xref: /openbmc/linux/arch/x86/kvm/mmu/tdp_mmu.c (revision 531810ca)
1fe5db27dSBen Gardon // SPDX-License-Identifier: GPL-2.0
2fe5db27dSBen Gardon 
302c00b3aSBen Gardon #include "mmu.h"
402c00b3aSBen Gardon #include "mmu_internal.h"
5bb18842eSBen Gardon #include "mmutrace.h"
62f2fad08SBen Gardon #include "tdp_iter.h"
7fe5db27dSBen Gardon #include "tdp_mmu.h"
802c00b3aSBen Gardon #include "spte.h"
9fe5db27dSBen Gardon 
1033dd3574SBen Gardon #include <trace/events/kvm.h>
1133dd3574SBen Gardon 
1295fb5b02SBen Gardon #ifdef CONFIG_X86_64
13fe5db27dSBen Gardon static bool __read_mostly tdp_mmu_enabled = false;
1495fb5b02SBen Gardon module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644);
1595fb5b02SBen Gardon #endif
16fe5db27dSBen Gardon 
17fe5db27dSBen Gardon static bool is_tdp_mmu_enabled(void)
18fe5db27dSBen Gardon {
19fe5db27dSBen Gardon #ifdef CONFIG_X86_64
20fe5db27dSBen Gardon 	return tdp_enabled && READ_ONCE(tdp_mmu_enabled);
21fe5db27dSBen Gardon #else
22fe5db27dSBen Gardon 	return false;
23fe5db27dSBen Gardon #endif /* CONFIG_X86_64 */
24fe5db27dSBen Gardon }
25fe5db27dSBen Gardon 
26fe5db27dSBen Gardon /* Initializes the TDP MMU for the VM, if enabled. */
27fe5db27dSBen Gardon void kvm_mmu_init_tdp_mmu(struct kvm *kvm)
28fe5db27dSBen Gardon {
29fe5db27dSBen Gardon 	if (!is_tdp_mmu_enabled())
30fe5db27dSBen Gardon 		return;
31fe5db27dSBen Gardon 
32fe5db27dSBen Gardon 	/* This should not be changed for the lifetime of the VM. */
33fe5db27dSBen Gardon 	kvm->arch.tdp_mmu_enabled = true;
3402c00b3aSBen Gardon 
3502c00b3aSBen Gardon 	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
3689c0fd49SBen Gardon 	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages);
37fe5db27dSBen Gardon }
38fe5db27dSBen Gardon 
39fe5db27dSBen Gardon void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
40fe5db27dSBen Gardon {
41fe5db27dSBen Gardon 	if (!kvm->arch.tdp_mmu_enabled)
42fe5db27dSBen Gardon 		return;
4302c00b3aSBen Gardon 
4402c00b3aSBen Gardon 	WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
457cca2d0bSBen Gardon 
467cca2d0bSBen Gardon 	/*
477cca2d0bSBen Gardon 	 * Ensure that all the outstanding RCU callbacks to free shadow pages
487cca2d0bSBen Gardon 	 * can run before the VM is torn down.
497cca2d0bSBen Gardon 	 */
507cca2d0bSBen Gardon 	rcu_barrier();
5102c00b3aSBen Gardon }
5202c00b3aSBen Gardon 
53a889ea54SBen Gardon static void tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root)
54a889ea54SBen Gardon {
55a889ea54SBen Gardon 	if (kvm_mmu_put_root(kvm, root))
56a889ea54SBen Gardon 		kvm_tdp_mmu_free_root(kvm, root);
57a889ea54SBen Gardon }
58a889ea54SBen Gardon 
59a889ea54SBen Gardon static inline bool tdp_mmu_next_root_valid(struct kvm *kvm,
60a889ea54SBen Gardon 					   struct kvm_mmu_page *root)
61a889ea54SBen Gardon {
62*531810caSBen Gardon 	lockdep_assert_held_write(&kvm->mmu_lock);
63a889ea54SBen Gardon 
64a889ea54SBen Gardon 	if (list_entry_is_head(root, &kvm->arch.tdp_mmu_roots, link))
65a889ea54SBen Gardon 		return false;
66a889ea54SBen Gardon 
67a889ea54SBen Gardon 	kvm_mmu_get_root(kvm, root);
68a889ea54SBen Gardon 	return true;
69a889ea54SBen Gardon 
70a889ea54SBen Gardon }
71a889ea54SBen Gardon 
72a889ea54SBen Gardon static inline struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm,
73a889ea54SBen Gardon 						     struct kvm_mmu_page *root)
74a889ea54SBen Gardon {
75a889ea54SBen Gardon 	struct kvm_mmu_page *next_root;
76a889ea54SBen Gardon 
77a889ea54SBen Gardon 	next_root = list_next_entry(root, link);
78a889ea54SBen Gardon 	tdp_mmu_put_root(kvm, root);
79a889ea54SBen Gardon 	return next_root;
80a889ea54SBen Gardon }
81a889ea54SBen Gardon 
82a889ea54SBen Gardon /*
83a889ea54SBen Gardon  * Note: this iterator gets and puts references to the roots it iterates over.
84a889ea54SBen Gardon  * This makes it safe to release the MMU lock and yield within the loop, but
85a889ea54SBen Gardon  * if exiting the loop early, the caller must drop the reference to the most
86a889ea54SBen Gardon  * recent root. (Unless keeping a live reference is desirable.)
87a889ea54SBen Gardon  */
88a889ea54SBen Gardon #define for_each_tdp_mmu_root_yield_safe(_kvm, _root)				\
89a889ea54SBen Gardon 	for (_root = list_first_entry(&_kvm->arch.tdp_mmu_roots,	\
90a889ea54SBen Gardon 				      typeof(*_root), link);		\
91a889ea54SBen Gardon 	     tdp_mmu_next_root_valid(_kvm, _root);			\
92a889ea54SBen Gardon 	     _root = tdp_mmu_next_root(_kvm, _root))
93a889ea54SBen Gardon 
9402c00b3aSBen Gardon #define for_each_tdp_mmu_root(_kvm, _root)				\
9502c00b3aSBen Gardon 	list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link)
9602c00b3aSBen Gardon 
9702c00b3aSBen Gardon bool is_tdp_mmu_root(struct kvm *kvm, hpa_t hpa)
9802c00b3aSBen Gardon {
9902c00b3aSBen Gardon 	struct kvm_mmu_page *sp;
10002c00b3aSBen Gardon 
101c887c9b9SPaolo Bonzini 	if (!kvm->arch.tdp_mmu_enabled)
102c887c9b9SPaolo Bonzini 		return false;
103c887c9b9SPaolo Bonzini 	if (WARN_ON(!VALID_PAGE(hpa)))
104c887c9b9SPaolo Bonzini 		return false;
105c887c9b9SPaolo Bonzini 
10602c00b3aSBen Gardon 	sp = to_shadow_page(hpa);
107c887c9b9SPaolo Bonzini 	if (WARN_ON(!sp))
108c887c9b9SPaolo Bonzini 		return false;
10902c00b3aSBen Gardon 
11002c00b3aSBen Gardon 	return sp->tdp_mmu_page && sp->root_count;
11102c00b3aSBen Gardon }
11202c00b3aSBen Gardon 
113faaf05b0SBen Gardon static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
114063afacdSBen Gardon 			  gfn_t start, gfn_t end, bool can_yield);
115faaf05b0SBen Gardon 
11602c00b3aSBen Gardon void kvm_tdp_mmu_free_root(struct kvm *kvm, struct kvm_mmu_page *root)
11702c00b3aSBen Gardon {
118339f5a7fSRick Edgecombe 	gfn_t max_gfn = 1ULL << (shadow_phys_bits - PAGE_SHIFT);
119faaf05b0SBen Gardon 
120*531810caSBen Gardon 	lockdep_assert_held_write(&kvm->mmu_lock);
12102c00b3aSBen Gardon 
12202c00b3aSBen Gardon 	WARN_ON(root->root_count);
12302c00b3aSBen Gardon 	WARN_ON(!root->tdp_mmu_page);
12402c00b3aSBen Gardon 
12502c00b3aSBen Gardon 	list_del(&root->link);
12602c00b3aSBen Gardon 
127063afacdSBen Gardon 	zap_gfn_range(kvm, root, 0, max_gfn, false);
128faaf05b0SBen Gardon 
12902c00b3aSBen Gardon 	free_page((unsigned long)root->spt);
13002c00b3aSBen Gardon 	kmem_cache_free(mmu_page_header_cache, root);
13102c00b3aSBen Gardon }
13202c00b3aSBen Gardon 
13302c00b3aSBen Gardon static union kvm_mmu_page_role page_role_for_level(struct kvm_vcpu *vcpu,
13402c00b3aSBen Gardon 						   int level)
13502c00b3aSBen Gardon {
13602c00b3aSBen Gardon 	union kvm_mmu_page_role role;
13702c00b3aSBen Gardon 
13802c00b3aSBen Gardon 	role = vcpu->arch.mmu->mmu_role.base;
13902c00b3aSBen Gardon 	role.level = level;
14002c00b3aSBen Gardon 	role.direct = true;
14102c00b3aSBen Gardon 	role.gpte_is_8_bytes = true;
14202c00b3aSBen Gardon 	role.access = ACC_ALL;
14302c00b3aSBen Gardon 
14402c00b3aSBen Gardon 	return role;
14502c00b3aSBen Gardon }
14602c00b3aSBen Gardon 
14702c00b3aSBen Gardon static struct kvm_mmu_page *alloc_tdp_mmu_page(struct kvm_vcpu *vcpu, gfn_t gfn,
14802c00b3aSBen Gardon 					       int level)
14902c00b3aSBen Gardon {
15002c00b3aSBen Gardon 	struct kvm_mmu_page *sp;
15102c00b3aSBen Gardon 
15202c00b3aSBen Gardon 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
15302c00b3aSBen Gardon 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
15402c00b3aSBen Gardon 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
15502c00b3aSBen Gardon 
15602c00b3aSBen Gardon 	sp->role.word = page_role_for_level(vcpu, level).word;
15702c00b3aSBen Gardon 	sp->gfn = gfn;
15802c00b3aSBen Gardon 	sp->tdp_mmu_page = true;
15902c00b3aSBen Gardon 
16033dd3574SBen Gardon 	trace_kvm_mmu_get_page(sp, true);
16133dd3574SBen Gardon 
16202c00b3aSBen Gardon 	return sp;
16302c00b3aSBen Gardon }
16402c00b3aSBen Gardon 
16502c00b3aSBen Gardon static struct kvm_mmu_page *get_tdp_mmu_vcpu_root(struct kvm_vcpu *vcpu)
16602c00b3aSBen Gardon {
16702c00b3aSBen Gardon 	union kvm_mmu_page_role role;
16802c00b3aSBen Gardon 	struct kvm *kvm = vcpu->kvm;
16902c00b3aSBen Gardon 	struct kvm_mmu_page *root;
17002c00b3aSBen Gardon 
17102c00b3aSBen Gardon 	role = page_role_for_level(vcpu, vcpu->arch.mmu->shadow_root_level);
17202c00b3aSBen Gardon 
173*531810caSBen Gardon 	write_lock(&kvm->mmu_lock);
17402c00b3aSBen Gardon 
17502c00b3aSBen Gardon 	/* Check for an existing root before allocating a new one. */
17602c00b3aSBen Gardon 	for_each_tdp_mmu_root(kvm, root) {
17702c00b3aSBen Gardon 		if (root->role.word == role.word) {
17802c00b3aSBen Gardon 			kvm_mmu_get_root(kvm, root);
179*531810caSBen Gardon 			write_unlock(&kvm->mmu_lock);
18002c00b3aSBen Gardon 			return root;
18102c00b3aSBen Gardon 		}
18202c00b3aSBen Gardon 	}
18302c00b3aSBen Gardon 
18402c00b3aSBen Gardon 	root = alloc_tdp_mmu_page(vcpu, 0, vcpu->arch.mmu->shadow_root_level);
18502c00b3aSBen Gardon 	root->root_count = 1;
18602c00b3aSBen Gardon 
18702c00b3aSBen Gardon 	list_add(&root->link, &kvm->arch.tdp_mmu_roots);
18802c00b3aSBen Gardon 
189*531810caSBen Gardon 	write_unlock(&kvm->mmu_lock);
19002c00b3aSBen Gardon 
19102c00b3aSBen Gardon 	return root;
19202c00b3aSBen Gardon }
19302c00b3aSBen Gardon 
19402c00b3aSBen Gardon hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu)
19502c00b3aSBen Gardon {
19602c00b3aSBen Gardon 	struct kvm_mmu_page *root;
19702c00b3aSBen Gardon 
19802c00b3aSBen Gardon 	root = get_tdp_mmu_vcpu_root(vcpu);
19902c00b3aSBen Gardon 	if (!root)
20002c00b3aSBen Gardon 		return INVALID_PAGE;
20102c00b3aSBen Gardon 
20202c00b3aSBen Gardon 	return __pa(root->spt);
203fe5db27dSBen Gardon }
2042f2fad08SBen Gardon 
2057cca2d0bSBen Gardon static void tdp_mmu_free_sp(struct kvm_mmu_page *sp)
2067cca2d0bSBen Gardon {
2077cca2d0bSBen Gardon 	free_page((unsigned long)sp->spt);
2087cca2d0bSBen Gardon 	kmem_cache_free(mmu_page_header_cache, sp);
2097cca2d0bSBen Gardon }
2107cca2d0bSBen Gardon 
2117cca2d0bSBen Gardon /*
2127cca2d0bSBen Gardon  * This is called through call_rcu in order to free TDP page table memory
2137cca2d0bSBen Gardon  * safely with respect to other kernel threads that may be operating on
2147cca2d0bSBen Gardon  * the memory.
2157cca2d0bSBen Gardon  * By only accessing TDP MMU page table memory in an RCU read critical
2167cca2d0bSBen Gardon  * section, and freeing it after a grace period, lockless access to that
2177cca2d0bSBen Gardon  * memory won't use it after it is freed.
2187cca2d0bSBen Gardon  */
2197cca2d0bSBen Gardon static void tdp_mmu_free_sp_rcu_callback(struct rcu_head *head)
2207cca2d0bSBen Gardon {
2217cca2d0bSBen Gardon 	struct kvm_mmu_page *sp = container_of(head, struct kvm_mmu_page,
2227cca2d0bSBen Gardon 					       rcu_head);
2237cca2d0bSBen Gardon 
2247cca2d0bSBen Gardon 	tdp_mmu_free_sp(sp);
2257cca2d0bSBen Gardon }
2267cca2d0bSBen Gardon 
2272f2fad08SBen Gardon static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
2282f2fad08SBen Gardon 				u64 old_spte, u64 new_spte, int level);
2292f2fad08SBen Gardon 
230faaf05b0SBen Gardon static int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
231faaf05b0SBen Gardon {
232faaf05b0SBen Gardon 	return sp->role.smm ? 1 : 0;
233faaf05b0SBen Gardon }
234faaf05b0SBen Gardon 
235f8e14497SBen Gardon static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level)
236f8e14497SBen Gardon {
237f8e14497SBen Gardon 	bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
238f8e14497SBen Gardon 
239f8e14497SBen Gardon 	if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level))
240f8e14497SBen Gardon 		return;
241f8e14497SBen Gardon 
242f8e14497SBen Gardon 	if (is_accessed_spte(old_spte) &&
243f8e14497SBen Gardon 	    (!is_accessed_spte(new_spte) || pfn_changed))
244f8e14497SBen Gardon 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
245f8e14497SBen Gardon }
246f8e14497SBen Gardon 
247a6a0b05dSBen Gardon static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn,
248a6a0b05dSBen Gardon 					  u64 old_spte, u64 new_spte, int level)
249a6a0b05dSBen Gardon {
250a6a0b05dSBen Gardon 	bool pfn_changed;
251a6a0b05dSBen Gardon 	struct kvm_memory_slot *slot;
252a6a0b05dSBen Gardon 
253a6a0b05dSBen Gardon 	if (level > PG_LEVEL_4K)
254a6a0b05dSBen Gardon 		return;
255a6a0b05dSBen Gardon 
256a6a0b05dSBen Gardon 	pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
257a6a0b05dSBen Gardon 
258a6a0b05dSBen Gardon 	if ((!is_writable_pte(old_spte) || pfn_changed) &&
259a6a0b05dSBen Gardon 	    is_writable_pte(new_spte)) {
260a6a0b05dSBen Gardon 		slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn);
261fb04a1edSPeter Xu 		mark_page_dirty_in_slot(kvm, slot, gfn);
262a6a0b05dSBen Gardon 	}
263a6a0b05dSBen Gardon }
264a6a0b05dSBen Gardon 
2652f2fad08SBen Gardon /**
266a066e61fSBen Gardon  * handle_removed_tdp_mmu_page - handle a pt removed from the TDP structure
267a066e61fSBen Gardon  *
268a066e61fSBen Gardon  * @kvm: kvm instance
269a066e61fSBen Gardon  * @pt: the page removed from the paging structure
270a066e61fSBen Gardon  *
271a066e61fSBen Gardon  * Given a page table that has been removed from the TDP paging structure,
272a066e61fSBen Gardon  * iterates through the page table to clear SPTEs and free child page tables.
273a066e61fSBen Gardon  */
274a066e61fSBen Gardon static void handle_removed_tdp_mmu_page(struct kvm *kvm, u64 *pt)
275a066e61fSBen Gardon {
276a066e61fSBen Gardon 	struct kvm_mmu_page *sp = sptep_to_sp(pt);
277a066e61fSBen Gardon 	int level = sp->role.level;
278a066e61fSBen Gardon 	gfn_t gfn = sp->gfn;
279a066e61fSBen Gardon 	u64 old_child_spte;
280a066e61fSBen Gardon 	int i;
281a066e61fSBen Gardon 
282a066e61fSBen Gardon 	trace_kvm_mmu_prepare_zap_page(sp);
283a066e61fSBen Gardon 
284a066e61fSBen Gardon 	list_del(&sp->link);
285a066e61fSBen Gardon 
286a066e61fSBen Gardon 	if (sp->lpage_disallowed)
287a066e61fSBen Gardon 		unaccount_huge_nx_page(kvm, sp);
288a066e61fSBen Gardon 
289a066e61fSBen Gardon 	for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
290a066e61fSBen Gardon 		old_child_spte = READ_ONCE(*(pt + i));
291a066e61fSBen Gardon 		WRITE_ONCE(*(pt + i), 0);
292a066e61fSBen Gardon 		handle_changed_spte(kvm, kvm_mmu_page_as_id(sp),
293a066e61fSBen Gardon 			gfn + (i * KVM_PAGES_PER_HPAGE(level - 1)),
294a066e61fSBen Gardon 			old_child_spte, 0, level - 1);
295a066e61fSBen Gardon 	}
296a066e61fSBen Gardon 
297a066e61fSBen Gardon 	kvm_flush_remote_tlbs_with_address(kvm, gfn,
298a066e61fSBen Gardon 					   KVM_PAGES_PER_HPAGE(level));
299a066e61fSBen Gardon 
3007cca2d0bSBen Gardon 	call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback);
301a066e61fSBen Gardon }
302a066e61fSBen Gardon 
303a066e61fSBen Gardon /**
3042f2fad08SBen Gardon  * handle_changed_spte - handle bookkeeping associated with an SPTE change
3052f2fad08SBen Gardon  * @kvm: kvm instance
3062f2fad08SBen Gardon  * @as_id: the address space of the paging structure the SPTE was a part of
3072f2fad08SBen Gardon  * @gfn: the base GFN that was mapped by the SPTE
3082f2fad08SBen Gardon  * @old_spte: The value of the SPTE before the change
3092f2fad08SBen Gardon  * @new_spte: The value of the SPTE after the change
3102f2fad08SBen Gardon  * @level: the level of the PT the SPTE is part of in the paging structure
3112f2fad08SBen Gardon  *
3122f2fad08SBen Gardon  * Handle bookkeeping that might result from the modification of a SPTE.
3132f2fad08SBen Gardon  * This function must be called for all TDP SPTE modifications.
3142f2fad08SBen Gardon  */
3152f2fad08SBen Gardon static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
3162f2fad08SBen Gardon 				u64 old_spte, u64 new_spte, int level)
3172f2fad08SBen Gardon {
3182f2fad08SBen Gardon 	bool was_present = is_shadow_present_pte(old_spte);
3192f2fad08SBen Gardon 	bool is_present = is_shadow_present_pte(new_spte);
3202f2fad08SBen Gardon 	bool was_leaf = was_present && is_last_spte(old_spte, level);
3212f2fad08SBen Gardon 	bool is_leaf = is_present && is_last_spte(new_spte, level);
3222f2fad08SBen Gardon 	bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
3232f2fad08SBen Gardon 
3242f2fad08SBen Gardon 	WARN_ON(level > PT64_ROOT_MAX_LEVEL);
3252f2fad08SBen Gardon 	WARN_ON(level < PG_LEVEL_4K);
326764388ceSSean Christopherson 	WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
3272f2fad08SBen Gardon 
3282f2fad08SBen Gardon 	/*
3292f2fad08SBen Gardon 	 * If this warning were to trigger it would indicate that there was a
3302f2fad08SBen Gardon 	 * missing MMU notifier or a race with some notifier handler.
3312f2fad08SBen Gardon 	 * A present, leaf SPTE should never be directly replaced with another
3322f2fad08SBen Gardon 	 * present leaf SPTE pointing to a differnt PFN. A notifier handler
3332f2fad08SBen Gardon 	 * should be zapping the SPTE before the main MM's page table is
3342f2fad08SBen Gardon 	 * changed, or the SPTE should be zeroed, and the TLBs flushed by the
3352f2fad08SBen Gardon 	 * thread before replacement.
3362f2fad08SBen Gardon 	 */
3372f2fad08SBen Gardon 	if (was_leaf && is_leaf && pfn_changed) {
3382f2fad08SBen Gardon 		pr_err("Invalid SPTE change: cannot replace a present leaf\n"
3392f2fad08SBen Gardon 		       "SPTE with another present leaf SPTE mapping a\n"
3402f2fad08SBen Gardon 		       "different PFN!\n"
3412f2fad08SBen Gardon 		       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
3422f2fad08SBen Gardon 		       as_id, gfn, old_spte, new_spte, level);
3432f2fad08SBen Gardon 
3442f2fad08SBen Gardon 		/*
3452f2fad08SBen Gardon 		 * Crash the host to prevent error propagation and guest data
3462f2fad08SBen Gardon 		 * courruption.
3472f2fad08SBen Gardon 		 */
3482f2fad08SBen Gardon 		BUG();
3492f2fad08SBen Gardon 	}
3502f2fad08SBen Gardon 
3512f2fad08SBen Gardon 	if (old_spte == new_spte)
3522f2fad08SBen Gardon 		return;
3532f2fad08SBen Gardon 
354b9a98c34SBen Gardon 	trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte);
355b9a98c34SBen Gardon 
3562f2fad08SBen Gardon 	/*
3572f2fad08SBen Gardon 	 * The only times a SPTE should be changed from a non-present to
3582f2fad08SBen Gardon 	 * non-present state is when an MMIO entry is installed/modified/
3592f2fad08SBen Gardon 	 * removed. In that case, there is nothing to do here.
3602f2fad08SBen Gardon 	 */
3612f2fad08SBen Gardon 	if (!was_present && !is_present) {
3622f2fad08SBen Gardon 		/*
3632f2fad08SBen Gardon 		 * If this change does not involve a MMIO SPTE, it is
3642f2fad08SBen Gardon 		 * unexpected. Log the change, though it should not impact the
3652f2fad08SBen Gardon 		 * guest since both the former and current SPTEs are nonpresent.
3662f2fad08SBen Gardon 		 */
3672f2fad08SBen Gardon 		if (WARN_ON(!is_mmio_spte(old_spte) && !is_mmio_spte(new_spte)))
3682f2fad08SBen Gardon 			pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
3692f2fad08SBen Gardon 			       "should not be replaced with another,\n"
3702f2fad08SBen Gardon 			       "different nonpresent SPTE, unless one or both\n"
3712f2fad08SBen Gardon 			       "are MMIO SPTEs.\n"
3722f2fad08SBen Gardon 			       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
3732f2fad08SBen Gardon 			       as_id, gfn, old_spte, new_spte, level);
3742f2fad08SBen Gardon 		return;
3752f2fad08SBen Gardon 	}
3762f2fad08SBen Gardon 
3772f2fad08SBen Gardon 
3782f2fad08SBen Gardon 	if (was_leaf && is_dirty_spte(old_spte) &&
3792f2fad08SBen Gardon 	    (!is_dirty_spte(new_spte) || pfn_changed))
3802f2fad08SBen Gardon 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
3812f2fad08SBen Gardon 
3822f2fad08SBen Gardon 	/*
3832f2fad08SBen Gardon 	 * Recursively handle child PTs if the change removed a subtree from
3842f2fad08SBen Gardon 	 * the paging structure.
3852f2fad08SBen Gardon 	 */
386a066e61fSBen Gardon 	if (was_present && !was_leaf && (pfn_changed || !is_present))
387a066e61fSBen Gardon 		handle_removed_tdp_mmu_page(kvm,
388a066e61fSBen Gardon 				spte_to_child_pt(old_spte, level));
3892f2fad08SBen Gardon }
3902f2fad08SBen Gardon 
3912f2fad08SBen Gardon static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
3922f2fad08SBen Gardon 				u64 old_spte, u64 new_spte, int level)
3932f2fad08SBen Gardon {
3942f2fad08SBen Gardon 	__handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level);
395f8e14497SBen Gardon 	handle_changed_spte_acc_track(old_spte, new_spte, level);
396a6a0b05dSBen Gardon 	handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
397a6a0b05dSBen Gardon 				      new_spte, level);
3982f2fad08SBen Gardon }
399faaf05b0SBen Gardon 
400fe43fa2fSBen Gardon /*
401fe43fa2fSBen Gardon  * __tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping
402fe43fa2fSBen Gardon  * @kvm: kvm instance
403fe43fa2fSBen Gardon  * @iter: a tdp_iter instance currently on the SPTE that should be set
404fe43fa2fSBen Gardon  * @new_spte: The value the SPTE should be set to
405fe43fa2fSBen Gardon  * @record_acc_track: Notify the MM subsystem of changes to the accessed state
406fe43fa2fSBen Gardon  *		      of the page. Should be set unless handling an MMU
407fe43fa2fSBen Gardon  *		      notifier for access tracking. Leaving record_acc_track
408fe43fa2fSBen Gardon  *		      unset in that case prevents page accesses from being
409fe43fa2fSBen Gardon  *		      double counted.
410fe43fa2fSBen Gardon  * @record_dirty_log: Record the page as dirty in the dirty bitmap if
411fe43fa2fSBen Gardon  *		      appropriate for the change being made. Should be set
412fe43fa2fSBen Gardon  *		      unless performing certain dirty logging operations.
413fe43fa2fSBen Gardon  *		      Leaving record_dirty_log unset in that case prevents page
414fe43fa2fSBen Gardon  *		      writes from being double counted.
415fe43fa2fSBen Gardon  */
416f8e14497SBen Gardon static inline void __tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
417a6a0b05dSBen Gardon 				      u64 new_spte, bool record_acc_track,
418a6a0b05dSBen Gardon 				      bool record_dirty_log)
419faaf05b0SBen Gardon {
4207cca2d0bSBen Gardon 	tdp_ptep_t root_pt = tdp_iter_root_pt(iter);
421faaf05b0SBen Gardon 	struct kvm_mmu_page *root = sptep_to_sp(root_pt);
422faaf05b0SBen Gardon 	int as_id = kvm_mmu_page_as_id(root);
423faaf05b0SBen Gardon 
424*531810caSBen Gardon 	lockdep_assert_held_write(&kvm->mmu_lock);
4253a9a4aa5SBen Gardon 
4267cca2d0bSBen Gardon 	WRITE_ONCE(*rcu_dereference(iter->sptep), new_spte);
427faaf05b0SBen Gardon 
428f8e14497SBen Gardon 	__handle_changed_spte(kvm, as_id, iter->gfn, iter->old_spte, new_spte,
429faaf05b0SBen Gardon 			      iter->level);
430f8e14497SBen Gardon 	if (record_acc_track)
431f8e14497SBen Gardon 		handle_changed_spte_acc_track(iter->old_spte, new_spte,
432f8e14497SBen Gardon 					      iter->level);
433a6a0b05dSBen Gardon 	if (record_dirty_log)
434a6a0b05dSBen Gardon 		handle_changed_spte_dirty_log(kvm, as_id, iter->gfn,
435a6a0b05dSBen Gardon 					      iter->old_spte, new_spte,
436a6a0b05dSBen Gardon 					      iter->level);
437f8e14497SBen Gardon }
438f8e14497SBen Gardon 
439f8e14497SBen Gardon static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
440f8e14497SBen Gardon 				    u64 new_spte)
441f8e14497SBen Gardon {
442a6a0b05dSBen Gardon 	__tdp_mmu_set_spte(kvm, iter, new_spte, true, true);
443f8e14497SBen Gardon }
444f8e14497SBen Gardon 
445f8e14497SBen Gardon static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm,
446f8e14497SBen Gardon 						 struct tdp_iter *iter,
447f8e14497SBen Gardon 						 u64 new_spte)
448f8e14497SBen Gardon {
449a6a0b05dSBen Gardon 	__tdp_mmu_set_spte(kvm, iter, new_spte, false, true);
450a6a0b05dSBen Gardon }
451a6a0b05dSBen Gardon 
452a6a0b05dSBen Gardon static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm,
453a6a0b05dSBen Gardon 						 struct tdp_iter *iter,
454a6a0b05dSBen Gardon 						 u64 new_spte)
455a6a0b05dSBen Gardon {
456a6a0b05dSBen Gardon 	__tdp_mmu_set_spte(kvm, iter, new_spte, true, false);
457faaf05b0SBen Gardon }
458faaf05b0SBen Gardon 
459faaf05b0SBen Gardon #define tdp_root_for_each_pte(_iter, _root, _start, _end) \
460faaf05b0SBen Gardon 	for_each_tdp_pte(_iter, _root->spt, _root->role.level, _start, _end)
461faaf05b0SBen Gardon 
462f8e14497SBen Gardon #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end)	\
463f8e14497SBen Gardon 	tdp_root_for_each_pte(_iter, _root, _start, _end)		\
464f8e14497SBen Gardon 		if (!is_shadow_present_pte(_iter.old_spte) ||		\
465f8e14497SBen Gardon 		    !is_last_spte(_iter.old_spte, _iter.level))		\
466f8e14497SBen Gardon 			continue;					\
467f8e14497SBen Gardon 		else
468f8e14497SBen Gardon 
469bb18842eSBen Gardon #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end)		\
470bb18842eSBen Gardon 	for_each_tdp_pte(_iter, __va(_mmu->root_hpa),		\
471bb18842eSBen Gardon 			 _mmu->shadow_root_level, _start, _end)
472bb18842eSBen Gardon 
473faaf05b0SBen Gardon /*
474e28a436cSBen Gardon  * Yield if the MMU lock is contended or this thread needs to return control
475e28a436cSBen Gardon  * to the scheduler.
476e28a436cSBen Gardon  *
477e139a34eSBen Gardon  * If this function should yield and flush is set, it will perform a remote
478e139a34eSBen Gardon  * TLB flush before yielding.
479e139a34eSBen Gardon  *
480e28a436cSBen Gardon  * If this function yields, it will also reset the tdp_iter's walk over the
481ed5e484bSBen Gardon  * paging structure and the calling function should skip to the next
482ed5e484bSBen Gardon  * iteration to allow the iterator to continue its traversal from the
483ed5e484bSBen Gardon  * paging structure root.
484e28a436cSBen Gardon  *
485e28a436cSBen Gardon  * Return true if this function yielded and the iterator's traversal was reset.
486e28a436cSBen Gardon  * Return false if a yield was not needed.
487e28a436cSBen Gardon  */
488e139a34eSBen Gardon static inline bool tdp_mmu_iter_cond_resched(struct kvm *kvm,
489e139a34eSBen Gardon 					     struct tdp_iter *iter, bool flush)
490a6a0b05dSBen Gardon {
491ed5e484bSBen Gardon 	/* Ensure forward progress has been made before yielding. */
492ed5e484bSBen Gardon 	if (iter->next_last_level_gfn == iter->yielded_gfn)
493ed5e484bSBen Gardon 		return false;
494ed5e484bSBen Gardon 
495*531810caSBen Gardon 	if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
4967cca2d0bSBen Gardon 		rcu_read_unlock();
4977cca2d0bSBen Gardon 
498e139a34eSBen Gardon 		if (flush)
499e139a34eSBen Gardon 			kvm_flush_remote_tlbs(kvm);
500e139a34eSBen Gardon 
501*531810caSBen Gardon 		cond_resched_rwlock_write(&kvm->mmu_lock);
5027cca2d0bSBen Gardon 		rcu_read_lock();
503ed5e484bSBen Gardon 
504ed5e484bSBen Gardon 		WARN_ON(iter->gfn > iter->next_last_level_gfn);
505ed5e484bSBen Gardon 
506ed5e484bSBen Gardon 		tdp_iter_start(iter, iter->pt_path[iter->root_level - 1],
507ed5e484bSBen Gardon 			       iter->root_level, iter->min_level,
508ed5e484bSBen Gardon 			       iter->next_last_level_gfn);
509ed5e484bSBen Gardon 
510e28a436cSBen Gardon 		return true;
511a6a0b05dSBen Gardon 	}
512e28a436cSBen Gardon 
513e28a436cSBen Gardon 	return false;
514a6a0b05dSBen Gardon }
515a6a0b05dSBen Gardon 
516faaf05b0SBen Gardon /*
517faaf05b0SBen Gardon  * Tears down the mappings for the range of gfns, [start, end), and frees the
518faaf05b0SBen Gardon  * non-root pages mapping GFNs strictly within that range. Returns true if
519faaf05b0SBen Gardon  * SPTEs have been cleared and a TLB flush is needed before releasing the
520faaf05b0SBen Gardon  * MMU lock.
521063afacdSBen Gardon  * If can_yield is true, will release the MMU lock and reschedule if the
522063afacdSBen Gardon  * scheduler needs the CPU or there is contention on the MMU lock. If this
523063afacdSBen Gardon  * function cannot yield, it will not release the MMU lock or reschedule and
524063afacdSBen Gardon  * the caller must ensure it does not supply too large a GFN range, or the
525063afacdSBen Gardon  * operation can cause a soft lockup.
526faaf05b0SBen Gardon  */
527faaf05b0SBen Gardon static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
528063afacdSBen Gardon 			  gfn_t start, gfn_t end, bool can_yield)
529faaf05b0SBen Gardon {
530faaf05b0SBen Gardon 	struct tdp_iter iter;
531faaf05b0SBen Gardon 	bool flush_needed = false;
532faaf05b0SBen Gardon 
5337cca2d0bSBen Gardon 	rcu_read_lock();
5347cca2d0bSBen Gardon 
535faaf05b0SBen Gardon 	tdp_root_for_each_pte(iter, root, start, end) {
5361af4a960SBen Gardon 		if (can_yield &&
5371af4a960SBen Gardon 		    tdp_mmu_iter_cond_resched(kvm, &iter, flush_needed)) {
5381af4a960SBen Gardon 			flush_needed = false;
5391af4a960SBen Gardon 			continue;
5401af4a960SBen Gardon 		}
5411af4a960SBen Gardon 
542faaf05b0SBen Gardon 		if (!is_shadow_present_pte(iter.old_spte))
543faaf05b0SBen Gardon 			continue;
544faaf05b0SBen Gardon 
545faaf05b0SBen Gardon 		/*
546faaf05b0SBen Gardon 		 * If this is a non-last-level SPTE that covers a larger range
547faaf05b0SBen Gardon 		 * than should be zapped, continue, and zap the mappings at a
548faaf05b0SBen Gardon 		 * lower level.
549faaf05b0SBen Gardon 		 */
550faaf05b0SBen Gardon 		if ((iter.gfn < start ||
551faaf05b0SBen Gardon 		     iter.gfn + KVM_PAGES_PER_HPAGE(iter.level) > end) &&
552faaf05b0SBen Gardon 		    !is_last_spte(iter.old_spte, iter.level))
553faaf05b0SBen Gardon 			continue;
554faaf05b0SBen Gardon 
555faaf05b0SBen Gardon 		tdp_mmu_set_spte(kvm, &iter, 0);
5561af4a960SBen Gardon 		flush_needed = true;
557faaf05b0SBen Gardon 	}
5587cca2d0bSBen Gardon 
5597cca2d0bSBen Gardon 	rcu_read_unlock();
560faaf05b0SBen Gardon 	return flush_needed;
561faaf05b0SBen Gardon }
562faaf05b0SBen Gardon 
563faaf05b0SBen Gardon /*
564faaf05b0SBen Gardon  * Tears down the mappings for the range of gfns, [start, end), and frees the
565faaf05b0SBen Gardon  * non-root pages mapping GFNs strictly within that range. Returns true if
566faaf05b0SBen Gardon  * SPTEs have been cleared and a TLB flush is needed before releasing the
567faaf05b0SBen Gardon  * MMU lock.
568faaf05b0SBen Gardon  */
569faaf05b0SBen Gardon bool kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, gfn_t start, gfn_t end)
570faaf05b0SBen Gardon {
571faaf05b0SBen Gardon 	struct kvm_mmu_page *root;
572faaf05b0SBen Gardon 	bool flush = false;
573faaf05b0SBen Gardon 
574a889ea54SBen Gardon 	for_each_tdp_mmu_root_yield_safe(kvm, root)
575063afacdSBen Gardon 		flush |= zap_gfn_range(kvm, root, start, end, true);
576faaf05b0SBen Gardon 
577faaf05b0SBen Gardon 	return flush;
578faaf05b0SBen Gardon }
579faaf05b0SBen Gardon 
580faaf05b0SBen Gardon void kvm_tdp_mmu_zap_all(struct kvm *kvm)
581faaf05b0SBen Gardon {
582339f5a7fSRick Edgecombe 	gfn_t max_gfn = 1ULL << (shadow_phys_bits - PAGE_SHIFT);
583faaf05b0SBen Gardon 	bool flush;
584faaf05b0SBen Gardon 
585faaf05b0SBen Gardon 	flush = kvm_tdp_mmu_zap_gfn_range(kvm, 0, max_gfn);
586faaf05b0SBen Gardon 	if (flush)
587faaf05b0SBen Gardon 		kvm_flush_remote_tlbs(kvm);
588faaf05b0SBen Gardon }
589bb18842eSBen Gardon 
590bb18842eSBen Gardon /*
591bb18842eSBen Gardon  * Installs a last-level SPTE to handle a TDP page fault.
592bb18842eSBen Gardon  * (NPT/EPT violation/misconfiguration)
593bb18842eSBen Gardon  */
594bb18842eSBen Gardon static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, int write,
595bb18842eSBen Gardon 					  int map_writable,
596bb18842eSBen Gardon 					  struct tdp_iter *iter,
597bb18842eSBen Gardon 					  kvm_pfn_t pfn, bool prefault)
598bb18842eSBen Gardon {
599bb18842eSBen Gardon 	u64 new_spte;
600bb18842eSBen Gardon 	int ret = 0;
601bb18842eSBen Gardon 	int make_spte_ret = 0;
602bb18842eSBen Gardon 
603bb18842eSBen Gardon 	if (unlikely(is_noslot_pfn(pfn))) {
604bb18842eSBen Gardon 		new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
6057cca2d0bSBen Gardon 		trace_mark_mmio_spte(rcu_dereference(iter->sptep), iter->gfn,
6067cca2d0bSBen Gardon 				     new_spte);
60733dd3574SBen Gardon 	} else {
608bb18842eSBen Gardon 		make_spte_ret = make_spte(vcpu, ACC_ALL, iter->level, iter->gfn,
609bb18842eSBen Gardon 					 pfn, iter->old_spte, prefault, true,
610bb18842eSBen Gardon 					 map_writable, !shadow_accessed_mask,
611bb18842eSBen Gardon 					 &new_spte);
6127cca2d0bSBen Gardon 		trace_kvm_mmu_set_spte(iter->level, iter->gfn,
6137cca2d0bSBen Gardon 				       rcu_dereference(iter->sptep));
61433dd3574SBen Gardon 	}
615bb18842eSBen Gardon 
616bb18842eSBen Gardon 	if (new_spte == iter->old_spte)
617bb18842eSBen Gardon 		ret = RET_PF_SPURIOUS;
618bb18842eSBen Gardon 	else
619bb18842eSBen Gardon 		tdp_mmu_set_spte(vcpu->kvm, iter, new_spte);
620bb18842eSBen Gardon 
621bb18842eSBen Gardon 	/*
622bb18842eSBen Gardon 	 * If the page fault was caused by a write but the page is write
623bb18842eSBen Gardon 	 * protected, emulation is needed. If the emulation was skipped,
624bb18842eSBen Gardon 	 * the vCPU would have the same fault again.
625bb18842eSBen Gardon 	 */
626bb18842eSBen Gardon 	if (make_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
627bb18842eSBen Gardon 		if (write)
628bb18842eSBen Gardon 			ret = RET_PF_EMULATE;
629bb18842eSBen Gardon 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
630bb18842eSBen Gardon 	}
631bb18842eSBen Gardon 
632bb18842eSBen Gardon 	/* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
633bb18842eSBen Gardon 	if (unlikely(is_mmio_spte(new_spte)))
634bb18842eSBen Gardon 		ret = RET_PF_EMULATE;
635bb18842eSBen Gardon 
6367cca2d0bSBen Gardon 	trace_kvm_mmu_set_spte(iter->level, iter->gfn,
6377cca2d0bSBen Gardon 			       rcu_dereference(iter->sptep));
638bb18842eSBen Gardon 	if (!prefault)
639bb18842eSBen Gardon 		vcpu->stat.pf_fixed++;
640bb18842eSBen Gardon 
641bb18842eSBen Gardon 	return ret;
642bb18842eSBen Gardon }
643bb18842eSBen Gardon 
644bb18842eSBen Gardon /*
645bb18842eSBen Gardon  * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
646bb18842eSBen Gardon  * page tables and SPTEs to translate the faulting guest physical address.
647bb18842eSBen Gardon  */
648bb18842eSBen Gardon int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
649bb18842eSBen Gardon 		    int map_writable, int max_level, kvm_pfn_t pfn,
650bb18842eSBen Gardon 		    bool prefault)
651bb18842eSBen Gardon {
652bb18842eSBen Gardon 	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
653bb18842eSBen Gardon 	bool write = error_code & PFERR_WRITE_MASK;
654bb18842eSBen Gardon 	bool exec = error_code & PFERR_FETCH_MASK;
655bb18842eSBen Gardon 	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
656bb18842eSBen Gardon 	struct kvm_mmu *mmu = vcpu->arch.mmu;
657bb18842eSBen Gardon 	struct tdp_iter iter;
65889c0fd49SBen Gardon 	struct kvm_mmu_page *sp;
659bb18842eSBen Gardon 	u64 *child_pt;
660bb18842eSBen Gardon 	u64 new_spte;
661bb18842eSBen Gardon 	int ret;
662bb18842eSBen Gardon 	gfn_t gfn = gpa >> PAGE_SHIFT;
663bb18842eSBen Gardon 	int level;
664bb18842eSBen Gardon 	int req_level;
665bb18842eSBen Gardon 
666bb18842eSBen Gardon 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
667bb18842eSBen Gardon 		return RET_PF_RETRY;
668bb18842eSBen Gardon 	if (WARN_ON(!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)))
669bb18842eSBen Gardon 		return RET_PF_RETRY;
670bb18842eSBen Gardon 
671bb18842eSBen Gardon 	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
672bb18842eSBen Gardon 					huge_page_disallowed, &req_level);
673bb18842eSBen Gardon 
674bb18842eSBen Gardon 	trace_kvm_mmu_spte_requested(gpa, level, pfn);
6757cca2d0bSBen Gardon 
6767cca2d0bSBen Gardon 	rcu_read_lock();
6777cca2d0bSBen Gardon 
678bb18842eSBen Gardon 	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
679bb18842eSBen Gardon 		if (nx_huge_page_workaround_enabled)
680bb18842eSBen Gardon 			disallowed_hugepage_adjust(iter.old_spte, gfn,
681bb18842eSBen Gardon 						   iter.level, &pfn, &level);
682bb18842eSBen Gardon 
683bb18842eSBen Gardon 		if (iter.level == level)
684bb18842eSBen Gardon 			break;
685bb18842eSBen Gardon 
686bb18842eSBen Gardon 		/*
687bb18842eSBen Gardon 		 * If there is an SPTE mapping a large page at a higher level
688bb18842eSBen Gardon 		 * than the target, that SPTE must be cleared and replaced
689bb18842eSBen Gardon 		 * with a non-leaf SPTE.
690bb18842eSBen Gardon 		 */
691bb18842eSBen Gardon 		if (is_shadow_present_pte(iter.old_spte) &&
692bb18842eSBen Gardon 		    is_large_pte(iter.old_spte)) {
693bb18842eSBen Gardon 			tdp_mmu_set_spte(vcpu->kvm, &iter, 0);
694bb18842eSBen Gardon 
695bb18842eSBen Gardon 			kvm_flush_remote_tlbs_with_address(vcpu->kvm, iter.gfn,
696bb18842eSBen Gardon 					KVM_PAGES_PER_HPAGE(iter.level));
697bb18842eSBen Gardon 
698bb18842eSBen Gardon 			/*
699bb18842eSBen Gardon 			 * The iter must explicitly re-read the spte here
700bb18842eSBen Gardon 			 * because the new value informs the !present
701bb18842eSBen Gardon 			 * path below.
702bb18842eSBen Gardon 			 */
7037cca2d0bSBen Gardon 			iter.old_spte = READ_ONCE(*rcu_dereference(iter.sptep));
704bb18842eSBen Gardon 		}
705bb18842eSBen Gardon 
706bb18842eSBen Gardon 		if (!is_shadow_present_pte(iter.old_spte)) {
70789c0fd49SBen Gardon 			sp = alloc_tdp_mmu_page(vcpu, iter.gfn, iter.level);
70889c0fd49SBen Gardon 			list_add(&sp->link, &vcpu->kvm->arch.tdp_mmu_pages);
70989c0fd49SBen Gardon 			child_pt = sp->spt;
710bb18842eSBen Gardon 			new_spte = make_nonleaf_spte(child_pt,
711bb18842eSBen Gardon 						     !shadow_accessed_mask);
712bb18842eSBen Gardon 
713bb18842eSBen Gardon 			trace_kvm_mmu_get_page(sp, true);
71429cf0f50SBen Gardon 			if (huge_page_disallowed && req_level >= iter.level)
71529cf0f50SBen Gardon 				account_huge_nx_page(vcpu->kvm, sp);
71629cf0f50SBen Gardon 
717bb18842eSBen Gardon 			tdp_mmu_set_spte(vcpu->kvm, &iter, new_spte);
718bb18842eSBen Gardon 		}
719bb18842eSBen Gardon 	}
720bb18842eSBen Gardon 
7217cca2d0bSBen Gardon 	if (WARN_ON(iter.level != level)) {
7227cca2d0bSBen Gardon 		rcu_read_unlock();
723bb18842eSBen Gardon 		return RET_PF_RETRY;
7247cca2d0bSBen Gardon 	}
725bb18842eSBen Gardon 
726bb18842eSBen Gardon 	ret = tdp_mmu_map_handle_target_level(vcpu, write, map_writable, &iter,
727bb18842eSBen Gardon 					      pfn, prefault);
7287cca2d0bSBen Gardon 	rcu_read_unlock();
729bb18842eSBen Gardon 
730bb18842eSBen Gardon 	return ret;
731bb18842eSBen Gardon }
732063afacdSBen Gardon 
733063afacdSBen Gardon static int kvm_tdp_mmu_handle_hva_range(struct kvm *kvm, unsigned long start,
734063afacdSBen Gardon 		unsigned long end, unsigned long data,
735063afacdSBen Gardon 		int (*handler)(struct kvm *kvm, struct kvm_memory_slot *slot,
736063afacdSBen Gardon 			       struct kvm_mmu_page *root, gfn_t start,
737063afacdSBen Gardon 			       gfn_t end, unsigned long data))
738063afacdSBen Gardon {
739063afacdSBen Gardon 	struct kvm_memslots *slots;
740063afacdSBen Gardon 	struct kvm_memory_slot *memslot;
741063afacdSBen Gardon 	struct kvm_mmu_page *root;
742063afacdSBen Gardon 	int ret = 0;
743063afacdSBen Gardon 	int as_id;
744063afacdSBen Gardon 
745a889ea54SBen Gardon 	for_each_tdp_mmu_root_yield_safe(kvm, root) {
746063afacdSBen Gardon 		as_id = kvm_mmu_page_as_id(root);
747063afacdSBen Gardon 		slots = __kvm_memslots(kvm, as_id);
748063afacdSBen Gardon 		kvm_for_each_memslot(memslot, slots) {
749063afacdSBen Gardon 			unsigned long hva_start, hva_end;
750063afacdSBen Gardon 			gfn_t gfn_start, gfn_end;
751063afacdSBen Gardon 
752063afacdSBen Gardon 			hva_start = max(start, memslot->userspace_addr);
753063afacdSBen Gardon 			hva_end = min(end, memslot->userspace_addr +
754063afacdSBen Gardon 				      (memslot->npages << PAGE_SHIFT));
755063afacdSBen Gardon 			if (hva_start >= hva_end)
756063afacdSBen Gardon 				continue;
757063afacdSBen Gardon 			/*
758063afacdSBen Gardon 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
759063afacdSBen Gardon 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
760063afacdSBen Gardon 			 */
761063afacdSBen Gardon 			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
762063afacdSBen Gardon 			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
763063afacdSBen Gardon 
764063afacdSBen Gardon 			ret |= handler(kvm, memslot, root, gfn_start,
765063afacdSBen Gardon 				       gfn_end, data);
766063afacdSBen Gardon 		}
767063afacdSBen Gardon 	}
768063afacdSBen Gardon 
769063afacdSBen Gardon 	return ret;
770063afacdSBen Gardon }
771063afacdSBen Gardon 
772063afacdSBen Gardon static int zap_gfn_range_hva_wrapper(struct kvm *kvm,
773063afacdSBen Gardon 				     struct kvm_memory_slot *slot,
774063afacdSBen Gardon 				     struct kvm_mmu_page *root, gfn_t start,
775063afacdSBen Gardon 				     gfn_t end, unsigned long unused)
776063afacdSBen Gardon {
777063afacdSBen Gardon 	return zap_gfn_range(kvm, root, start, end, false);
778063afacdSBen Gardon }
779063afacdSBen Gardon 
780063afacdSBen Gardon int kvm_tdp_mmu_zap_hva_range(struct kvm *kvm, unsigned long start,
781063afacdSBen Gardon 			      unsigned long end)
782063afacdSBen Gardon {
783063afacdSBen Gardon 	return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
784063afacdSBen Gardon 					    zap_gfn_range_hva_wrapper);
785063afacdSBen Gardon }
786f8e14497SBen Gardon 
787f8e14497SBen Gardon /*
788f8e14497SBen Gardon  * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
789f8e14497SBen Gardon  * if any of the GFNs in the range have been accessed.
790f8e14497SBen Gardon  */
791f8e14497SBen Gardon static int age_gfn_range(struct kvm *kvm, struct kvm_memory_slot *slot,
792f8e14497SBen Gardon 			 struct kvm_mmu_page *root, gfn_t start, gfn_t end,
793f8e14497SBen Gardon 			 unsigned long unused)
794f8e14497SBen Gardon {
795f8e14497SBen Gardon 	struct tdp_iter iter;
796f8e14497SBen Gardon 	int young = 0;
797f8e14497SBen Gardon 	u64 new_spte = 0;
798f8e14497SBen Gardon 
7997cca2d0bSBen Gardon 	rcu_read_lock();
8007cca2d0bSBen Gardon 
801f8e14497SBen Gardon 	tdp_root_for_each_leaf_pte(iter, root, start, end) {
802f8e14497SBen Gardon 		/*
803f8e14497SBen Gardon 		 * If we have a non-accessed entry we don't need to change the
804f8e14497SBen Gardon 		 * pte.
805f8e14497SBen Gardon 		 */
806f8e14497SBen Gardon 		if (!is_accessed_spte(iter.old_spte))
807f8e14497SBen Gardon 			continue;
808f8e14497SBen Gardon 
809f8e14497SBen Gardon 		new_spte = iter.old_spte;
810f8e14497SBen Gardon 
811f8e14497SBen Gardon 		if (spte_ad_enabled(new_spte)) {
812f8e14497SBen Gardon 			clear_bit((ffs(shadow_accessed_mask) - 1),
813f8e14497SBen Gardon 				  (unsigned long *)&new_spte);
814f8e14497SBen Gardon 		} else {
815f8e14497SBen Gardon 			/*
816f8e14497SBen Gardon 			 * Capture the dirty status of the page, so that it doesn't get
817f8e14497SBen Gardon 			 * lost when the SPTE is marked for access tracking.
818f8e14497SBen Gardon 			 */
819f8e14497SBen Gardon 			if (is_writable_pte(new_spte))
820f8e14497SBen Gardon 				kvm_set_pfn_dirty(spte_to_pfn(new_spte));
821f8e14497SBen Gardon 
822f8e14497SBen Gardon 			new_spte = mark_spte_for_access_track(new_spte);
823f8e14497SBen Gardon 		}
824a6a0b05dSBen Gardon 		new_spte &= ~shadow_dirty_mask;
825f8e14497SBen Gardon 
826f8e14497SBen Gardon 		tdp_mmu_set_spte_no_acc_track(kvm, &iter, new_spte);
827f8e14497SBen Gardon 		young = 1;
82833dd3574SBen Gardon 
82933dd3574SBen Gardon 		trace_kvm_age_page(iter.gfn, iter.level, slot, young);
830f8e14497SBen Gardon 	}
831f8e14497SBen Gardon 
8327cca2d0bSBen Gardon 	rcu_read_unlock();
8337cca2d0bSBen Gardon 
834f8e14497SBen Gardon 	return young;
835f8e14497SBen Gardon }
836f8e14497SBen Gardon 
837f8e14497SBen Gardon int kvm_tdp_mmu_age_hva_range(struct kvm *kvm, unsigned long start,
838f8e14497SBen Gardon 			      unsigned long end)
839f8e14497SBen Gardon {
840f8e14497SBen Gardon 	return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
841f8e14497SBen Gardon 					    age_gfn_range);
842f8e14497SBen Gardon }
843f8e14497SBen Gardon 
844f8e14497SBen Gardon static int test_age_gfn(struct kvm *kvm, struct kvm_memory_slot *slot,
845f8e14497SBen Gardon 			struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
846f8e14497SBen Gardon 			unsigned long unused2)
847f8e14497SBen Gardon {
848f8e14497SBen Gardon 	struct tdp_iter iter;
849f8e14497SBen Gardon 
850f8e14497SBen Gardon 	tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1)
851f8e14497SBen Gardon 		if (is_accessed_spte(iter.old_spte))
852f8e14497SBen Gardon 			return 1;
853f8e14497SBen Gardon 
854f8e14497SBen Gardon 	return 0;
855f8e14497SBen Gardon }
856f8e14497SBen Gardon 
857f8e14497SBen Gardon int kvm_tdp_mmu_test_age_hva(struct kvm *kvm, unsigned long hva)
858f8e14497SBen Gardon {
859f8e14497SBen Gardon 	return kvm_tdp_mmu_handle_hva_range(kvm, hva, hva + 1, 0,
860f8e14497SBen Gardon 					    test_age_gfn);
861f8e14497SBen Gardon }
8621d8dd6b3SBen Gardon 
8631d8dd6b3SBen Gardon /*
8641d8dd6b3SBen Gardon  * Handle the changed_pte MMU notifier for the TDP MMU.
8651d8dd6b3SBen Gardon  * data is a pointer to the new pte_t mapping the HVA specified by the MMU
8661d8dd6b3SBen Gardon  * notifier.
8671d8dd6b3SBen Gardon  * Returns non-zero if a flush is needed before releasing the MMU lock.
8681d8dd6b3SBen Gardon  */
8691d8dd6b3SBen Gardon static int set_tdp_spte(struct kvm *kvm, struct kvm_memory_slot *slot,
8701d8dd6b3SBen Gardon 			struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
8711d8dd6b3SBen Gardon 			unsigned long data)
8721d8dd6b3SBen Gardon {
8731d8dd6b3SBen Gardon 	struct tdp_iter iter;
8741d8dd6b3SBen Gardon 	pte_t *ptep = (pte_t *)data;
8751d8dd6b3SBen Gardon 	kvm_pfn_t new_pfn;
8761d8dd6b3SBen Gardon 	u64 new_spte;
8771d8dd6b3SBen Gardon 	int need_flush = 0;
8781d8dd6b3SBen Gardon 
8797cca2d0bSBen Gardon 	rcu_read_lock();
8807cca2d0bSBen Gardon 
8811d8dd6b3SBen Gardon 	WARN_ON(pte_huge(*ptep));
8821d8dd6b3SBen Gardon 
8831d8dd6b3SBen Gardon 	new_pfn = pte_pfn(*ptep);
8841d8dd6b3SBen Gardon 
8851d8dd6b3SBen Gardon 	tdp_root_for_each_pte(iter, root, gfn, gfn + 1) {
8861d8dd6b3SBen Gardon 		if (iter.level != PG_LEVEL_4K)
8871d8dd6b3SBen Gardon 			continue;
8881d8dd6b3SBen Gardon 
8891d8dd6b3SBen Gardon 		if (!is_shadow_present_pte(iter.old_spte))
8901d8dd6b3SBen Gardon 			break;
8911d8dd6b3SBen Gardon 
8921d8dd6b3SBen Gardon 		tdp_mmu_set_spte(kvm, &iter, 0);
8931d8dd6b3SBen Gardon 
8941d8dd6b3SBen Gardon 		kvm_flush_remote_tlbs_with_address(kvm, iter.gfn, 1);
8951d8dd6b3SBen Gardon 
8961d8dd6b3SBen Gardon 		if (!pte_write(*ptep)) {
8971d8dd6b3SBen Gardon 			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
8981d8dd6b3SBen Gardon 					iter.old_spte, new_pfn);
8991d8dd6b3SBen Gardon 
9001d8dd6b3SBen Gardon 			tdp_mmu_set_spte(kvm, &iter, new_spte);
9011d8dd6b3SBen Gardon 		}
9021d8dd6b3SBen Gardon 
9031d8dd6b3SBen Gardon 		need_flush = 1;
9041d8dd6b3SBen Gardon 	}
9051d8dd6b3SBen Gardon 
9061d8dd6b3SBen Gardon 	if (need_flush)
9071d8dd6b3SBen Gardon 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
9081d8dd6b3SBen Gardon 
9097cca2d0bSBen Gardon 	rcu_read_unlock();
9107cca2d0bSBen Gardon 
9111d8dd6b3SBen Gardon 	return 0;
9121d8dd6b3SBen Gardon }
9131d8dd6b3SBen Gardon 
9141d8dd6b3SBen Gardon int kvm_tdp_mmu_set_spte_hva(struct kvm *kvm, unsigned long address,
9151d8dd6b3SBen Gardon 			     pte_t *host_ptep)
9161d8dd6b3SBen Gardon {
9171d8dd6b3SBen Gardon 	return kvm_tdp_mmu_handle_hva_range(kvm, address, address + 1,
9181d8dd6b3SBen Gardon 					    (unsigned long)host_ptep,
9191d8dd6b3SBen Gardon 					    set_tdp_spte);
9201d8dd6b3SBen Gardon }
9211d8dd6b3SBen Gardon 
922a6a0b05dSBen Gardon /*
923a6a0b05dSBen Gardon  * Remove write access from all the SPTEs mapping GFNs [start, end). If
924a6a0b05dSBen Gardon  * skip_4k is set, SPTEs that map 4k pages, will not be write-protected.
925a6a0b05dSBen Gardon  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
926a6a0b05dSBen Gardon  */
927a6a0b05dSBen Gardon static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
928a6a0b05dSBen Gardon 			     gfn_t start, gfn_t end, int min_level)
929a6a0b05dSBen Gardon {
930a6a0b05dSBen Gardon 	struct tdp_iter iter;
931a6a0b05dSBen Gardon 	u64 new_spte;
932a6a0b05dSBen Gardon 	bool spte_set = false;
933a6a0b05dSBen Gardon 
9347cca2d0bSBen Gardon 	rcu_read_lock();
9357cca2d0bSBen Gardon 
936a6a0b05dSBen Gardon 	BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
937a6a0b05dSBen Gardon 
938a6a0b05dSBen Gardon 	for_each_tdp_pte_min_level(iter, root->spt, root->role.level,
939a6a0b05dSBen Gardon 				   min_level, start, end) {
9401af4a960SBen Gardon 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false))
9411af4a960SBen Gardon 			continue;
9421af4a960SBen Gardon 
943a6a0b05dSBen Gardon 		if (!is_shadow_present_pte(iter.old_spte) ||
9440f99ee2cSBen Gardon 		    !is_last_spte(iter.old_spte, iter.level) ||
9450f99ee2cSBen Gardon 		    !(iter.old_spte & PT_WRITABLE_MASK))
946a6a0b05dSBen Gardon 			continue;
947a6a0b05dSBen Gardon 
948a6a0b05dSBen Gardon 		new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
949a6a0b05dSBen Gardon 
950a6a0b05dSBen Gardon 		tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
951a6a0b05dSBen Gardon 		spte_set = true;
952a6a0b05dSBen Gardon 	}
9537cca2d0bSBen Gardon 
9547cca2d0bSBen Gardon 	rcu_read_unlock();
955a6a0b05dSBen Gardon 	return spte_set;
956a6a0b05dSBen Gardon }
957a6a0b05dSBen Gardon 
958a6a0b05dSBen Gardon /*
959a6a0b05dSBen Gardon  * Remove write access from all the SPTEs mapping GFNs in the memslot. Will
960a6a0b05dSBen Gardon  * only affect leaf SPTEs down to min_level.
961a6a0b05dSBen Gardon  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
962a6a0b05dSBen Gardon  */
963a6a0b05dSBen Gardon bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, struct kvm_memory_slot *slot,
964a6a0b05dSBen Gardon 			     int min_level)
965a6a0b05dSBen Gardon {
966a6a0b05dSBen Gardon 	struct kvm_mmu_page *root;
967a6a0b05dSBen Gardon 	int root_as_id;
968a6a0b05dSBen Gardon 	bool spte_set = false;
969a6a0b05dSBen Gardon 
970a889ea54SBen Gardon 	for_each_tdp_mmu_root_yield_safe(kvm, root) {
971a6a0b05dSBen Gardon 		root_as_id = kvm_mmu_page_as_id(root);
972a6a0b05dSBen Gardon 		if (root_as_id != slot->as_id)
973a6a0b05dSBen Gardon 			continue;
974a6a0b05dSBen Gardon 
975a6a0b05dSBen Gardon 		spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
976a6a0b05dSBen Gardon 			     slot->base_gfn + slot->npages, min_level);
977a6a0b05dSBen Gardon 	}
978a6a0b05dSBen Gardon 
979a6a0b05dSBen Gardon 	return spte_set;
980a6a0b05dSBen Gardon }
981a6a0b05dSBen Gardon 
982a6a0b05dSBen Gardon /*
983a6a0b05dSBen Gardon  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
984a6a0b05dSBen Gardon  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
985a6a0b05dSBen Gardon  * If AD bits are not enabled, this will require clearing the writable bit on
986a6a0b05dSBen Gardon  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
987a6a0b05dSBen Gardon  * be flushed.
988a6a0b05dSBen Gardon  */
989a6a0b05dSBen Gardon static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
990a6a0b05dSBen Gardon 			   gfn_t start, gfn_t end)
991a6a0b05dSBen Gardon {
992a6a0b05dSBen Gardon 	struct tdp_iter iter;
993a6a0b05dSBen Gardon 	u64 new_spte;
994a6a0b05dSBen Gardon 	bool spte_set = false;
995a6a0b05dSBen Gardon 
9967cca2d0bSBen Gardon 	rcu_read_lock();
9977cca2d0bSBen Gardon 
998a6a0b05dSBen Gardon 	tdp_root_for_each_leaf_pte(iter, root, start, end) {
9991af4a960SBen Gardon 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false))
10001af4a960SBen Gardon 			continue;
10011af4a960SBen Gardon 
1002a6a0b05dSBen Gardon 		if (spte_ad_need_write_protect(iter.old_spte)) {
1003a6a0b05dSBen Gardon 			if (is_writable_pte(iter.old_spte))
1004a6a0b05dSBen Gardon 				new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
1005a6a0b05dSBen Gardon 			else
1006a6a0b05dSBen Gardon 				continue;
1007a6a0b05dSBen Gardon 		} else {
1008a6a0b05dSBen Gardon 			if (iter.old_spte & shadow_dirty_mask)
1009a6a0b05dSBen Gardon 				new_spte = iter.old_spte & ~shadow_dirty_mask;
1010a6a0b05dSBen Gardon 			else
1011a6a0b05dSBen Gardon 				continue;
1012a6a0b05dSBen Gardon 		}
1013a6a0b05dSBen Gardon 
1014a6a0b05dSBen Gardon 		tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
1015a6a0b05dSBen Gardon 		spte_set = true;
1016a6a0b05dSBen Gardon 	}
10177cca2d0bSBen Gardon 
10187cca2d0bSBen Gardon 	rcu_read_unlock();
1019a6a0b05dSBen Gardon 	return spte_set;
1020a6a0b05dSBen Gardon }
1021a6a0b05dSBen Gardon 
1022a6a0b05dSBen Gardon /*
1023a6a0b05dSBen Gardon  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
1024a6a0b05dSBen Gardon  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
1025a6a0b05dSBen Gardon  * If AD bits are not enabled, this will require clearing the writable bit on
1026a6a0b05dSBen Gardon  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
1027a6a0b05dSBen Gardon  * be flushed.
1028a6a0b05dSBen Gardon  */
1029a6a0b05dSBen Gardon bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, struct kvm_memory_slot *slot)
1030a6a0b05dSBen Gardon {
1031a6a0b05dSBen Gardon 	struct kvm_mmu_page *root;
1032a6a0b05dSBen Gardon 	int root_as_id;
1033a6a0b05dSBen Gardon 	bool spte_set = false;
1034a6a0b05dSBen Gardon 
1035a889ea54SBen Gardon 	for_each_tdp_mmu_root_yield_safe(kvm, root) {
1036a6a0b05dSBen Gardon 		root_as_id = kvm_mmu_page_as_id(root);
1037a6a0b05dSBen Gardon 		if (root_as_id != slot->as_id)
1038a6a0b05dSBen Gardon 			continue;
1039a6a0b05dSBen Gardon 
1040a6a0b05dSBen Gardon 		spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
1041a6a0b05dSBen Gardon 				slot->base_gfn + slot->npages);
1042a6a0b05dSBen Gardon 	}
1043a6a0b05dSBen Gardon 
1044a6a0b05dSBen Gardon 	return spte_set;
1045a6a0b05dSBen Gardon }
1046a6a0b05dSBen Gardon 
1047a6a0b05dSBen Gardon /*
1048a6a0b05dSBen Gardon  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
1049a6a0b05dSBen Gardon  * set in mask, starting at gfn. The given memslot is expected to contain all
1050a6a0b05dSBen Gardon  * the GFNs represented by set bits in the mask. If AD bits are enabled,
1051a6a0b05dSBen Gardon  * clearing the dirty status will involve clearing the dirty bit on each SPTE
1052a6a0b05dSBen Gardon  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
1053a6a0b05dSBen Gardon  */
1054a6a0b05dSBen Gardon static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
1055a6a0b05dSBen Gardon 				  gfn_t gfn, unsigned long mask, bool wrprot)
1056a6a0b05dSBen Gardon {
1057a6a0b05dSBen Gardon 	struct tdp_iter iter;
1058a6a0b05dSBen Gardon 	u64 new_spte;
1059a6a0b05dSBen Gardon 
10607cca2d0bSBen Gardon 	rcu_read_lock();
10617cca2d0bSBen Gardon 
1062a6a0b05dSBen Gardon 	tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
1063a6a0b05dSBen Gardon 				    gfn + BITS_PER_LONG) {
1064a6a0b05dSBen Gardon 		if (!mask)
1065a6a0b05dSBen Gardon 			break;
1066a6a0b05dSBen Gardon 
1067a6a0b05dSBen Gardon 		if (iter.level > PG_LEVEL_4K ||
1068a6a0b05dSBen Gardon 		    !(mask & (1UL << (iter.gfn - gfn))))
1069a6a0b05dSBen Gardon 			continue;
1070a6a0b05dSBen Gardon 
1071f1b3b06aSBen Gardon 		mask &= ~(1UL << (iter.gfn - gfn));
1072f1b3b06aSBen Gardon 
1073a6a0b05dSBen Gardon 		if (wrprot || spte_ad_need_write_protect(iter.old_spte)) {
1074a6a0b05dSBen Gardon 			if (is_writable_pte(iter.old_spte))
1075a6a0b05dSBen Gardon 				new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
1076a6a0b05dSBen Gardon 			else
1077a6a0b05dSBen Gardon 				continue;
1078a6a0b05dSBen Gardon 		} else {
1079a6a0b05dSBen Gardon 			if (iter.old_spte & shadow_dirty_mask)
1080a6a0b05dSBen Gardon 				new_spte = iter.old_spte & ~shadow_dirty_mask;
1081a6a0b05dSBen Gardon 			else
1082a6a0b05dSBen Gardon 				continue;
1083a6a0b05dSBen Gardon 		}
1084a6a0b05dSBen Gardon 
1085a6a0b05dSBen Gardon 		tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
1086a6a0b05dSBen Gardon 	}
10877cca2d0bSBen Gardon 
10887cca2d0bSBen Gardon 	rcu_read_unlock();
1089a6a0b05dSBen Gardon }
1090a6a0b05dSBen Gardon 
1091a6a0b05dSBen Gardon /*
1092a6a0b05dSBen Gardon  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
1093a6a0b05dSBen Gardon  * set in mask, starting at gfn. The given memslot is expected to contain all
1094a6a0b05dSBen Gardon  * the GFNs represented by set bits in the mask. If AD bits are enabled,
1095a6a0b05dSBen Gardon  * clearing the dirty status will involve clearing the dirty bit on each SPTE
1096a6a0b05dSBen Gardon  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
1097a6a0b05dSBen Gardon  */
1098a6a0b05dSBen Gardon void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1099a6a0b05dSBen Gardon 				       struct kvm_memory_slot *slot,
1100a6a0b05dSBen Gardon 				       gfn_t gfn, unsigned long mask,
1101a6a0b05dSBen Gardon 				       bool wrprot)
1102a6a0b05dSBen Gardon {
1103a6a0b05dSBen Gardon 	struct kvm_mmu_page *root;
1104a6a0b05dSBen Gardon 	int root_as_id;
1105a6a0b05dSBen Gardon 
1106*531810caSBen Gardon 	lockdep_assert_held_write(&kvm->mmu_lock);
1107a6a0b05dSBen Gardon 	for_each_tdp_mmu_root(kvm, root) {
1108a6a0b05dSBen Gardon 		root_as_id = kvm_mmu_page_as_id(root);
1109a6a0b05dSBen Gardon 		if (root_as_id != slot->as_id)
1110a6a0b05dSBen Gardon 			continue;
1111a6a0b05dSBen Gardon 
1112a6a0b05dSBen Gardon 		clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
1113a6a0b05dSBen Gardon 	}
1114a6a0b05dSBen Gardon }
1115a6a0b05dSBen Gardon 
1116a6a0b05dSBen Gardon /*
1117a6a0b05dSBen Gardon  * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
1118a6a0b05dSBen Gardon  * only used for PML, and so will involve setting the dirty bit on each SPTE.
1119a6a0b05dSBen Gardon  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1120a6a0b05dSBen Gardon  */
1121a6a0b05dSBen Gardon static bool set_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1122a6a0b05dSBen Gardon 				gfn_t start, gfn_t end)
1123a6a0b05dSBen Gardon {
1124a6a0b05dSBen Gardon 	struct tdp_iter iter;
1125a6a0b05dSBen Gardon 	u64 new_spte;
1126a6a0b05dSBen Gardon 	bool spte_set = false;
1127a6a0b05dSBen Gardon 
11287cca2d0bSBen Gardon 	rcu_read_lock();
11297cca2d0bSBen Gardon 
1130a6a0b05dSBen Gardon 	tdp_root_for_each_pte(iter, root, start, end) {
11311af4a960SBen Gardon 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false))
11321af4a960SBen Gardon 			continue;
11331af4a960SBen Gardon 
11340f99ee2cSBen Gardon 		if (!is_shadow_present_pte(iter.old_spte) ||
11350f99ee2cSBen Gardon 		    iter.old_spte & shadow_dirty_mask)
1136a6a0b05dSBen Gardon 			continue;
1137a6a0b05dSBen Gardon 
1138a6a0b05dSBen Gardon 		new_spte = iter.old_spte | shadow_dirty_mask;
1139a6a0b05dSBen Gardon 
1140a6a0b05dSBen Gardon 		tdp_mmu_set_spte(kvm, &iter, new_spte);
1141a6a0b05dSBen Gardon 		spte_set = true;
1142a6a0b05dSBen Gardon 	}
1143a6a0b05dSBen Gardon 
11447cca2d0bSBen Gardon 	rcu_read_unlock();
1145a6a0b05dSBen Gardon 	return spte_set;
1146a6a0b05dSBen Gardon }
1147a6a0b05dSBen Gardon 
1148a6a0b05dSBen Gardon /*
1149a6a0b05dSBen Gardon  * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
1150a6a0b05dSBen Gardon  * only used for PML, and so will involve setting the dirty bit on each SPTE.
1151a6a0b05dSBen Gardon  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1152a6a0b05dSBen Gardon  */
1153a6a0b05dSBen Gardon bool kvm_tdp_mmu_slot_set_dirty(struct kvm *kvm, struct kvm_memory_slot *slot)
1154a6a0b05dSBen Gardon {
1155a6a0b05dSBen Gardon 	struct kvm_mmu_page *root;
1156a6a0b05dSBen Gardon 	int root_as_id;
1157a6a0b05dSBen Gardon 	bool spte_set = false;
1158a6a0b05dSBen Gardon 
1159a889ea54SBen Gardon 	for_each_tdp_mmu_root_yield_safe(kvm, root) {
1160a6a0b05dSBen Gardon 		root_as_id = kvm_mmu_page_as_id(root);
1161a6a0b05dSBen Gardon 		if (root_as_id != slot->as_id)
1162a6a0b05dSBen Gardon 			continue;
1163a6a0b05dSBen Gardon 
1164a6a0b05dSBen Gardon 		spte_set |= set_dirty_gfn_range(kvm, root, slot->base_gfn,
1165a6a0b05dSBen Gardon 				slot->base_gfn + slot->npages);
1166a6a0b05dSBen Gardon 	}
1167a6a0b05dSBen Gardon 	return spte_set;
1168a6a0b05dSBen Gardon }
1169a6a0b05dSBen Gardon 
117014881998SBen Gardon /*
117187aa9ec9SBen Gardon  * Clear leaf entries which could be replaced by large mappings, for
117287aa9ec9SBen Gardon  * GFNs within the slot.
117314881998SBen Gardon  */
117414881998SBen Gardon static void zap_collapsible_spte_range(struct kvm *kvm,
117514881998SBen Gardon 				       struct kvm_mmu_page *root,
117614881998SBen Gardon 				       gfn_t start, gfn_t end)
117714881998SBen Gardon {
117814881998SBen Gardon 	struct tdp_iter iter;
117914881998SBen Gardon 	kvm_pfn_t pfn;
118014881998SBen Gardon 	bool spte_set = false;
118114881998SBen Gardon 
11827cca2d0bSBen Gardon 	rcu_read_lock();
11837cca2d0bSBen Gardon 
118414881998SBen Gardon 	tdp_root_for_each_pte(iter, root, start, end) {
11851af4a960SBen Gardon 		if (tdp_mmu_iter_cond_resched(kvm, &iter, spte_set)) {
11861af4a960SBen Gardon 			spte_set = false;
11871af4a960SBen Gardon 			continue;
11881af4a960SBen Gardon 		}
11891af4a960SBen Gardon 
119014881998SBen Gardon 		if (!is_shadow_present_pte(iter.old_spte) ||
119187aa9ec9SBen Gardon 		    !is_last_spte(iter.old_spte, iter.level))
119214881998SBen Gardon 			continue;
119314881998SBen Gardon 
119414881998SBen Gardon 		pfn = spte_to_pfn(iter.old_spte);
119514881998SBen Gardon 		if (kvm_is_reserved_pfn(pfn) ||
119614881998SBen Gardon 		    !PageTransCompoundMap(pfn_to_page(pfn)))
119714881998SBen Gardon 			continue;
119814881998SBen Gardon 
119914881998SBen Gardon 		tdp_mmu_set_spte(kvm, &iter, 0);
120014881998SBen Gardon 
12011af4a960SBen Gardon 		spte_set = true;
120214881998SBen Gardon 	}
120314881998SBen Gardon 
12047cca2d0bSBen Gardon 	rcu_read_unlock();
120514881998SBen Gardon 	if (spte_set)
120614881998SBen Gardon 		kvm_flush_remote_tlbs(kvm);
120714881998SBen Gardon }
120814881998SBen Gardon 
120914881998SBen Gardon /*
121014881998SBen Gardon  * Clear non-leaf entries (and free associated page tables) which could
121114881998SBen Gardon  * be replaced by large mappings, for GFNs within the slot.
121214881998SBen Gardon  */
121314881998SBen Gardon void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm,
121414881998SBen Gardon 				       const struct kvm_memory_slot *slot)
121514881998SBen Gardon {
121614881998SBen Gardon 	struct kvm_mmu_page *root;
121714881998SBen Gardon 	int root_as_id;
121814881998SBen Gardon 
1219a889ea54SBen Gardon 	for_each_tdp_mmu_root_yield_safe(kvm, root) {
122014881998SBen Gardon 		root_as_id = kvm_mmu_page_as_id(root);
122114881998SBen Gardon 		if (root_as_id != slot->as_id)
122214881998SBen Gardon 			continue;
122314881998SBen Gardon 
122414881998SBen Gardon 		zap_collapsible_spte_range(kvm, root, slot->base_gfn,
122514881998SBen Gardon 					   slot->base_gfn + slot->npages);
122614881998SBen Gardon 	}
122714881998SBen Gardon }
122846044f72SBen Gardon 
122946044f72SBen Gardon /*
123046044f72SBen Gardon  * Removes write access on the last level SPTE mapping this GFN and unsets the
123146044f72SBen Gardon  * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
123246044f72SBen Gardon  * Returns true if an SPTE was set and a TLB flush is needed.
123346044f72SBen Gardon  */
123446044f72SBen Gardon static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
123546044f72SBen Gardon 			      gfn_t gfn)
123646044f72SBen Gardon {
123746044f72SBen Gardon 	struct tdp_iter iter;
123846044f72SBen Gardon 	u64 new_spte;
123946044f72SBen Gardon 	bool spte_set = false;
124046044f72SBen Gardon 
12417cca2d0bSBen Gardon 	rcu_read_lock();
12427cca2d0bSBen Gardon 
124346044f72SBen Gardon 	tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1) {
124446044f72SBen Gardon 		if (!is_writable_pte(iter.old_spte))
124546044f72SBen Gardon 			break;
124646044f72SBen Gardon 
124746044f72SBen Gardon 		new_spte = iter.old_spte &
124846044f72SBen Gardon 			~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
124946044f72SBen Gardon 
125046044f72SBen Gardon 		tdp_mmu_set_spte(kvm, &iter, new_spte);
125146044f72SBen Gardon 		spte_set = true;
125246044f72SBen Gardon 	}
125346044f72SBen Gardon 
12547cca2d0bSBen Gardon 	rcu_read_unlock();
12557cca2d0bSBen Gardon 
125646044f72SBen Gardon 	return spte_set;
125746044f72SBen Gardon }
125846044f72SBen Gardon 
125946044f72SBen Gardon /*
126046044f72SBen Gardon  * Removes write access on the last level SPTE mapping this GFN and unsets the
126146044f72SBen Gardon  * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
126246044f72SBen Gardon  * Returns true if an SPTE was set and a TLB flush is needed.
126346044f72SBen Gardon  */
126446044f72SBen Gardon bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
126546044f72SBen Gardon 				   struct kvm_memory_slot *slot, gfn_t gfn)
126646044f72SBen Gardon {
126746044f72SBen Gardon 	struct kvm_mmu_page *root;
126846044f72SBen Gardon 	int root_as_id;
126946044f72SBen Gardon 	bool spte_set = false;
127046044f72SBen Gardon 
1271*531810caSBen Gardon 	lockdep_assert_held_write(&kvm->mmu_lock);
127246044f72SBen Gardon 	for_each_tdp_mmu_root(kvm, root) {
127346044f72SBen Gardon 		root_as_id = kvm_mmu_page_as_id(root);
127446044f72SBen Gardon 		if (root_as_id != slot->as_id)
127546044f72SBen Gardon 			continue;
127646044f72SBen Gardon 
127746044f72SBen Gardon 		spte_set |= write_protect_gfn(kvm, root, gfn);
127846044f72SBen Gardon 	}
127946044f72SBen Gardon 	return spte_set;
128046044f72SBen Gardon }
128146044f72SBen Gardon 
128295fb5b02SBen Gardon /*
128395fb5b02SBen Gardon  * Return the level of the lowest level SPTE added to sptes.
128495fb5b02SBen Gardon  * That SPTE may be non-present.
128595fb5b02SBen Gardon  */
128639b4d43eSSean Christopherson int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
128739b4d43eSSean Christopherson 			 int *root_level)
128895fb5b02SBen Gardon {
128995fb5b02SBen Gardon 	struct tdp_iter iter;
129095fb5b02SBen Gardon 	struct kvm_mmu *mmu = vcpu->arch.mmu;
129195fb5b02SBen Gardon 	gfn_t gfn = addr >> PAGE_SHIFT;
12922aa07893SSean Christopherson 	int leaf = -1;
129395fb5b02SBen Gardon 
129439b4d43eSSean Christopherson 	*root_level = vcpu->arch.mmu->shadow_root_level;
129595fb5b02SBen Gardon 
12967cca2d0bSBen Gardon 	rcu_read_lock();
12977cca2d0bSBen Gardon 
129895fb5b02SBen Gardon 	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
129995fb5b02SBen Gardon 		leaf = iter.level;
1300dde81f94SSean Christopherson 		sptes[leaf] = iter.old_spte;
130195fb5b02SBen Gardon 	}
130295fb5b02SBen Gardon 
13037cca2d0bSBen Gardon 	rcu_read_unlock();
13047cca2d0bSBen Gardon 
130595fb5b02SBen Gardon 	return leaf;
130695fb5b02SBen Gardon }
1307