow_root_level, _start, _end)
414bb18842eSBen Gardon 
415faaf05b0SBen Gardon /*
416faaf05b0SBen Gardon  * Flush the TLB if the process should drop kvm->mmu_lock.
417faaf05b0SBen Gardon  * Return whether the caller still needs to flush the tlb.
418faaf05b0SBen Gardon  */
419faaf05b0SBen Gardon static bool tdp_mmu_iter_flush_cond_resched(struct kvm *kvm, struct tdp_iter *iter)
420faaf05b0SBen Gardon {
421faaf05b0SBen Gardon 	if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
422faaf05b0SBen Gardon 		kvm_flush_remote_tlbs(kvm);
423faaf05b0SBen Gardon 		cond_resched_lock(&kvm->mmu_lock);
424faaf05b0SBen Gardon 		tdp_iter_refresh_walk(iter);
425faaf05b0SBen Gardon 		return false;
426faaf05b0SBen Gardon 	} else {
427faaf05b0SBen Gardon 		return true;
428faaf05b0SBen Gardon 	}
429faaf05b0SBen Gardon }
430faaf05b0SBen Gardon 
431a6a0b05dSBen Gardon static void tdp_mmu_iter_cond_resched(struct kvm *kvm, struct tdp_iter *iter)
432a6a0b05dSBen Gardon {
433a6a0b05dSBen Gardon 	if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
434a6a0b05dSBen Gardon 		cond_resched_lock(&kvm->mmu_lock);
435a6a0b05dSBen Gardon 		tdp_iter_refresh_walk(iter);
436a6a0b05dSBen Gardon 	}
437a6a0b05dSBen Gardon }
438a6a0b05dSBen Gardon 
439faaf05b0SBen Gardon /*
440faaf05b0SBen Gardon  * Tears down the mappings for the range of gfns, [start, end), and frees the
441faaf05b0SBen Gardon  * non-root pages mapping GFNs strictly within that range. Returns true if
442faaf05b0SBen Gardon  * SPTEs have been cleared and a TLB flush is needed before releasing the
443faaf05b0SBen Gardon  * MMU lock.
444063afacdSBen Gardon  * If can_yield is true, will release the MMU lock and reschedule if the
445063afacdSBen Gardon  * scheduler needs the CPU or there is contention on the MMU lock. If this
446063afacdSBen Gardon  * function cannot yield, it will not release the MMU lock or reschedule and
447063afacdSBen Gardon  * the caller must ensure it does not supply too large a GFN range, or the
448063afacdSBen Gardon  * operation can cause a soft lockup.
449faaf05b0SBen Gardon  */
450faaf05b0SBen Gardon static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
451063afacdSBen Gardon 			  gfn_t start, gfn_t end, bool can_yield)
452faaf05b0SBen Gardon {
453faaf05b0SBen Gardon 	struct tdp_iter iter;
454faaf05b0SBen Gardon 	bool flush_needed = false;
455faaf05b0SBen Gardon 
456faaf05b0SBen Gardon 	tdp_root_for_each_pte(iter, root, start, end) {
457faaf05b0SBen Gardon 		if (!is_shadow_present_pte(iter.old_spte))
458faaf05b0SBen Gardon 			continue;
459faaf05b0SBen Gardon 
460faaf05b0SBen Gardon 		/*
461faaf05b0SBen Gardon 		 * If this is a non-last-level SPTE that covers a larger range
462faaf05b0SBen Gardon 		 * than should be zapped, continue, and zap the mappings at a
463faaf05b0SBen Gardon 		 * lower level.
464faaf05b0SBen Gardon 		 */
465faaf05b0SBen Gardon 		if ((iter.gfn < start ||
466faaf05b0SBen Gardon 		     iter.gfn + KVM_PAGES_PER_HPAGE(iter.level) > end) &&
467faaf05b0SBen Gardon 		    !is_last_spte(iter.old_spte, iter.level))
468faaf05b0SBen Gardon 			continue;
469faaf05b0SBen Gardon 
470faaf05b0SBen Gardon 		tdp_mmu_set_spte(kvm, &iter, 0);
471faaf05b0SBen Gardon 
472063afacdSBen Gardon 		if (can_yield)
473faaf05b0SBen Gardon 			flush_needed = tdp_mmu_iter_flush_cond_resched(kvm, &iter);
474063afacdSBen Gardon 		else
475063afacdSBen Gardon 			flush_needed = true;
476faaf05b0SBen Gardon 	}
477faaf05b0SBen Gardon 	return flush_needed;
478faaf05b0SBen Gardon }
479faaf05b0SBen Gardon 
480faaf05b0SBen Gardon /*
481faaf05b0SBen Gardon  * Tears down the mappings for the range of gfns, [start, end), and frees the
482faaf05b0SBen Gardon  * non-root pages mapping GFNs strictly within that range. Returns true if
483faaf05b0SBen Gardon  * SPTEs have been cleared and a TLB flush is needed before releasing the
484faaf05b0SBen Gardon  * MMU lock.
485faaf05b0SBen Gardon  */
486faaf05b0SBen Gardon bool kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, gfn_t start, gfn_t end)
487faaf05b0SBen Gardon {
488faaf05b0SBen Gardon 	struct kvm_mmu_page *root;
489faaf05b0SBen Gardon 	bool flush = false;
490faaf05b0SBen Gardon 
491*a889ea54SBen Gardon 	for_each_tdp_mmu_root_yield_safe(kvm, root)
492063afacdSBen Gardon 		flush |= zap_gfn_range(kvm, root, start, end, true);
493faaf05b0SBen Gardon 
494faaf05b0SBen Gardon 	return flush;
495faaf05b0SBen Gardon }
496faaf05b0SBen Gardon 
497faaf05b0SBen Gardon void kvm_tdp_mmu_zap_all(struct kvm *kvm)
498faaf05b0SBen Gardon {
499339f5a7fSRick Edgecombe 	gfn_t max_gfn = 1ULL << (shadow_phys_bits - PAGE_SHIFT);
500faaf05b0SBen Gardon 	bool flush;
501faaf05b0SBen Gardon 
502faaf05b0SBen Gardon 	flush = kvm_tdp_mmu_zap_gfn_range(kvm, 0, max_gfn);
503faaf05b0SBen Gardon 	if (flush)
504faaf05b0SBen Gardon 		kvm_flush_remote_tlbs(kvm);
505faaf05b0SBen Gardon }
506bb18842eSBen Gardon 
507bb18842eSBen Gardon /*
508bb18842eSBen Gardon  * Installs a last-level SPTE to handle a TDP page fault.
509bb18842eSBen Gardon  * (NPT/EPT violation/misconfiguration)
510bb18842eSBen Gardon  */
511bb18842eSBen Gardon static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, int write,
512bb18842eSBen Gardon 					  int map_writable,
513bb18842eSBen Gardon 					  struct tdp_iter *iter,
514bb18842eSBen Gardon 					  kvm_pfn_t pfn, bool prefault)
515bb18842eSBen Gardon {
516bb18842eSBen Gardon 	u64 new_spte;
517bb18842eSBen Gardon 	int ret = 0;
518bb18842eSBen Gardon 	int make_spte_ret = 0;
519bb18842eSBen Gardon 
520bb18842eSBen Gardon 	if (unlikely(is_noslot_pfn(pfn))) {
521bb18842eSBen Gardon 		new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
522bb18842eSBen Gardon 		trace_mark_mmio_spte(iter->sptep, iter->gfn, new_spte);
52333dd3574SBen Gardon 	} else {
524bb18842eSBen Gardon 		make_spte_ret = make_spte(vcpu, ACC_ALL, iter->level, iter->gfn,
525bb18842eSBen Gardon 					 pfn, iter->old_spte, prefault, true,
526bb18842eSBen Gardon 					 map_writable, !shadow_accessed_mask,
527bb18842eSBen Gardon 					 &new_spte);
52833dd3574SBen Gardon 		trace_kvm_mmu_set_spte(iter->level, iter->gfn, iter->sptep);
52933dd3574SBen Gardon 	}
530bb18842eSBen Gardon 
531bb18842eSBen Gardon 	if (new_spte == iter->old_spte)
532bb18842eSBen Gardon 		ret = RET_PF_SPURIOUS;
533bb18842eSBen Gardon 	else
534bb18842eSBen Gardon 		tdp_mmu_set_spte(vcpu->kvm, iter, new_spte);
535bb18842eSBen Gardon 
536bb18842eSBen Gardon 	/*
537bb18842eSBen Gardon 	 * If the page fault was caused by a write but the page is write
538bb18842eSBen Gardon 	 * protected, emulation is needed. If the emulation was skipped,
539bb18842eSBen Gardon 	 * the vCPU would have the same fault again.
540bb18842eSBen Gardon 	 */
541bb18842eSBen Gardon 	if (make_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
542bb18842eSBen Gardon 		if (write)
543bb18842eSBen Gardon 			ret = RET_PF_EMULATE;
544bb18842eSBen Gardon 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
545bb18842eSBen Gardon 	}
546bb18842eSBen Gardon 
547bb18842eSBen Gardon 	/* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
548bb18842eSBen Gardon 	if (unlikely(is_mmio_spte(new_spte)))
549bb18842eSBen Gardon 		ret = RET_PF_EMULATE;
550bb18842eSBen Gardon 
551bb18842eSBen Gardon 	trace_kvm_mmu_set_spte(iter->level, iter->gfn, iter->sptep);
552bb18842eSBen Gardon 	if (!prefault)
553bb18842eSBen Gardon 		vcpu->stat.pf_fixed++;
554bb18842eSBen Gardon 
555bb18842eSBen Gardon 	return ret;
556bb18842eSBen Gardon }
557bb18842eSBen Gardon 
558bb18842eSBen Gardon /*
559bb18842eSBen Gardon  * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
560bb18842eSBen Gardon  * page tables and SPTEs to translate the faulting guest physical address.
561bb18842eSBen Gardon  */
562bb18842eSBen Gardon int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
563bb18842eSBen Gardon 		    int map_writable, int max_level, kvm_pfn_t pfn,
564bb18842eSBen Gardon 		    bool prefault)
565bb18842eSBen Gardon {
566bb18842eSBen Gardon 	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
567bb18842eSBen Gardon 	bool write = error_code & PFERR_WRITE_MASK;
568bb18842eSBen Gardon 	bool exec = error_code & PFERR_FETCH_MASK;
569bb18842eSBen Gardon 	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
570bb18842eSBen Gardon 	struct kvm_mmu *mmu = vcpu->arch.mmu;
571bb18842eSBen Gardon 	struct tdp_iter iter;
57289c0fd49SBen Gardon 	struct kvm_mmu_page *sp;
573bb18842eSBen Gardon 	u64 *child_pt;
574bb18842eSBen Gardon 	u64 new_spte;
575bb18842eSBen Gardon 	int ret;
576bb18842eSBen Gardon 	gfn_t gfn = gpa >> PAGE_SHIFT;
577bb18842eSBen Gardon 	int level;
578bb18842eSBen Gardon 	int req_level;
579bb18842eSBen Gardon 
580bb18842eSBen Gardon 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
581bb18842eSBen Gardon 		return RET_PF_RETRY;
582bb18842eSBen Gardon 	if (WARN_ON(!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)))
583bb18842eSBen Gardon 		return RET_PF_RETRY;
584bb18842eSBen Gardon 
585bb18842eSBen Gardon 	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
586bb18842eSBen Gardon 					huge_page_disallowed, &req_level);
587bb18842eSBen Gardon 
588bb18842eSBen Gardon 	trace_kvm_mmu_spte_requested(gpa, level, pfn);
589bb18842eSBen Gardon 	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
590bb18842eSBen Gardon 		if (nx_huge_page_workaround_enabled)
591bb18842eSBen Gardon 			disallowed_hugepage_adjust(iter.old_spte, gfn,
592bb18842eSBen Gardon 						   iter.level, &pfn, &level);
593bb18842eSBen Gardon 
594bb18842eSBen Gardon 		if (iter.level == level)
595bb18842eSBen Gardon 			break;
596bb18842eSBen Gardon 
597bb18842eSBen Gardon 		/*
598bb18842eSBen Gardon 		 * If there is an SPTE mapping a large page at a higher level
599bb18842eSBen Gardon 		 * than the target, that SPTE must be cleared and replaced
600bb18842eSBen Gardon 		 * with a non-leaf SPTE.
601bb18842eSBen Gardon 		 */
602bb18842eSBen Gardon 		if (is_shadow_present_pte(iter.old_spte) &&
603bb18842eSBen Gardon 		    is_large_pte(iter.old_spte)) {
604bb18842eSBen Gardon 			tdp_mmu_set_spte(vcpu->kvm, &iter, 0);
605bb18842eSBen Gardon 
606bb18842eSBen Gardon 			kvm_flush_remote_tlbs_with_address(vcpu->kvm, iter.gfn,
607bb18842eSBen Gardon 					KVM_PAGES_PER_HPAGE(iter.level));
608bb18842eSBen Gardon 
609bb18842eSBen Gardon 			/*
610bb18842eSBen Gardon 			 * The iter must explicitly re-read the spte here
611bb18842eSBen Gardon 			 * because the new value informs the !present
612bb18842eSBen Gardon 			 * path below.
613bb18842eSBen Gardon 			 */
614bb18842eSBen Gardon 			iter.old_spte = READ_ONCE(*iter.sptep);
615bb18842eSBen Gardon 		}
616bb18842eSBen Gardon 
617bb18842eSBen Gardon 		if (!is_shadow_present_pte(iter.old_spte)) {
61889c0fd49SBen Gardon 			sp = alloc_tdp_mmu_page(vcpu, iter.gfn, iter.level);
61989c0fd49SBen Gardon 			list_add(&sp->link, &vcpu->kvm->arch.tdp_mmu_pages);
62089c0fd49SBen Gardon 			child_pt = sp->spt;
621bb18842eSBen Gardon 			clear_page(child_pt);
622bb18842eSBen Gardon 			new_spte = make_nonleaf_spte(child_pt,
623bb18842eSBen Gardon 						     !shadow_accessed_mask);
624bb18842eSBen Gardon 
625bb18842eSBen Gardon 			trace_kvm_mmu_get_page(sp, true);
62629cf0f50SBen Gardon 			if (huge_page_disallowed && req_level >= iter.level)
62729cf0f50SBen Gardon 				account_huge_nx_page(vcpu->kvm, sp);
62829cf0f50SBen Gardon 
629bb18842eSBen Gardon 			tdp_mmu_set_spte(vcpu->kvm, &iter, new_spte);
630bb18842eSBen Gardon 		}
631bb18842eSBen Gardon 	}
632bb18842eSBen Gardon 
633bb18842eSBen Gardon 	if (WARN_ON(iter.level != level))
634bb18842eSBen Gardon 		return RET_PF_RETRY;
635bb18842eSBen Gardon 
636bb18842eSBen Gardon 	ret = tdp_mmu_map_handle_target_level(vcpu, write, map_writable, &iter,
637bb18842eSBen Gardon 					      pfn, prefault);
638bb18842eSBen Gardon 
639bb18842eSBen Gardon 	return ret;
640bb18842eSBen Gardon }
641063afacdSBen Gardon 
642063afacdSBen Gardon static int kvm_tdp_mmu_handle_hva_range(struct kvm *kvm, unsigned long start,
643063afacdSBen Gardon 		unsigned long end, unsigned long data,
644063afacdSBen Gardon 		int (*handler)(struct kvm *kvm, struct kvm_memory_slot *slot,
645063afacdSBen Gardon 			       struct kvm_mmu_page *root, gfn_t start,
646063afacdSBen Gardon 			       gfn_t end, unsigned long data))
647063afacdSBen Gardon {
648063afacdSBen Gardon 	struct kvm_memslots *slots;
649063afacdSBen Gardon 	struct kvm_memory_slot *memslot;
650063afacdSBen Gardon 	struct kvm_mmu_page *root;
651063afacdSBen Gardon 	int ret = 0;
652063afacdSBen Gardon 	int as_id;
653063afacdSBen Gardon 
654*a889ea54SBen Gardon 	for_each_tdp_mmu_root_yield_safe(kvm, root) {
655063afacdSBen Gardon 		as_id = kvm_mmu_page_as_id(root);
656063afacdSBen Gardon 		slots = __kvm_memslots(kvm, as_id);
657063afacdSBen Gardon 		kvm_for_each_memslot(memslot, slots) {
658063afacdSBen Gardon 			unsigned long hva_start, hva_end;
659063afacdSBen Gardon 			gfn_t gfn_start, gfn_end;
660063afacdSBen Gardon 
661063afacdSBen Gardon 			hva_start = max(start, memslot->userspace_addr);
662063afacdSBen Gardon 			hva_end = min(end, memslot->userspace_addr +
663063afacdSBen Gardon 				      (memslot->npages << PAGE_SHIFT));
664063afacdSBen Gardon 			if (hva_start >= hva_end)
665063afacdSBen Gardon 				continue;
666063afacdSBen Gardon 			/*
667063afacdSBen Gardon 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
668063afacdSBen Gardon 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
669063afacdSBen Gardon 			 */
670063afacdSBen Gardon 			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
671063afacdSBen Gardon 			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
672063afacdSBen Gardon 
673063afacdSBen Gardon 			ret |= handler(kvm, memslot, root, gfn_start,
674063afacdSBen Gardon 				       gfn_end, data);
675063afacdSBen Gardon 		}
676063afacdSBen Gardon 	}
677063afacdSBen Gardon 
678063afacdSBen Gardon 	return ret;
679063afacdSBen Gardon }
680063afacdSBen Gardon 
681063afacdSBen Gardon static int zap_gfn_range_hva_wrapper(struct kvm *kvm,
682063afacdSBen Gardon 				     struct kvm_memory_slot *slot,
683063afacdSBen Gardon 				     struct kvm_mmu_page *root, gfn_t start,
684063afacdSBen Gardon 				     gfn_t end, unsigned long unused)
685063afacdSBen Gardon {
686063afacdSBen Gardon 	return zap_gfn_range(kvm, root, start, end, false);
687063afacdSBen Gardon }
688063afacdSBen Gardon 
689063afacdSBen Gardon int kvm_tdp_mmu_zap_hva_range(struct kvm *kvm, unsigned long start,
690063afacdSBen Gardon 			      unsigned long end)
691063afacdSBen Gardon {
692063afacdSBen Gardon 	return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
693063afacdSBen Gardon 					    zap_gfn_range_hva_wrapper);
694063afacdSBen Gardon }
695f8e14497SBen Gardon 
696f8e14497SBen Gardon /*
697f8e14497SBen Gardon  * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
698f8e14497SBen Gardon  * if any of the GFNs in the range have been accessed.
699f8e14497SBen Gardon  */
700f8e14497SBen Gardon static int age_gfn_range(struct kvm *kvm, struct kvm_memory_slot *slot,
701f8e14497SBen Gardon 			 struct kvm_mmu_page *root, gfn_t start, gfn_t end,
702f8e14497SBen Gardon 			 unsigned long unused)
703f8e14497SBen Gardon {
704f8e14497SBen Gardon 	struct tdp_iter iter;
705f8e14497SBen Gardon 	int young = 0;
706f8e14497SBen Gardon 	u64 new_spte = 0;
707f8e14497SBen Gardon 
708f8e14497SBen Gardon 	tdp_root_for_each_leaf_pte(iter, root, start, end) {
709f8e14497SBen Gardon 		/*
710f8e14497SBen Gardon 		 * If we have a non-accessed entry we don't need to change the
711f8e14497SBen Gardon 		 * pte.
712f8e14497SBen Gardon 		 */
713f8e14497SBen Gardon 		if (!is_accessed_spte(iter.old_spte))
714f8e14497SBen Gardon 			continue;
715f8e14497SBen Gardon 
716f8e14497SBen Gardon 		new_spte = iter.old_spte;
717f8e14497SBen Gardon 
718f8e14497SBen Gardon 		if (spte_ad_enabled(new_spte)) {
719f8e14497SBen Gardon 			clear_bit((ffs(shadow_accessed_mask) - 1),
720f8e14497SBen Gardon 				  (unsigned long *)&new_spte);
721f8e14497SBen Gardon 		} else {
722f8e14497SBen Gardon 			/*
723f8e14497SBen Gardon 			 * Capture the dirty status of the page, so that it doesn't get
724f8e14497SBen Gardon 			 * lost when the SPTE is marked for access tracking.
725f8e14497SBen Gardon 			 */
726f8e14497SBen Gardon 			if (is_writable_pte(new_spte))
727f8e14497SBen Gardon 				kvm_set_pfn_dirty(spte_to_pfn(new_spte));
728f8e14497SBen Gardon 
729f8e14497SBen Gardon 			new_spte = mark_spte_for_access_track(new_spte);
730f8e14497SBen Gardon 		}
731a6a0b05dSBen Gardon 		new_spte &= ~shadow_dirty_mask;
732f8e14497SBen Gardon 
733f8e14497SBen Gardon 		tdp_mmu_set_spte_no_acc_track(kvm, &iter, new_spte);
734f8e14497SBen Gardon 		young = 1;
73533dd3574SBen Gardon 
73633dd3574SBen Gardon 		trace_kvm_age_page(iter.gfn, iter.level, slot, young);
737f8e14497SBen Gardon 	}
738f8e14497SBen Gardon 
739f8e14497SBen Gardon 	return young;
740f8e14497SBen Gardon }
741f8e14497SBen Gardon 
742f8e14497SBen Gardon int kvm_tdp_mmu_age_hva_range(struct kvm *kvm, unsigned long start,
743f8e14497SBen Gardon 			      unsigned long end)
744f8e14497SBen Gardon {
745f8e14497SBen Gardon 	return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
746f8e14497SBen Gardon 					    age_gfn_range);
747f8e14497SBen Gardon }
748f8e14497SBen Gardon 
749f8e14497SBen Gardon static int test_age_gfn(struct kvm *kvm, struct kvm_memory_slot *slot,
750f8e14497SBen Gardon 			struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
751f8e14497SBen Gardon 			unsigned long unused2)
752f8e14497SBen Gardon {
753f8e14497SBen Gardon 	struct tdp_iter iter;
754f8e14497SBen Gardon 
755f8e14497SBen Gardon 	tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1)
756f8e14497SBen Gardon 		if (is_accessed_spte(iter.old_spte))
757f8e14497SBen Gardon 			return 1;
758f8e14497SBen Gardon 
759f8e14497SBen Gardon 	return 0;
760f8e14497SBen Gardon }
761f8e14497SBen Gardon 
762f8e14497SBen Gardon int kvm_tdp_mmu_test_age_hva(struct kvm *kvm, unsigned long hva)
763f8e14497SBen Gardon {
764f8e14497SBen Gardon 	return kvm_tdp_mmu_handle_hva_range(kvm, hva, hva + 1, 0,
765f8e14497SBen Gardon 					    test_age_gfn);
766f8e14497SBen Gardon }
7671d8dd6b3SBen Gardon 
7681d8dd6b3SBen Gardon /*
7691d8dd6b3SBen Gardon  * Handle the changed_pte MMU notifier for the TDP MMU.
7701d8dd6b3SBen Gardon  * data is a pointer to the new pte_t mapping the HVA specified by the MMU
7711d8dd6b3SBen Gardon  * notifier.
7721d8dd6b3SBen Gardon  * Returns non-zero if a flush is needed before releasing the MMU lock.
7731d8dd6b3SBen Gardon  */
7741d8dd6b3SBen Gardon static int set_tdp_spte(struct kvm *kvm, struct kvm_memory_slot *slot,
7751d8dd6b3SBen Gardon 			struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
7761d8dd6b3SBen Gardon 			unsigned long data)
7771d8dd6b3SBen Gardon {
7781d8dd6b3SBen Gardon 	struct tdp_iter iter;
7791d8dd6b3SBen Gardon 	pte_t *ptep = (pte_t *)data;
7801d8dd6b3SBen Gardon 	kvm_pfn_t new_pfn;
7811d8dd6b3SBen Gardon 	u64 new_spte;
7821d8dd6b3SBen Gardon 	int need_flush = 0;
7831d8dd6b3SBen Gardon 
7841d8dd6b3SBen Gardon 	WARN_ON(pte_huge(*ptep));
7851d8dd6b3SBen Gardon 
7861d8dd6b3SBen Gardon 	new_pfn = pte_pfn(*ptep);
7871d8dd6b3SBen Gardon 
7881d8dd6b3SBen Gardon 	tdp_root_for_each_pte(iter, root, gfn, gfn + 1) {
7891d8dd6b3SBen Gardon 		if (iter.level != PG_LEVEL_4K)
7901d8dd6b3SBen Gardon 			continue;
7911d8dd6b3SBen Gardon 
7921d8dd6b3SBen Gardon 		if (!is_shadow_present_pte(iter.old_spte))
7931d8dd6b3SBen Gardon 			break;
7941d8dd6b3SBen Gardon 
7951d8dd6b3SBen Gardon 		tdp_mmu_set_spte(kvm, &iter, 0);
7961d8dd6b3SBen Gardon 
7971d8dd6b3SBen Gardon 		kvm_flush_remote_tlbs_with_address(kvm, iter.gfn, 1);
7981d8dd6b3SBen Gardon 
7991d8dd6b3SBen Gardon 		if (!pte_write(*ptep)) {
8001d8dd6b3SBen Gardon 			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
8011d8dd6b3SBen Gardon 					iter.old_spte, new_pfn);
8021d8dd6b3SBen Gardon 
8031d8dd6b3SBen Gardon 			tdp_mmu_set_spte(kvm, &iter, new_spte);
8041d8dd6b3SBen Gardon 		}
8051d8dd6b3SBen Gardon 
8061d8dd6b3SBen Gardon 		need_flush = 1;
8071d8dd6b3SBen Gardon 	}
8081d8dd6b3SBen Gardon 
8091d8dd6b3SBen Gardon 	if (need_flush)
8101d8dd6b3SBen Gardon 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
8111d8dd6b3SBen Gardon 
8121d8dd6b3SBen Gardon 	return 0;
8131d8dd6b3SBen Gardon }
8141d8dd6b3SBen Gardon 
8151d8dd6b3SBen Gardon int kvm_tdp_mmu_set_spte_hva(struct kvm *kvm, unsigned long address,
8161d8dd6b3SBen Gardon 			     pte_t *host_ptep)
8171d8dd6b3SBen Gardon {
8181d8dd6b3SBen Gardon 	return kvm_tdp_mmu_handle_hva_range(kvm, address, address + 1,
8191d8dd6b3SBen Gardon 					    (unsigned long)host_ptep,
8201d8dd6b3SBen Gardon 					    set_tdp_spte);
8211d8dd6b3SBen Gardon }
8221d8dd6b3SBen Gardon 
823a6a0b05dSBen Gardon /*
824a6a0b05dSBen Gardon  * Remove write access from all the SPTEs mapping GFNs [start, end). If
825a6a0b05dSBen Gardon  * skip_4k is set, SPTEs that map 4k pages, will not be write-protected.
826a6a0b05dSBen Gardon  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
827a6a0b05dSBen Gardon  */
828a6a0b05dSBen Gardon static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
829a6a0b05dSBen Gardon 			     gfn_t start, gfn_t end, int min_level)
830a6a0b05dSBen Gardon {
831a6a0b05dSBen Gardon 	struct tdp_iter iter;
832a6a0b05dSBen Gardon 	u64 new_spte;
833a6a0b05dSBen Gardon 	bool spte_set = false;
834a6a0b05dSBen Gardon 
835a6a0b05dSBen Gardon 	BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
836a6a0b05dSBen Gardon 
837a6a0b05dSBen Gardon 	for_each_tdp_pte_min_level(iter, root->spt, root->role.level,
838a6a0b05dSBen Gardon 				   min_level, start, end) {
839a6a0b05dSBen Gardon 		if (!is_shadow_present_pte(iter.old_spte) ||
840a6a0b05dSBen Gardon 		    !is_last_spte(iter.old_spte, iter.level))
841a6a0b05dSBen Gardon 			continue;
842a6a0b05dSBen Gardon 
843a6a0b05dSBen Gardon 		new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
844a6a0b05dSBen Gardon 
845a6a0b05dSBen Gardon 		tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
846a6a0b05dSBen Gardon 		spte_set = true;
847a6a0b05dSBen Gardon 
848a6a0b05dSBen Gardon 		tdp_mmu_iter_cond_resched(kvm, &iter);
849a6a0b05dSBen Gardon 	}
850a6a0b05dSBen Gardon 	return spte_set;
851a6a0b05dSBen Gardon }
852a6a0b05dSBen Gardon 
853a6a0b05dSBen Gardon /*
854a6a0b05dSBen Gardon  * Remove write access from all the SPTEs mapping GFNs in the memslot. Will
855a6a0b05dSBen Gardon  * only affect leaf SPTEs down to min_level.
856a6a0b05dSBen Gardon  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
857a6a0b05dSBen Gardon  */
858a6a0b05dSBen Gardon bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, struct kvm_memory_slot *slot,
859a6a0b05dSBen Gardon 			     int min_level)
860a6a0b05dSBen Gardon {
861a6a0b05dSBen Gardon 	struct kvm_mmu_page *root;
862a6a0b05dSBen Gardon 	int root_as_id;
863a6a0b05dSBen Gardon 	bool spte_set = false;
864a6a0b05dSBen Gardon 
865*a889ea54SBen Gardon 	for_each_tdp_mmu_root_yield_safe(kvm, root) {
866a6a0b05dSBen Gardon 		root_as_id = kvm_mmu_page_as_id(root);
867a6a0b05dSBen Gardon 		if (root_as_id != slot->as_id)
868a6a0b05dSBen Gardon 			continue;
869a6a0b05dSBen Gardon 
870a6a0b05dSBen Gardon 		spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
871a6a0b05dSBen Gardon 			     slot->base_gfn + slot->npages, min_level);
872a6a0b05dSBen Gardon 	}
873a6a0b05dSBen Gardon 
874a6a0b05dSBen Gardon 	return spte_set;
875a6a0b05dSBen Gardon }
876a6a0b05dSBen Gardon 
877a6a0b05dSBen Gardon /*
878a6a0b05dSBen Gardon  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
879a6a0b05dSBen Gardon  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
880a6a0b05dSBen Gardon  * If AD bits are not enabled, this will require clearing the writable bit on
881a6a0b05dSBen Gardon  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
882a6a0b05dSBen Gardon  * be flushed.
883a6a0b05dSBen Gardon  */
884a6a0b05dSBen Gardon static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
885a6a0b05dSBen Gardon 			   gfn_t start, gfn_t end)
886a6a0b05dSBen Gardon {
887a6a0b05dSBen Gardon 	struct tdp_iter iter;
888a6a0b05dSBen Gardon 	u64 new_spte;
889a6a0b05dSBen Gardon 	bool spte_set = false;
890a6a0b05dSBen Gardon 
891a6a0b05dSBen Gardon 	tdp_root_for_each_leaf_pte(iter, root, start, end) {
892a6a0b05dSBen Gardon 		if (spte_ad_need_write_protect(iter.old_spte)) {
893a6a0b05dSBen Gardon 			if (is_writable_pte(iter.old_spte))
894a6a0b05dSBen Gardon 				new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
895a6a0b05dSBen Gardon 			else
896a6a0b05dSBen Gardon 				continue;
897a6a0b05dSBen Gardon 		} else {
898a6a0b05dSBen Gardon 			if (iter.old_spte & shadow_dirty_mask)
899a6a0b05dSBen Gardon 				new_spte = iter.old_spte & ~shadow_dirty_mask;
900a6a0b05dSBen Gardon 			else
901a6a0b05dSBen Gardon 				continue;
902a6a0b05dSBen Gardon 		}
903a6a0b05dSBen Gardon 
904a6a0b05dSBen Gardon 		tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
905a6a0b05dSBen Gardon 		spte_set = true;
906a6a0b05dSBen Gardon 
907a6a0b05dSBen Gardon 		tdp_mmu_iter_cond_resched(kvm, &iter);
908a6a0b05dSBen Gardon 	}
909a6a0b05dSBen Gardon 	return spte_set;
910a6a0b05dSBen Gardon }
911a6a0b05dSBen Gardon 
912a6a0b05dSBen Gardon /*
913a6a0b05dSBen Gardon  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
914a6a0b05dSBen Gardon  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
915a6a0b05dSBen Gardon  * If AD bits are not enabled, this will require clearing the writable bit on
916a6a0b05dSBen Gardon  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
917a6a0b05dSBen Gardon  * be flushed.
918a6a0b05dSBen Gardon  */
919a6a0b05dSBen Gardon bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, struct kvm_memory_slot *slot)
920a6a0b05dSBen Gardon {
921a6a0b05dSBen Gardon 	struct kvm_mmu_page *root;
922a6a0b05dSBen Gardon 	int root_as_id;
923a6a0b05dSBen Gardon 	bool spte_set = false;
924a6a0b05dSBen Gardon 
925*a889ea54SBen Gardon 	for_each_tdp_mmu_root_yield_safe(kvm, root) {
926a6a0b05dSBen Gardon 		root_as_id = kvm_mmu_page_as_id(root);
927a6a0b05dSBen Gardon 		if (root_as_id != slot->as_id)
928a6a0b05dSBen Gardon 			continue;
929a6a0b05dSBen Gardon 
930a6a0b05dSBen Gardon 		spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
931a6a0b05dSBen Gardon 				slot->base_gfn + slot->npages);
932a6a0b05dSBen Gardon 	}
933a6a0b05dSBen Gardon 
934a6a0b05dSBen Gardon 	return spte_set;
935a6a0b05dSBen Gardon }
936a6a0b05dSBen Gardon 
937a6a0b05dSBen Gardon /*
938a6a0b05dSBen Gardon  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
939a6a0b05dSBen Gardon  * set in mask, starting at gfn. The given memslot is expected to contain all
940a6a0b05dSBen Gardon  * the GFNs represented by set bits in the mask. If AD bits are enabled,
941a6a0b05dSBen Gardon  * clearing the dirty status will involve clearing the dirty bit on each SPTE
942a6a0b05dSBen Gardon  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
943a6a0b05dSBen Gardon  */
944a6a0b05dSBen Gardon static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
945a6a0b05dSBen Gardon 				  gfn_t gfn, unsigned long mask, bool wrprot)
946a6a0b05dSBen Gardon {
947a6a0b05dSBen Gardon 	struct tdp_iter iter;
948a6a0b05dSBen Gardon 	u64 new_spte;
949a6a0b05dSBen Gardon 
950a6a0b05dSBen Gardon 	tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
951a6a0b05dSBen Gardon 				    gfn + BITS_PER_LONG) {
952a6a0b05dSBen Gardon 		if (!mask)
953a6a0b05dSBen Gardon 			break;
954a6a0b05dSBen Gardon 
955a6a0b05dSBen Gardon 		if (iter.level > PG_LEVEL_4K ||
956a6a0b05dSBen Gardon 		    !(mask & (1UL << (iter.gfn - gfn))))
957a6a0b05dSBen Gardon 			continue;
958a6a0b05dSBen Gardon 
959a6a0b05dSBen Gardon 		if (wrprot || spte_ad_need_write_protect(iter.old_spte)) {
960a6a0b05dSBen Gardon 			if (is_writable_pte(iter.old_spte))
961a6a0b05dSBen Gardon 				new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
962a6a0b05dSBen Gardon 			else
963a6a0b05dSBen Gardon 				continue;
964a6a0b05dSBen Gardon 		} else {
965a6a0b05dSBen Gardon 			if (iter.old_spte & shadow_dirty_mask)
966a6a0b05dSBen Gardon 				new_spte = iter.old_spte & ~shadow_dirty_mask;
967a6a0b05dSBen Gardon 			else
968a6a0b05dSBen Gardon 				continue;
969a6a0b05dSBen Gardon 		}
970a6a0b05dSBen Gardon 
971a6a0b05dSBen Gardon 		tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
972a6a0b05dSBen Gardon 
973a6a0b05dSBen Gardon 		mask &= ~(1UL << (iter.gfn - gfn));
974a6a0b05dSBen Gardon 	}
975a6a0b05dSBen Gardon }
976a6a0b05dSBen Gardon 
977a6a0b05dSBen Gardon /*
978a6a0b05dSBen Gardon  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
979a6a0b05dSBen Gardon  * set in mask, starting at gfn. The given memslot is expected to contain all
980a6a0b05dSBen Gardon  * the GFNs represented by set bits in the mask. If AD bits are enabled,
981a6a0b05dSBen Gardon  * clearing the dirty status will involve clearing the dirty bit on each SPTE
982a6a0b05dSBen Gardon  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
983a6a0b05dSBen Gardon  */
984a6a0b05dSBen Gardon void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
985a6a0b05dSBen Gardon 				       struct kvm_memory_slot *slot,
986a6a0b05dSBen Gardon 				       gfn_t gfn, unsigned long mask,
987a6a0b05dSBen Gardon 				       bool wrprot)
988a6a0b05dSBen Gardon {
989a6a0b05dSBen Gardon 	struct kvm_mmu_page *root;
990a6a0b05dSBen Gardon 	int root_as_id;
991a6a0b05dSBen Gardon 
992a6a0b05dSBen Gardon 	lockdep_assert_held(&kvm->mmu_lock);
993a6a0b05dSBen Gardon 	for_each_tdp_mmu_root(kvm, root) {
994a6a0b05dSBen Gardon 		root_as_id = kvm_mmu_page_as_id(root);
995a6a0b05dSBen Gardon 		if (root_as_id != slot->as_id)
996a6a0b05dSBen Gardon 			continue;
997a6a0b05dSBen Gardon 
998a6a0b05dSBen Gardon 		clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
999a6a0b05dSBen Gardon 	}
1000a6a0b05dSBen Gardon }
1001a6a0b05dSBen Gardon 
1002a6a0b05dSBen Gardon /*
1003a6a0b05dSBen Gardon  * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
1004a6a0b05dSBen Gardon  * only used for PML, and so will involve setting the dirty bit on each SPTE.
1005a6a0b05dSBen Gardon  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1006a6a0b05dSBen Gardon  */
1007a6a0b05dSBen Gardon static bool set_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1008a6a0b05dSBen Gardon 				gfn_t start, gfn_t end)
1009a6a0b05dSBen Gardon {
1010a6a0b05dSBen Gardon 	struct tdp_iter iter;
1011a6a0b05dSBen Gardon 	u64 new_spte;
1012a6a0b05dSBen Gardon 	bool spte_set = false;
1013a6a0b05dSBen Gardon 
1014a6a0b05dSBen Gardon 	tdp_root_for_each_pte(iter, root, start, end) {
1015a6a0b05dSBen Gardon 		if (!is_shadow_present_pte(iter.old_spte))
1016a6a0b05dSBen Gardon 			continue;
1017a6a0b05dSBen Gardon 
1018a6a0b05dSBen Gardon 		new_spte = iter.old_spte | shadow_dirty_mask;
1019a6a0b05dSBen Gardon 
1020a6a0b05dSBen Gardon 		tdp_mmu_set_spte(kvm, &iter, new_spte);
1021a6a0b05dSBen Gardon 		spte_set = true;
1022a6a0b05dSBen Gardon 
1023a6a0b05dSBen Gardon 		tdp_mmu_iter_cond_resched(kvm, &iter);
1024a6a0b05dSBen Gardon 	}
1025a6a0b05dSBen Gardon 
1026a6a0b05dSBen Gardon 	return spte_set;
1027a6a0b05dSBen Gardon }
1028a6a0b05dSBen Gardon 
1029a6a0b05dSBen Gardon /*
1030a6a0b05dSBen Gardon  * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
1031a6a0b05dSBen Gardon  * only used for PML, and so will involve setting the dirty bit on each SPTE.
1032a6a0b05dSBen Gardon  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1033a6a0b05dSBen Gardon  */
1034a6a0b05dSBen Gardon bool kvm_tdp_mmu_slot_set_dirty(struct kvm *kvm, struct kvm_memory_slot *slot)
1035a6a0b05dSBen Gardon {
1036a6a0b05dSBen Gardon 	struct kvm_mmu_page *root;
1037a6a0b05dSBen Gardon 	int root_as_id;
1038a6a0b05dSBen Gardon 	bool spte_set = false;
1039a6a0b05dSBen Gardon 
1040*a889ea54SBen Gardon 	for_each_tdp_mmu_root_yield_safe(kvm, root) {
1041a6a0b05dSBen Gardon 		root_as_id = kvm_mmu_page_as_id(root);
1042a6a0b05dSBen Gardon 		if (root_as_id != slot->as_id)
1043a6a0b05dSBen Gardon 			continue;
1044a6a0b05dSBen Gardon 
1045a6a0b05dSBen Gardon 		spte_set |= set_dirty_gfn_range(kvm, root, slot->base_gfn,
1046a6a0b05dSBen Gardon 				slot->base_gfn + slot->npages);
1047a6a0b05dSBen Gardon 	}
1048a6a0b05dSBen Gardon 	return spte_set;
1049a6a0b05dSBen Gardon }
1050a6a0b05dSBen Gardon 
105114881998SBen Gardon /*
105214881998SBen Gardon  * Clear non-leaf entries (and free associated page tables) which could
105314881998SBen Gardon  * be replaced by large mappings, for GFNs within the slot.
105414881998SBen Gardon  */
105514881998SBen Gardon static void zap_collapsible_spte_range(struct kvm *kvm,
105614881998SBen Gardon 				       struct kvm_mmu_page *root,
105714881998SBen Gardon 				       gfn_t start, gfn_t end)
105814881998SBen Gardon {
105914881998SBen Gardon 	struct tdp_iter iter;
106014881998SBen Gardon 	kvm_pfn_t pfn;
106114881998SBen Gardon 	bool spte_set = false;
106214881998SBen Gardon 
106314881998SBen Gardon 	tdp_root_for_each_pte(iter, root, start, end) {
106414881998SBen Gardon 		if (!is_shadow_present_pte(iter.old_spte) ||
106514881998SBen Gardon 		    is_last_spte(iter.old_spte, iter.level))
106614881998SBen Gardon 			continue;
106714881998SBen Gardon 
106814881998SBen Gardon 		pfn = spte_to_pfn(iter.old_spte);
106914881998SBen Gardon 		if (kvm_is_reserved_pfn(pfn) ||
107014881998SBen Gardon 		    !PageTransCompoundMap(pfn_to_page(pfn)))
107114881998SBen Gardon 			continue;
107214881998SBen Gardon 
107314881998SBen Gardon 		tdp_mmu_set_spte(kvm, &iter, 0);
107414881998SBen Gardon 
107514881998SBen Gardon 		spte_set = tdp_mmu_iter_flush_cond_resched(kvm, &iter);
107614881998SBen Gardon 	}
107714881998SBen Gardon 
107814881998SBen Gardon 	if (spte_set)
107914881998SBen Gardon 		kvm_flush_remote_tlbs(kvm);
108014881998SBen Gardon }
108114881998SBen Gardon 
108214881998SBen Gardon /*
108314881998SBen Gardon  * Clear non-leaf entries (and free associated page tables) which could
108414881998SBen Gardon  * be replaced by large mappings, for GFNs within the slot.
108514881998SBen Gardon  */
108614881998SBen Gardon void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm,
108714881998SBen Gardon 				       const struct kvm_memory_slot *slot)
108814881998SBen Gardon {
108914881998SBen Gardon 	struct kvm_mmu_page *root;
109014881998SBen Gardon 	int root_as_id;
109114881998SBen Gardon 
1092*a889ea54SBen Gardon 	for_each_tdp_mmu_root_yield_safe(kvm, root) {
109314881998SBen Gardon 		root_as_id = kvm_mmu_page_as_id(root);
109414881998SBen Gardon 		if (root_as_id != slot->as_id)
109514881998SBen Gardon 			continue;
109614881998SBen Gardon 
109714881998SBen Gardon 		zap_collapsible_spte_range(kvm, root, slot->base_gfn,
109814881998SBen Gardon 					   slot->base_gfn + slot->npages);
109914881998SBen Gardon 	}
110014881998SBen Gardon }
110146044f72SBen Gardon 
110246044f72SBen Gardon /*
110346044f72SBen Gardon  * Removes write access on the last level SPTE mapping this GFN and unsets the
110446044f72SBen Gardon  * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
110546044f72SBen Gardon  * Returns true if an SPTE was set and a TLB flush is needed.
110646044f72SBen Gardon  */
110746044f72SBen Gardon static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
110846044f72SBen Gardon 			      gfn_t gfn)
110946044f72SBen Gardon {
111046044f72SBen Gardon 	struct tdp_iter iter;
111146044f72SBen Gardon 	u64 new_spte;
111246044f72SBen Gardon 	bool spte_set = false;
111346044f72SBen Gardon 
111446044f72SBen Gardon 	tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1) {
111546044f72SBen Gardon 		if (!is_writable_pte(iter.old_spte))
111646044f72SBen Gardon 			break;
111746044f72SBen Gardon 
111846044f72SBen Gardon 		new_spte = iter.old_spte &
111946044f72SBen Gardon 			~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
112046044f72SBen Gardon 
112146044f72SBen Gardon 		tdp_mmu_set_spte(kvm, &iter, new_spte);
112246044f72SBen Gardon 		spte_set = true;
112346044f72SBen Gardon 	}
112446044f72SBen Gardon 
112546044f72SBen Gardon 	return spte_set;
112646044f72SBen Gardon }
112746044f72SBen Gardon 
112846044f72SBen Gardon /*
112946044f72SBen Gardon  * Removes write access on the last level SPTE mapping this GFN and unsets the
113046044f72SBen Gardon  * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
113146044f72SBen Gardon  * Returns true if an SPTE was set and a TLB flush is needed.
113246044f72SBen Gardon  */
113346044f72SBen Gardon bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
113446044f72SBen Gardon 				   struct kvm_memory_slot *slot, gfn_t gfn)
113546044f72SBen Gardon {
113646044f72SBen Gardon 	struct kvm_mmu_page *root;
113746044f72SBen Gardon 	int root_as_id;
113846044f72SBen Gardon 	bool spte_set = false;
113946044f72SBen Gardon 
114046044f72SBen Gardon 	lockdep_assert_held(&kvm->mmu_lock);
114146044f72SBen Gardon 	for_each_tdp_mmu_root(kvm, root) {
114246044f72SBen Gardon 		root_as_id = kvm_mmu_page_as_id(root);
114346044f72SBen Gardon 		if (root_as_id != slot->as_id)
114446044f72SBen Gardon 			continue;
114546044f72SBen Gardon 
114646044f72SBen Gardon 		spte_set |= write_protect_gfn(kvm, root, gfn);
114746044f72SBen Gardon 	}
114846044f72SBen Gardon 	return spte_set;
114946044f72SBen Gardon }
115046044f72SBen Gardon 
115195fb5b02SBen Gardon /*
115295fb5b02SBen Gardon  * Return the level of the lowest level SPTE added to sptes.
115395fb5b02SBen Gardon  * That SPTE may be non-present.
115495fb5b02SBen Gardon  */
115539b4d43eSSean Christopherson int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
115639b4d43eSSean Christopherson 			 int *root_level)
115795fb5b02SBen Gardon {
115895fb5b02SBen Gardon 	struct tdp_iter iter;
115995fb5b02SBen Gardon 	struct kvm_mmu *mmu = vcpu->arch.mmu;
116095fb5b02SBen Gardon 	gfn_t gfn = addr >> PAGE_SHIFT;
11612aa07893SSean Christopherson 	int leaf = -1;
116295fb5b02SBen Gardon 
116339b4d43eSSean Christopherson 	*root_level = vcpu->arch.mmu->shadow_root_level;
116495fb5b02SBen Gardon 
116595fb5b02SBen Gardon 	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
116695fb5b02SBen Gardon 		leaf = iter.level;
1167dde81f94SSean Christopherson 		sptes[leaf] = iter.old_spte;
116895fb5b02SBen Gardon 	}
116995fb5b02SBen Gardon 
117095fb5b02SBen Gardon 	return leaf;
117195fb5b02SBen Gardon }
1172