xref: /openbmc/linux/arch/x86/kvm/mmu/tdp_mmu.c (revision 33dd3574)
1fe5db27dSBen Gardon // SPDX-License-Identifier: GPL-2.0
2fe5db27dSBen Gardon 
302c00b3aSBen Gardon #include "mmu.h"
402c00b3aSBen Gardon #include "mmu_internal.h"
5bb18842eSBen Gardon #include "mmutrace.h"
62f2fad08SBen Gardon #include "tdp_iter.h"
7fe5db27dSBen Gardon #include "tdp_mmu.h"
802c00b3aSBen Gardon #include "spte.h"
9fe5db27dSBen Gardon 
10*33dd3574SBen Gardon #include <trace/events/kvm.h>
11*33dd3574SBen Gardon 
1295fb5b02SBen Gardon #ifdef CONFIG_X86_64
13fe5db27dSBen Gardon static bool __read_mostly tdp_mmu_enabled = false;
1495fb5b02SBen Gardon module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644);
1595fb5b02SBen Gardon #endif
16fe5db27dSBen Gardon 
17fe5db27dSBen Gardon static bool is_tdp_mmu_enabled(void)
18fe5db27dSBen Gardon {
19fe5db27dSBen Gardon #ifdef CONFIG_X86_64
20fe5db27dSBen Gardon 	return tdp_enabled && READ_ONCE(tdp_mmu_enabled);
21fe5db27dSBen Gardon #else
22fe5db27dSBen Gardon 	return false;
23fe5db27dSBen Gardon #endif /* CONFIG_X86_64 */
24fe5db27dSBen Gardon }
25fe5db27dSBen Gardon 
26fe5db27dSBen Gardon /* Initializes the TDP MMU for the VM, if enabled. */
27fe5db27dSBen Gardon void kvm_mmu_init_tdp_mmu(struct kvm *kvm)
28fe5db27dSBen Gardon {
29fe5db27dSBen Gardon 	if (!is_tdp_mmu_enabled())
30fe5db27dSBen Gardon 		return;
31fe5db27dSBen Gardon 
32fe5db27dSBen Gardon 	/* This should not be changed for the lifetime of the VM. */
33fe5db27dSBen Gardon 	kvm->arch.tdp_mmu_enabled = true;
3402c00b3aSBen Gardon 
3502c00b3aSBen Gardon 	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
3689c0fd49SBen Gardon 	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages);
37fe5db27dSBen Gardon }
38fe5db27dSBen Gardon 
39fe5db27dSBen Gardon void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
40fe5db27dSBen Gardon {
41fe5db27dSBen Gardon 	if (!kvm->arch.tdp_mmu_enabled)
42fe5db27dSBen Gardon 		return;
4302c00b3aSBen Gardon 
4402c00b3aSBen Gardon 	WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
4502c00b3aSBen Gardon }
4602c00b3aSBen Gardon 
4702c00b3aSBen Gardon #define for_each_tdp_mmu_root(_kvm, _root)			    \
4802c00b3aSBen Gardon 	list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link)
4902c00b3aSBen Gardon 
5002c00b3aSBen Gardon bool is_tdp_mmu_root(struct kvm *kvm, hpa_t hpa)
5102c00b3aSBen Gardon {
5202c00b3aSBen Gardon 	struct kvm_mmu_page *sp;
5302c00b3aSBen Gardon 
54c887c9b9SPaolo Bonzini 	if (!kvm->arch.tdp_mmu_enabled)
55c887c9b9SPaolo Bonzini 		return false;
56c887c9b9SPaolo Bonzini 	if (WARN_ON(!VALID_PAGE(hpa)))
57c887c9b9SPaolo Bonzini 		return false;
58c887c9b9SPaolo Bonzini 
5902c00b3aSBen Gardon 	sp = to_shadow_page(hpa);
60c887c9b9SPaolo Bonzini 	if (WARN_ON(!sp))
61c887c9b9SPaolo Bonzini 		return false;
6202c00b3aSBen Gardon 
6302c00b3aSBen Gardon 	return sp->tdp_mmu_page && sp->root_count;
6402c00b3aSBen Gardon }
6502c00b3aSBen Gardon 
66faaf05b0SBen Gardon static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
67063afacdSBen Gardon 			  gfn_t start, gfn_t end, bool can_yield);
68faaf05b0SBen Gardon 
6902c00b3aSBen Gardon void kvm_tdp_mmu_free_root(struct kvm *kvm, struct kvm_mmu_page *root)
7002c00b3aSBen Gardon {
71faaf05b0SBen Gardon 	gfn_t max_gfn = 1ULL << (boot_cpu_data.x86_phys_bits - PAGE_SHIFT);
72faaf05b0SBen Gardon 
7302c00b3aSBen Gardon 	lockdep_assert_held(&kvm->mmu_lock);
7402c00b3aSBen Gardon 
7502c00b3aSBen Gardon 	WARN_ON(root->root_count);
7602c00b3aSBen Gardon 	WARN_ON(!root->tdp_mmu_page);
7702c00b3aSBen Gardon 
7802c00b3aSBen Gardon 	list_del(&root->link);
7902c00b3aSBen Gardon 
80063afacdSBen Gardon 	zap_gfn_range(kvm, root, 0, max_gfn, false);
81faaf05b0SBen Gardon 
8202c00b3aSBen Gardon 	free_page((unsigned long)root->spt);
8302c00b3aSBen Gardon 	kmem_cache_free(mmu_page_header_cache, root);
8402c00b3aSBen Gardon }
8502c00b3aSBen Gardon 
8602c00b3aSBen Gardon static union kvm_mmu_page_role page_role_for_level(struct kvm_vcpu *vcpu,
8702c00b3aSBen Gardon 						   int level)
8802c00b3aSBen Gardon {
8902c00b3aSBen Gardon 	union kvm_mmu_page_role role;
9002c00b3aSBen Gardon 
9102c00b3aSBen Gardon 	role = vcpu->arch.mmu->mmu_role.base;
9202c00b3aSBen Gardon 	role.level = level;
9302c00b3aSBen Gardon 	role.direct = true;
9402c00b3aSBen Gardon 	role.gpte_is_8_bytes = true;
9502c00b3aSBen Gardon 	role.access = ACC_ALL;
9602c00b3aSBen Gardon 
9702c00b3aSBen Gardon 	return role;
9802c00b3aSBen Gardon }
9902c00b3aSBen Gardon 
10002c00b3aSBen Gardon static struct kvm_mmu_page *alloc_tdp_mmu_page(struct kvm_vcpu *vcpu, gfn_t gfn,
10102c00b3aSBen Gardon 					       int level)
10202c00b3aSBen Gardon {
10302c00b3aSBen Gardon 	struct kvm_mmu_page *sp;
10402c00b3aSBen Gardon 
10502c00b3aSBen Gardon 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
10602c00b3aSBen Gardon 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
10702c00b3aSBen Gardon 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
10802c00b3aSBen Gardon 
10902c00b3aSBen Gardon 	sp->role.word = page_role_for_level(vcpu, level).word;
11002c00b3aSBen Gardon 	sp->gfn = gfn;
11102c00b3aSBen Gardon 	sp->tdp_mmu_page = true;
11202c00b3aSBen Gardon 
113*33dd3574SBen Gardon 	trace_kvm_mmu_get_page(sp, true);
114*33dd3574SBen Gardon 
11502c00b3aSBen Gardon 	return sp;
11602c00b3aSBen Gardon }
11702c00b3aSBen Gardon 
11802c00b3aSBen Gardon static struct kvm_mmu_page *get_tdp_mmu_vcpu_root(struct kvm_vcpu *vcpu)
11902c00b3aSBen Gardon {
12002c00b3aSBen Gardon 	union kvm_mmu_page_role role;
12102c00b3aSBen Gardon 	struct kvm *kvm = vcpu->kvm;
12202c00b3aSBen Gardon 	struct kvm_mmu_page *root;
12302c00b3aSBen Gardon 
12402c00b3aSBen Gardon 	role = page_role_for_level(vcpu, vcpu->arch.mmu->shadow_root_level);
12502c00b3aSBen Gardon 
12602c00b3aSBen Gardon 	spin_lock(&kvm->mmu_lock);
12702c00b3aSBen Gardon 
12802c00b3aSBen Gardon 	/* Check for an existing root before allocating a new one. */
12902c00b3aSBen Gardon 	for_each_tdp_mmu_root(kvm, root) {
13002c00b3aSBen Gardon 		if (root->role.word == role.word) {
13102c00b3aSBen Gardon 			kvm_mmu_get_root(kvm, root);
13202c00b3aSBen Gardon 			spin_unlock(&kvm->mmu_lock);
13302c00b3aSBen Gardon 			return root;
13402c00b3aSBen Gardon 		}
13502c00b3aSBen Gardon 	}
13602c00b3aSBen Gardon 
13702c00b3aSBen Gardon 	root = alloc_tdp_mmu_page(vcpu, 0, vcpu->arch.mmu->shadow_root_level);
13802c00b3aSBen Gardon 	root->root_count = 1;
13902c00b3aSBen Gardon 
14002c00b3aSBen Gardon 	list_add(&root->link, &kvm->arch.tdp_mmu_roots);
14102c00b3aSBen Gardon 
14202c00b3aSBen Gardon 	spin_unlock(&kvm->mmu_lock);
14302c00b3aSBen Gardon 
14402c00b3aSBen Gardon 	return root;
14502c00b3aSBen Gardon }
14602c00b3aSBen Gardon 
14702c00b3aSBen Gardon hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu)
14802c00b3aSBen Gardon {
14902c00b3aSBen Gardon 	struct kvm_mmu_page *root;
15002c00b3aSBen Gardon 
15102c00b3aSBen Gardon 	root = get_tdp_mmu_vcpu_root(vcpu);
15202c00b3aSBen Gardon 	if (!root)
15302c00b3aSBen Gardon 		return INVALID_PAGE;
15402c00b3aSBen Gardon 
15502c00b3aSBen Gardon 	return __pa(root->spt);
156fe5db27dSBen Gardon }
1572f2fad08SBen Gardon 
1582f2fad08SBen Gardon static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
1592f2fad08SBen Gardon 				u64 old_spte, u64 new_spte, int level);
1602f2fad08SBen Gardon 
161faaf05b0SBen Gardon static int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
162faaf05b0SBen Gardon {
163faaf05b0SBen Gardon 	return sp->role.smm ? 1 : 0;
164faaf05b0SBen Gardon }
165faaf05b0SBen Gardon 
166f8e14497SBen Gardon static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level)
167f8e14497SBen Gardon {
168f8e14497SBen Gardon 	bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
169f8e14497SBen Gardon 
170f8e14497SBen Gardon 	if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level))
171f8e14497SBen Gardon 		return;
172f8e14497SBen Gardon 
173f8e14497SBen Gardon 	if (is_accessed_spte(old_spte) &&
174f8e14497SBen Gardon 	    (!is_accessed_spte(new_spte) || pfn_changed))
175f8e14497SBen Gardon 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
176f8e14497SBen Gardon }
177f8e14497SBen Gardon 
178a6a0b05dSBen Gardon static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn,
179a6a0b05dSBen Gardon 					  u64 old_spte, u64 new_spte, int level)
180a6a0b05dSBen Gardon {
181a6a0b05dSBen Gardon 	bool pfn_changed;
182a6a0b05dSBen Gardon 	struct kvm_memory_slot *slot;
183a6a0b05dSBen Gardon 
184a6a0b05dSBen Gardon 	if (level > PG_LEVEL_4K)
185a6a0b05dSBen Gardon 		return;
186a6a0b05dSBen Gardon 
187a6a0b05dSBen Gardon 	pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
188a6a0b05dSBen Gardon 
189a6a0b05dSBen Gardon 	if ((!is_writable_pte(old_spte) || pfn_changed) &&
190a6a0b05dSBen Gardon 	    is_writable_pte(new_spte)) {
191a6a0b05dSBen Gardon 		slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn);
192fb04a1edSPeter Xu 		mark_page_dirty_in_slot(kvm, slot, gfn);
193a6a0b05dSBen Gardon 	}
194a6a0b05dSBen Gardon }
195a6a0b05dSBen Gardon 
1962f2fad08SBen Gardon /**
1972f2fad08SBen Gardon  * handle_changed_spte - handle bookkeeping associated with an SPTE change
1982f2fad08SBen Gardon  * @kvm: kvm instance
1992f2fad08SBen Gardon  * @as_id: the address space of the paging structure the SPTE was a part of
2002f2fad08SBen Gardon  * @gfn: the base GFN that was mapped by the SPTE
2012f2fad08SBen Gardon  * @old_spte: The value of the SPTE before the change
2022f2fad08SBen Gardon  * @new_spte: The value of the SPTE after the change
2032f2fad08SBen Gardon  * @level: the level of the PT the SPTE is part of in the paging structure
2042f2fad08SBen Gardon  *
2052f2fad08SBen Gardon  * Handle bookkeeping that might result from the modification of a SPTE.
2062f2fad08SBen Gardon  * This function must be called for all TDP SPTE modifications.
2072f2fad08SBen Gardon  */
2082f2fad08SBen Gardon static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
2092f2fad08SBen Gardon 				u64 old_spte, u64 new_spte, int level)
2102f2fad08SBen Gardon {
2112f2fad08SBen Gardon 	bool was_present = is_shadow_present_pte(old_spte);
2122f2fad08SBen Gardon 	bool is_present = is_shadow_present_pte(new_spte);
2132f2fad08SBen Gardon 	bool was_leaf = was_present && is_last_spte(old_spte, level);
2142f2fad08SBen Gardon 	bool is_leaf = is_present && is_last_spte(new_spte, level);
2152f2fad08SBen Gardon 	bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
2162f2fad08SBen Gardon 	u64 *pt;
21789c0fd49SBen Gardon 	struct kvm_mmu_page *sp;
2182f2fad08SBen Gardon 	u64 old_child_spte;
2192f2fad08SBen Gardon 	int i;
2202f2fad08SBen Gardon 
2212f2fad08SBen Gardon 	WARN_ON(level > PT64_ROOT_MAX_LEVEL);
2222f2fad08SBen Gardon 	WARN_ON(level < PG_LEVEL_4K);
223764388ceSSean Christopherson 	WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
2242f2fad08SBen Gardon 
2252f2fad08SBen Gardon 	/*
2262f2fad08SBen Gardon 	 * If this warning were to trigger it would indicate that there was a
2272f2fad08SBen Gardon 	 * missing MMU notifier or a race with some notifier handler.
2282f2fad08SBen Gardon 	 * A present, leaf SPTE should never be directly replaced with another
2292f2fad08SBen Gardon 	 * present leaf SPTE pointing to a differnt PFN. A notifier handler
2302f2fad08SBen Gardon 	 * should be zapping the SPTE before the main MM's page table is
2312f2fad08SBen Gardon 	 * changed, or the SPTE should be zeroed, and the TLBs flushed by the
2322f2fad08SBen Gardon 	 * thread before replacement.
2332f2fad08SBen Gardon 	 */
2342f2fad08SBen Gardon 	if (was_leaf && is_leaf && pfn_changed) {
2352f2fad08SBen Gardon 		pr_err("Invalid SPTE change: cannot replace a present leaf\n"
2362f2fad08SBen Gardon 		       "SPTE with another present leaf SPTE mapping a\n"
2372f2fad08SBen Gardon 		       "different PFN!\n"
2382f2fad08SBen Gardon 		       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
2392f2fad08SBen Gardon 		       as_id, gfn, old_spte, new_spte, level);
2402f2fad08SBen Gardon 
2412f2fad08SBen Gardon 		/*
2422f2fad08SBen Gardon 		 * Crash the host to prevent error propagation and guest data
2432f2fad08SBen Gardon 		 * courruption.
2442f2fad08SBen Gardon 		 */
2452f2fad08SBen Gardon 		BUG();
2462f2fad08SBen Gardon 	}
2472f2fad08SBen Gardon 
2482f2fad08SBen Gardon 	if (old_spte == new_spte)
2492f2fad08SBen Gardon 		return;
2502f2fad08SBen Gardon 
2512f2fad08SBen Gardon 	/*
2522f2fad08SBen Gardon 	 * The only times a SPTE should be changed from a non-present to
2532f2fad08SBen Gardon 	 * non-present state is when an MMIO entry is installed/modified/
2542f2fad08SBen Gardon 	 * removed. In that case, there is nothing to do here.
2552f2fad08SBen Gardon 	 */
2562f2fad08SBen Gardon 	if (!was_present && !is_present) {
2572f2fad08SBen Gardon 		/*
2582f2fad08SBen Gardon 		 * If this change does not involve a MMIO SPTE, it is
2592f2fad08SBen Gardon 		 * unexpected. Log the change, though it should not impact the
2602f2fad08SBen Gardon 		 * guest since both the former and current SPTEs are nonpresent.
2612f2fad08SBen Gardon 		 */
2622f2fad08SBen Gardon 		if (WARN_ON(!is_mmio_spte(old_spte) && !is_mmio_spte(new_spte)))
2632f2fad08SBen Gardon 			pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
2642f2fad08SBen Gardon 			       "should not be replaced with another,\n"
2652f2fad08SBen Gardon 			       "different nonpresent SPTE, unless one or both\n"
2662f2fad08SBen Gardon 			       "are MMIO SPTEs.\n"
2672f2fad08SBen Gardon 			       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
2682f2fad08SBen Gardon 			       as_id, gfn, old_spte, new_spte, level);
2692f2fad08SBen Gardon 		return;
2702f2fad08SBen Gardon 	}
2712f2fad08SBen Gardon 
2722f2fad08SBen Gardon 
2732f2fad08SBen Gardon 	if (was_leaf && is_dirty_spte(old_spte) &&
2742f2fad08SBen Gardon 	    (!is_dirty_spte(new_spte) || pfn_changed))
2752f2fad08SBen Gardon 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
2762f2fad08SBen Gardon 
2772f2fad08SBen Gardon 	/*
2782f2fad08SBen Gardon 	 * Recursively handle child PTs if the change removed a subtree from
2792f2fad08SBen Gardon 	 * the paging structure.
2802f2fad08SBen Gardon 	 */
2812f2fad08SBen Gardon 	if (was_present && !was_leaf && (pfn_changed || !is_present)) {
2822f2fad08SBen Gardon 		pt = spte_to_child_pt(old_spte, level);
28389c0fd49SBen Gardon 		sp = sptep_to_sp(pt);
28489c0fd49SBen Gardon 
285*33dd3574SBen Gardon 		trace_kvm_mmu_prepare_zap_page(sp);
286*33dd3574SBen Gardon 
28789c0fd49SBen Gardon 		list_del(&sp->link);
2882f2fad08SBen Gardon 
28929cf0f50SBen Gardon 		if (sp->lpage_disallowed)
29029cf0f50SBen Gardon 			unaccount_huge_nx_page(kvm, sp);
29129cf0f50SBen Gardon 
2922f2fad08SBen Gardon 		for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
2932f2fad08SBen Gardon 			old_child_spte = READ_ONCE(*(pt + i));
2942f2fad08SBen Gardon 			WRITE_ONCE(*(pt + i), 0);
2952f2fad08SBen Gardon 			handle_changed_spte(kvm, as_id,
2962f2fad08SBen Gardon 				gfn + (i * KVM_PAGES_PER_HPAGE(level - 1)),
2972f2fad08SBen Gardon 				old_child_spte, 0, level - 1);
2982f2fad08SBen Gardon 		}
2992f2fad08SBen Gardon 
3002f2fad08SBen Gardon 		kvm_flush_remote_tlbs_with_address(kvm, gfn,
3012f2fad08SBen Gardon 						   KVM_PAGES_PER_HPAGE(level));
3022f2fad08SBen Gardon 
3032f2fad08SBen Gardon 		free_page((unsigned long)pt);
30489c0fd49SBen Gardon 		kmem_cache_free(mmu_page_header_cache, sp);
3052f2fad08SBen Gardon 	}
3062f2fad08SBen Gardon }
3072f2fad08SBen Gardon 
3082f2fad08SBen Gardon static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
3092f2fad08SBen Gardon 				u64 old_spte, u64 new_spte, int level)
3102f2fad08SBen Gardon {
3112f2fad08SBen Gardon 	__handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level);
312f8e14497SBen Gardon 	handle_changed_spte_acc_track(old_spte, new_spte, level);
313a6a0b05dSBen Gardon 	handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
314a6a0b05dSBen Gardon 				      new_spte, level);
3152f2fad08SBen Gardon }
316faaf05b0SBen Gardon 
317f8e14497SBen Gardon static inline void __tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
318a6a0b05dSBen Gardon 				      u64 new_spte, bool record_acc_track,
319a6a0b05dSBen Gardon 				      bool record_dirty_log)
320faaf05b0SBen Gardon {
321faaf05b0SBen Gardon 	u64 *root_pt = tdp_iter_root_pt(iter);
322faaf05b0SBen Gardon 	struct kvm_mmu_page *root = sptep_to_sp(root_pt);
323faaf05b0SBen Gardon 	int as_id = kvm_mmu_page_as_id(root);
324faaf05b0SBen Gardon 
325f8e14497SBen Gardon 	WRITE_ONCE(*iter->sptep, new_spte);
326faaf05b0SBen Gardon 
327f8e14497SBen Gardon 	__handle_changed_spte(kvm, as_id, iter->gfn, iter->old_spte, new_spte,
328faaf05b0SBen Gardon 			      iter->level);
329f8e14497SBen Gardon 	if (record_acc_track)
330f8e14497SBen Gardon 		handle_changed_spte_acc_track(iter->old_spte, new_spte,
331f8e14497SBen Gardon 					      iter->level);
332a6a0b05dSBen Gardon 	if (record_dirty_log)
333a6a0b05dSBen Gardon 		handle_changed_spte_dirty_log(kvm, as_id, iter->gfn,
334a6a0b05dSBen Gardon 					      iter->old_spte, new_spte,
335a6a0b05dSBen Gardon 					      iter->level);
336f8e14497SBen Gardon }
337f8e14497SBen Gardon 
338f8e14497SBen Gardon static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
339f8e14497SBen Gardon 				    u64 new_spte)
340f8e14497SBen Gardon {
341a6a0b05dSBen Gardon 	__tdp_mmu_set_spte(kvm, iter, new_spte, true, true);
342f8e14497SBen Gardon }
343f8e14497SBen Gardon 
344f8e14497SBen Gardon static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm,
345f8e14497SBen Gardon 						 struct tdp_iter *iter,
346f8e14497SBen Gardon 						 u64 new_spte)
347f8e14497SBen Gardon {
348a6a0b05dSBen Gardon 	__tdp_mmu_set_spte(kvm, iter, new_spte, false, true);
349a6a0b05dSBen Gardon }
350a6a0b05dSBen Gardon 
351a6a0b05dSBen Gardon static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm,
352a6a0b05dSBen Gardon 						 struct tdp_iter *iter,
353a6a0b05dSBen Gardon 						 u64 new_spte)
354a6a0b05dSBen Gardon {
355a6a0b05dSBen Gardon 	__tdp_mmu_set_spte(kvm, iter, new_spte, true, false);
356faaf05b0SBen Gardon }
357faaf05b0SBen Gardon 
358faaf05b0SBen Gardon #define tdp_root_for_each_pte(_iter, _root, _start, _end) \
359faaf05b0SBen Gardon 	for_each_tdp_pte(_iter, _root->spt, _root->role.level, _start, _end)
360faaf05b0SBen Gardon 
361f8e14497SBen Gardon #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end)	\
362f8e14497SBen Gardon 	tdp_root_for_each_pte(_iter, _root, _start, _end)		\
363f8e14497SBen Gardon 		if (!is_shadow_present_pte(_iter.old_spte) ||		\
364f8e14497SBen Gardon 		    !is_last_spte(_iter.old_spte, _iter.level))		\
365f8e14497SBen Gardon 			continue;					\
366f8e14497SBen Gardon 		else
367f8e14497SBen Gardon 
368bb18842eSBen Gardon #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end)		\
369bb18842eSBen Gardon 	for_each_tdp_pte(_iter, __va(_mmu->root_hpa),		\
370bb18842eSBen Gardon 			 _mmu->shadow_root_level, _start, _end)
371bb18842eSBen Gardon 
372faaf05b0SBen Gardon /*
373faaf05b0SBen Gardon  * Flush the TLB if the process should drop kvm->mmu_lock.
374faaf05b0SBen Gardon  * Return whether the caller still needs to flush the tlb.
375faaf05b0SBen Gardon  */
376faaf05b0SBen Gardon static bool tdp_mmu_iter_flush_cond_resched(struct kvm *kvm, struct tdp_iter *iter)
377faaf05b0SBen Gardon {
378faaf05b0SBen Gardon 	if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
379faaf05b0SBen Gardon 		kvm_flush_remote_tlbs(kvm);
380faaf05b0SBen Gardon 		cond_resched_lock(&kvm->mmu_lock);
381faaf05b0SBen Gardon 		tdp_iter_refresh_walk(iter);
382faaf05b0SBen Gardon 		return false;
383faaf05b0SBen Gardon 	} else {
384faaf05b0SBen Gardon 		return true;
385faaf05b0SBen Gardon 	}
386faaf05b0SBen Gardon }
387faaf05b0SBen Gardon 
388a6a0b05dSBen Gardon static void tdp_mmu_iter_cond_resched(struct kvm *kvm, struct tdp_iter *iter)
389a6a0b05dSBen Gardon {
390a6a0b05dSBen Gardon 	if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
391a6a0b05dSBen Gardon 		cond_resched_lock(&kvm->mmu_lock);
392a6a0b05dSBen Gardon 		tdp_iter_refresh_walk(iter);
393a6a0b05dSBen Gardon 	}
394a6a0b05dSBen Gardon }
395a6a0b05dSBen Gardon 
396faaf05b0SBen Gardon /*
397faaf05b0SBen Gardon  * Tears down the mappings for the range of gfns, [start, end), and frees the
398faaf05b0SBen Gardon  * non-root pages mapping GFNs strictly within that range. Returns true if
399faaf05b0SBen Gardon  * SPTEs have been cleared and a TLB flush is needed before releasing the
400faaf05b0SBen Gardon  * MMU lock.
401063afacdSBen Gardon  * If can_yield is true, will release the MMU lock and reschedule if the
402063afacdSBen Gardon  * scheduler needs the CPU or there is contention on the MMU lock. If this
403063afacdSBen Gardon  * function cannot yield, it will not release the MMU lock or reschedule and
404063afacdSBen Gardon  * the caller must ensure it does not supply too large a GFN range, or the
405063afacdSBen Gardon  * operation can cause a soft lockup.
406faaf05b0SBen Gardon  */
407faaf05b0SBen Gardon static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
408063afacdSBen Gardon 			  gfn_t start, gfn_t end, bool can_yield)
409faaf05b0SBen Gardon {
410faaf05b0SBen Gardon 	struct tdp_iter iter;
411faaf05b0SBen Gardon 	bool flush_needed = false;
412faaf05b0SBen Gardon 
413faaf05b0SBen Gardon 	tdp_root_for_each_pte(iter, root, start, end) {
414faaf05b0SBen Gardon 		if (!is_shadow_present_pte(iter.old_spte))
415faaf05b0SBen Gardon 			continue;
416faaf05b0SBen Gardon 
417faaf05b0SBen Gardon 		/*
418faaf05b0SBen Gardon 		 * If this is a non-last-level SPTE that covers a larger range
419faaf05b0SBen Gardon 		 * than should be zapped, continue, and zap the mappings at a
420faaf05b0SBen Gardon 		 * lower level.
421faaf05b0SBen Gardon 		 */
422faaf05b0SBen Gardon 		if ((iter.gfn < start ||
423faaf05b0SBen Gardon 		     iter.gfn + KVM_PAGES_PER_HPAGE(iter.level) > end) &&
424faaf05b0SBen Gardon 		    !is_last_spte(iter.old_spte, iter.level))
425faaf05b0SBen Gardon 			continue;
426faaf05b0SBen Gardon 
427faaf05b0SBen Gardon 		tdp_mmu_set_spte(kvm, &iter, 0);
428faaf05b0SBen Gardon 
429063afacdSBen Gardon 		if (can_yield)
430faaf05b0SBen Gardon 			flush_needed = tdp_mmu_iter_flush_cond_resched(kvm, &iter);
431063afacdSBen Gardon 		else
432063afacdSBen Gardon 			flush_needed = true;
433faaf05b0SBen Gardon 	}
434faaf05b0SBen Gardon 	return flush_needed;
435faaf05b0SBen Gardon }
436faaf05b0SBen Gardon 
437faaf05b0SBen Gardon /*
438faaf05b0SBen Gardon  * Tears down the mappings for the range of gfns, [start, end), and frees the
439faaf05b0SBen Gardon  * non-root pages mapping GFNs strictly within that range. Returns true if
440faaf05b0SBen Gardon  * SPTEs have been cleared and a TLB flush is needed before releasing the
441faaf05b0SBen Gardon  * MMU lock.
442faaf05b0SBen Gardon  */
443faaf05b0SBen Gardon bool kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, gfn_t start, gfn_t end)
444faaf05b0SBen Gardon {
445faaf05b0SBen Gardon 	struct kvm_mmu_page *root;
446faaf05b0SBen Gardon 	bool flush = false;
447faaf05b0SBen Gardon 
448faaf05b0SBen Gardon 	for_each_tdp_mmu_root(kvm, root) {
449faaf05b0SBen Gardon 		/*
450faaf05b0SBen Gardon 		 * Take a reference on the root so that it cannot be freed if
451faaf05b0SBen Gardon 		 * this thread releases the MMU lock and yields in this loop.
452faaf05b0SBen Gardon 		 */
453faaf05b0SBen Gardon 		kvm_mmu_get_root(kvm, root);
454faaf05b0SBen Gardon 
455063afacdSBen Gardon 		flush |= zap_gfn_range(kvm, root, start, end, true);
456faaf05b0SBen Gardon 
457faaf05b0SBen Gardon 		kvm_mmu_put_root(kvm, root);
458faaf05b0SBen Gardon 	}
459faaf05b0SBen Gardon 
460faaf05b0SBen Gardon 	return flush;
461faaf05b0SBen Gardon }
462faaf05b0SBen Gardon 
463faaf05b0SBen Gardon void kvm_tdp_mmu_zap_all(struct kvm *kvm)
464faaf05b0SBen Gardon {
465faaf05b0SBen Gardon 	gfn_t max_gfn = 1ULL << (boot_cpu_data.x86_phys_bits - PAGE_SHIFT);
466faaf05b0SBen Gardon 	bool flush;
467faaf05b0SBen Gardon 
468faaf05b0SBen Gardon 	flush = kvm_tdp_mmu_zap_gfn_range(kvm, 0, max_gfn);
469faaf05b0SBen Gardon 	if (flush)
470faaf05b0SBen Gardon 		kvm_flush_remote_tlbs(kvm);
471faaf05b0SBen Gardon }
472bb18842eSBen Gardon 
473bb18842eSBen Gardon /*
474bb18842eSBen Gardon  * Installs a last-level SPTE to handle a TDP page fault.
475bb18842eSBen Gardon  * (NPT/EPT violation/misconfiguration)
476bb18842eSBen Gardon  */
477bb18842eSBen Gardon static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, int write,
478bb18842eSBen Gardon 					  int map_writable,
479bb18842eSBen Gardon 					  struct tdp_iter *iter,
480bb18842eSBen Gardon 					  kvm_pfn_t pfn, bool prefault)
481bb18842eSBen Gardon {
482bb18842eSBen Gardon 	u64 new_spte;
483bb18842eSBen Gardon 	int ret = 0;
484bb18842eSBen Gardon 	int make_spte_ret = 0;
485bb18842eSBen Gardon 
486bb18842eSBen Gardon 	if (unlikely(is_noslot_pfn(pfn))) {
487bb18842eSBen Gardon 		new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
488bb18842eSBen Gardon 		trace_mark_mmio_spte(iter->sptep, iter->gfn, new_spte);
489*33dd3574SBen Gardon 	} else {
490bb18842eSBen Gardon 		make_spte_ret = make_spte(vcpu, ACC_ALL, iter->level, iter->gfn,
491bb18842eSBen Gardon 					 pfn, iter->old_spte, prefault, true,
492bb18842eSBen Gardon 					 map_writable, !shadow_accessed_mask,
493bb18842eSBen Gardon 					 &new_spte);
494*33dd3574SBen Gardon 		trace_kvm_mmu_set_spte(iter->level, iter->gfn, iter->sptep);
495*33dd3574SBen Gardon 	}
496bb18842eSBen Gardon 
497bb18842eSBen Gardon 	if (new_spte == iter->old_spte)
498bb18842eSBen Gardon 		ret = RET_PF_SPURIOUS;
499bb18842eSBen Gardon 	else
500bb18842eSBen Gardon 		tdp_mmu_set_spte(vcpu->kvm, iter, new_spte);
501bb18842eSBen Gardon 
502bb18842eSBen Gardon 	/*
503bb18842eSBen Gardon 	 * If the page fault was caused by a write but the page is write
504bb18842eSBen Gardon 	 * protected, emulation is needed. If the emulation was skipped,
505bb18842eSBen Gardon 	 * the vCPU would have the same fault again.
506bb18842eSBen Gardon 	 */
507bb18842eSBen Gardon 	if (make_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
508bb18842eSBen Gardon 		if (write)
509bb18842eSBen Gardon 			ret = RET_PF_EMULATE;
510bb18842eSBen Gardon 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
511bb18842eSBen Gardon 	}
512bb18842eSBen Gardon 
513bb18842eSBen Gardon 	/* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
514bb18842eSBen Gardon 	if (unlikely(is_mmio_spte(new_spte)))
515bb18842eSBen Gardon 		ret = RET_PF_EMULATE;
516bb18842eSBen Gardon 
517bb18842eSBen Gardon 	trace_kvm_mmu_set_spte(iter->level, iter->gfn, iter->sptep);
518bb18842eSBen Gardon 	if (!prefault)
519bb18842eSBen Gardon 		vcpu->stat.pf_fixed++;
520bb18842eSBen Gardon 
521bb18842eSBen Gardon 	return ret;
522bb18842eSBen Gardon }
523bb18842eSBen Gardon 
524bb18842eSBen Gardon /*
525bb18842eSBen Gardon  * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
526bb18842eSBen Gardon  * page tables and SPTEs to translate the faulting guest physical address.
527bb18842eSBen Gardon  */
528bb18842eSBen Gardon int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
529bb18842eSBen Gardon 		    int map_writable, int max_level, kvm_pfn_t pfn,
530bb18842eSBen Gardon 		    bool prefault)
531bb18842eSBen Gardon {
532bb18842eSBen Gardon 	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
533bb18842eSBen Gardon 	bool write = error_code & PFERR_WRITE_MASK;
534bb18842eSBen Gardon 	bool exec = error_code & PFERR_FETCH_MASK;
535bb18842eSBen Gardon 	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
536bb18842eSBen Gardon 	struct kvm_mmu *mmu = vcpu->arch.mmu;
537bb18842eSBen Gardon 	struct tdp_iter iter;
53889c0fd49SBen Gardon 	struct kvm_mmu_page *sp;
539bb18842eSBen Gardon 	u64 *child_pt;
540bb18842eSBen Gardon 	u64 new_spte;
541bb18842eSBen Gardon 	int ret;
542bb18842eSBen Gardon 	gfn_t gfn = gpa >> PAGE_SHIFT;
543bb18842eSBen Gardon 	int level;
544bb18842eSBen Gardon 	int req_level;
545bb18842eSBen Gardon 
546bb18842eSBen Gardon 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
547bb18842eSBen Gardon 		return RET_PF_RETRY;
548bb18842eSBen Gardon 	if (WARN_ON(!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)))
549bb18842eSBen Gardon 		return RET_PF_RETRY;
550bb18842eSBen Gardon 
551bb18842eSBen Gardon 	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
552bb18842eSBen Gardon 					huge_page_disallowed, &req_level);
553bb18842eSBen Gardon 
554bb18842eSBen Gardon 	trace_kvm_mmu_spte_requested(gpa, level, pfn);
555bb18842eSBen Gardon 	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
556bb18842eSBen Gardon 		if (nx_huge_page_workaround_enabled)
557bb18842eSBen Gardon 			disallowed_hugepage_adjust(iter.old_spte, gfn,
558bb18842eSBen Gardon 						   iter.level, &pfn, &level);
559bb18842eSBen Gardon 
560bb18842eSBen Gardon 		if (iter.level == level)
561bb18842eSBen Gardon 			break;
562bb18842eSBen Gardon 
563bb18842eSBen Gardon 		/*
564bb18842eSBen Gardon 		 * If there is an SPTE mapping a large page at a higher level
565bb18842eSBen Gardon 		 * than the target, that SPTE must be cleared and replaced
566bb18842eSBen Gardon 		 * with a non-leaf SPTE.
567bb18842eSBen Gardon 		 */
568bb18842eSBen Gardon 		if (is_shadow_present_pte(iter.old_spte) &&
569bb18842eSBen Gardon 		    is_large_pte(iter.old_spte)) {
570bb18842eSBen Gardon 			tdp_mmu_set_spte(vcpu->kvm, &iter, 0);
571bb18842eSBen Gardon 
572bb18842eSBen Gardon 			kvm_flush_remote_tlbs_with_address(vcpu->kvm, iter.gfn,
573bb18842eSBen Gardon 					KVM_PAGES_PER_HPAGE(iter.level));
574bb18842eSBen Gardon 
575bb18842eSBen Gardon 			/*
576bb18842eSBen Gardon 			 * The iter must explicitly re-read the spte here
577bb18842eSBen Gardon 			 * because the new value informs the !present
578bb18842eSBen Gardon 			 * path below.
579bb18842eSBen Gardon 			 */
580bb18842eSBen Gardon 			iter.old_spte = READ_ONCE(*iter.sptep);
581bb18842eSBen Gardon 		}
582bb18842eSBen Gardon 
583bb18842eSBen Gardon 		if (!is_shadow_present_pte(iter.old_spte)) {
58489c0fd49SBen Gardon 			sp = alloc_tdp_mmu_page(vcpu, iter.gfn, iter.level);
58589c0fd49SBen Gardon 			list_add(&sp->link, &vcpu->kvm->arch.tdp_mmu_pages);
58689c0fd49SBen Gardon 			child_pt = sp->spt;
587bb18842eSBen Gardon 			clear_page(child_pt);
588bb18842eSBen Gardon 			new_spte = make_nonleaf_spte(child_pt,
589bb18842eSBen Gardon 						     !shadow_accessed_mask);
590bb18842eSBen Gardon 
591bb18842eSBen Gardon 			trace_kvm_mmu_get_page(sp, true);
59229cf0f50SBen Gardon 			if (huge_page_disallowed && req_level >= iter.level)
59329cf0f50SBen Gardon 				account_huge_nx_page(vcpu->kvm, sp);
59429cf0f50SBen Gardon 
595bb18842eSBen Gardon 			tdp_mmu_set_spte(vcpu->kvm, &iter, new_spte);
596bb18842eSBen Gardon 		}
597bb18842eSBen Gardon 	}
598bb18842eSBen Gardon 
599bb18842eSBen Gardon 	if (WARN_ON(iter.level != level))
600bb18842eSBen Gardon 		return RET_PF_RETRY;
601bb18842eSBen Gardon 
602bb18842eSBen Gardon 	ret = tdp_mmu_map_handle_target_level(vcpu, write, map_writable, &iter,
603bb18842eSBen Gardon 					      pfn, prefault);
604bb18842eSBen Gardon 
605bb18842eSBen Gardon 	return ret;
606bb18842eSBen Gardon }
607063afacdSBen Gardon 
608063afacdSBen Gardon static int kvm_tdp_mmu_handle_hva_range(struct kvm *kvm, unsigned long start,
609063afacdSBen Gardon 		unsigned long end, unsigned long data,
610063afacdSBen Gardon 		int (*handler)(struct kvm *kvm, struct kvm_memory_slot *slot,
611063afacdSBen Gardon 			       struct kvm_mmu_page *root, gfn_t start,
612063afacdSBen Gardon 			       gfn_t end, unsigned long data))
613063afacdSBen Gardon {
614063afacdSBen Gardon 	struct kvm_memslots *slots;
615063afacdSBen Gardon 	struct kvm_memory_slot *memslot;
616063afacdSBen Gardon 	struct kvm_mmu_page *root;
617063afacdSBen Gardon 	int ret = 0;
618063afacdSBen Gardon 	int as_id;
619063afacdSBen Gardon 
620063afacdSBen Gardon 	for_each_tdp_mmu_root(kvm, root) {
621063afacdSBen Gardon 		/*
622063afacdSBen Gardon 		 * Take a reference on the root so that it cannot be freed if
623063afacdSBen Gardon 		 * this thread releases the MMU lock and yields in this loop.
624063afacdSBen Gardon 		 */
625063afacdSBen Gardon 		kvm_mmu_get_root(kvm, root);
626063afacdSBen Gardon 
627063afacdSBen Gardon 		as_id = kvm_mmu_page_as_id(root);
628063afacdSBen Gardon 		slots = __kvm_memslots(kvm, as_id);
629063afacdSBen Gardon 		kvm_for_each_memslot(memslot, slots) {
630063afacdSBen Gardon 			unsigned long hva_start, hva_end;
631063afacdSBen Gardon 			gfn_t gfn_start, gfn_end;
632063afacdSBen Gardon 
633063afacdSBen Gardon 			hva_start = max(start, memslot->userspace_addr);
634063afacdSBen Gardon 			hva_end = min(end, memslot->userspace_addr +
635063afacdSBen Gardon 				      (memslot->npages << PAGE_SHIFT));
636063afacdSBen Gardon 			if (hva_start >= hva_end)
637063afacdSBen Gardon 				continue;
638063afacdSBen Gardon 			/*
639063afacdSBen Gardon 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
640063afacdSBen Gardon 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
641063afacdSBen Gardon 			 */
642063afacdSBen Gardon 			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
643063afacdSBen Gardon 			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
644063afacdSBen Gardon 
645063afacdSBen Gardon 			ret |= handler(kvm, memslot, root, gfn_start,
646063afacdSBen Gardon 				       gfn_end, data);
647063afacdSBen Gardon 		}
648063afacdSBen Gardon 
649063afacdSBen Gardon 		kvm_mmu_put_root(kvm, root);
650063afacdSBen Gardon 	}
651063afacdSBen Gardon 
652063afacdSBen Gardon 	return ret;
653063afacdSBen Gardon }
654063afacdSBen Gardon 
655063afacdSBen Gardon static int zap_gfn_range_hva_wrapper(struct kvm *kvm,
656063afacdSBen Gardon 				     struct kvm_memory_slot *slot,
657063afacdSBen Gardon 				     struct kvm_mmu_page *root, gfn_t start,
658063afacdSBen Gardon 				     gfn_t end, unsigned long unused)
659063afacdSBen Gardon {
660063afacdSBen Gardon 	return zap_gfn_range(kvm, root, start, end, false);
661063afacdSBen Gardon }
662063afacdSBen Gardon 
663063afacdSBen Gardon int kvm_tdp_mmu_zap_hva_range(struct kvm *kvm, unsigned long start,
664063afacdSBen Gardon 			      unsigned long end)
665063afacdSBen Gardon {
666063afacdSBen Gardon 	return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
667063afacdSBen Gardon 					    zap_gfn_range_hva_wrapper);
668063afacdSBen Gardon }
669f8e14497SBen Gardon 
670f8e14497SBen Gardon /*
671f8e14497SBen Gardon  * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
672f8e14497SBen Gardon  * if any of the GFNs in the range have been accessed.
673f8e14497SBen Gardon  */
674f8e14497SBen Gardon static int age_gfn_range(struct kvm *kvm, struct kvm_memory_slot *slot,
675f8e14497SBen Gardon 			 struct kvm_mmu_page *root, gfn_t start, gfn_t end,
676f8e14497SBen Gardon 			 unsigned long unused)
677f8e14497SBen Gardon {
678f8e14497SBen Gardon 	struct tdp_iter iter;
679f8e14497SBen Gardon 	int young = 0;
680f8e14497SBen Gardon 	u64 new_spte = 0;
681f8e14497SBen Gardon 
682f8e14497SBen Gardon 	tdp_root_for_each_leaf_pte(iter, root, start, end) {
683f8e14497SBen Gardon 		/*
684f8e14497SBen Gardon 		 * If we have a non-accessed entry we don't need to change the
685f8e14497SBen Gardon 		 * pte.
686f8e14497SBen Gardon 		 */
687f8e14497SBen Gardon 		if (!is_accessed_spte(iter.old_spte))
688f8e14497SBen Gardon 			continue;
689f8e14497SBen Gardon 
690f8e14497SBen Gardon 		new_spte = iter.old_spte;
691f8e14497SBen Gardon 
692f8e14497SBen Gardon 		if (spte_ad_enabled(new_spte)) {
693f8e14497SBen Gardon 			clear_bit((ffs(shadow_accessed_mask) - 1),
694f8e14497SBen Gardon 				  (unsigned long *)&new_spte);
695f8e14497SBen Gardon 		} else {
696f8e14497SBen Gardon 			/*
697f8e14497SBen Gardon 			 * Capture the dirty status of the page, so that it doesn't get
698f8e14497SBen Gardon 			 * lost when the SPTE is marked for access tracking.
699f8e14497SBen Gardon 			 */
700f8e14497SBen Gardon 			if (is_writable_pte(new_spte))
701f8e14497SBen Gardon 				kvm_set_pfn_dirty(spte_to_pfn(new_spte));
702f8e14497SBen Gardon 
703f8e14497SBen Gardon 			new_spte = mark_spte_for_access_track(new_spte);
704f8e14497SBen Gardon 		}
705a6a0b05dSBen Gardon 		new_spte &= ~shadow_dirty_mask;
706f8e14497SBen Gardon 
707f8e14497SBen Gardon 		tdp_mmu_set_spte_no_acc_track(kvm, &iter, new_spte);
708f8e14497SBen Gardon 		young = 1;
709*33dd3574SBen Gardon 
710*33dd3574SBen Gardon 		trace_kvm_age_page(iter.gfn, iter.level, slot, young);
711f8e14497SBen Gardon 	}
712f8e14497SBen Gardon 
713f8e14497SBen Gardon 	return young;
714f8e14497SBen Gardon }
715f8e14497SBen Gardon 
716f8e14497SBen Gardon int kvm_tdp_mmu_age_hva_range(struct kvm *kvm, unsigned long start,
717f8e14497SBen Gardon 			      unsigned long end)
718f8e14497SBen Gardon {
719f8e14497SBen Gardon 	return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
720f8e14497SBen Gardon 					    age_gfn_range);
721f8e14497SBen Gardon }
722f8e14497SBen Gardon 
723f8e14497SBen Gardon static int test_age_gfn(struct kvm *kvm, struct kvm_memory_slot *slot,
724f8e14497SBen Gardon 			struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
725f8e14497SBen Gardon 			unsigned long unused2)
726f8e14497SBen Gardon {
727f8e14497SBen Gardon 	struct tdp_iter iter;
728f8e14497SBen Gardon 
729f8e14497SBen Gardon 	tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1)
730f8e14497SBen Gardon 		if (is_accessed_spte(iter.old_spte))
731f8e14497SBen Gardon 			return 1;
732f8e14497SBen Gardon 
733f8e14497SBen Gardon 	return 0;
734f8e14497SBen Gardon }
735f8e14497SBen Gardon 
736f8e14497SBen Gardon int kvm_tdp_mmu_test_age_hva(struct kvm *kvm, unsigned long hva)
737f8e14497SBen Gardon {
738f8e14497SBen Gardon 	return kvm_tdp_mmu_handle_hva_range(kvm, hva, hva + 1, 0,
739f8e14497SBen Gardon 					    test_age_gfn);
740f8e14497SBen Gardon }
7411d8dd6b3SBen Gardon 
7421d8dd6b3SBen Gardon /*
7431d8dd6b3SBen Gardon  * Handle the changed_pte MMU notifier for the TDP MMU.
7441d8dd6b3SBen Gardon  * data is a pointer to the new pte_t mapping the HVA specified by the MMU
7451d8dd6b3SBen Gardon  * notifier.
7461d8dd6b3SBen Gardon  * Returns non-zero if a flush is needed before releasing the MMU lock.
7471d8dd6b3SBen Gardon  */
7481d8dd6b3SBen Gardon static int set_tdp_spte(struct kvm *kvm, struct kvm_memory_slot *slot,
7491d8dd6b3SBen Gardon 			struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
7501d8dd6b3SBen Gardon 			unsigned long data)
7511d8dd6b3SBen Gardon {
7521d8dd6b3SBen Gardon 	struct tdp_iter iter;
7531d8dd6b3SBen Gardon 	pte_t *ptep = (pte_t *)data;
7541d8dd6b3SBen Gardon 	kvm_pfn_t new_pfn;
7551d8dd6b3SBen Gardon 	u64 new_spte;
7561d8dd6b3SBen Gardon 	int need_flush = 0;
7571d8dd6b3SBen Gardon 
7581d8dd6b3SBen Gardon 	WARN_ON(pte_huge(*ptep));
7591d8dd6b3SBen Gardon 
7601d8dd6b3SBen Gardon 	new_pfn = pte_pfn(*ptep);
7611d8dd6b3SBen Gardon 
7621d8dd6b3SBen Gardon 	tdp_root_for_each_pte(iter, root, gfn, gfn + 1) {
7631d8dd6b3SBen Gardon 		if (iter.level != PG_LEVEL_4K)
7641d8dd6b3SBen Gardon 			continue;
7651d8dd6b3SBen Gardon 
7661d8dd6b3SBen Gardon 		if (!is_shadow_present_pte(iter.old_spte))
7671d8dd6b3SBen Gardon 			break;
7681d8dd6b3SBen Gardon 
7691d8dd6b3SBen Gardon 		tdp_mmu_set_spte(kvm, &iter, 0);
7701d8dd6b3SBen Gardon 
7711d8dd6b3SBen Gardon 		kvm_flush_remote_tlbs_with_address(kvm, iter.gfn, 1);
7721d8dd6b3SBen Gardon 
7731d8dd6b3SBen Gardon 		if (!pte_write(*ptep)) {
7741d8dd6b3SBen Gardon 			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
7751d8dd6b3SBen Gardon 					iter.old_spte, new_pfn);
7761d8dd6b3SBen Gardon 
7771d8dd6b3SBen Gardon 			tdp_mmu_set_spte(kvm, &iter, new_spte);
7781d8dd6b3SBen Gardon 		}
7791d8dd6b3SBen Gardon 
7801d8dd6b3SBen Gardon 		need_flush = 1;
7811d8dd6b3SBen Gardon 	}
7821d8dd6b3SBen Gardon 
7831d8dd6b3SBen Gardon 	if (need_flush)
7841d8dd6b3SBen Gardon 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
7851d8dd6b3SBen Gardon 
7861d8dd6b3SBen Gardon 	return 0;
7871d8dd6b3SBen Gardon }
7881d8dd6b3SBen Gardon 
7891d8dd6b3SBen Gardon int kvm_tdp_mmu_set_spte_hva(struct kvm *kvm, unsigned long address,
7901d8dd6b3SBen Gardon 			     pte_t *host_ptep)
7911d8dd6b3SBen Gardon {
7921d8dd6b3SBen Gardon 	return kvm_tdp_mmu_handle_hva_range(kvm, address, address + 1,
7931d8dd6b3SBen Gardon 					    (unsigned long)host_ptep,
7941d8dd6b3SBen Gardon 					    set_tdp_spte);
7951d8dd6b3SBen Gardon }
7961d8dd6b3SBen Gardon 
797a6a0b05dSBen Gardon /*
798a6a0b05dSBen Gardon  * Remove write access from all the SPTEs mapping GFNs [start, end). If
799a6a0b05dSBen Gardon  * skip_4k is set, SPTEs that map 4k pages, will not be write-protected.
800a6a0b05dSBen Gardon  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
801a6a0b05dSBen Gardon  */
802a6a0b05dSBen Gardon static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
803a6a0b05dSBen Gardon 			     gfn_t start, gfn_t end, int min_level)
804a6a0b05dSBen Gardon {
805a6a0b05dSBen Gardon 	struct tdp_iter iter;
806a6a0b05dSBen Gardon 	u64 new_spte;
807a6a0b05dSBen Gardon 	bool spte_set = false;
808a6a0b05dSBen Gardon 
809a6a0b05dSBen Gardon 	BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
810a6a0b05dSBen Gardon 
811a6a0b05dSBen Gardon 	for_each_tdp_pte_min_level(iter, root->spt, root->role.level,
812a6a0b05dSBen Gardon 				   min_level, start, end) {
813a6a0b05dSBen Gardon 		if (!is_shadow_present_pte(iter.old_spte) ||
814a6a0b05dSBen Gardon 		    !is_last_spte(iter.old_spte, iter.level))
815a6a0b05dSBen Gardon 			continue;
816a6a0b05dSBen Gardon 
817a6a0b05dSBen Gardon 		new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
818a6a0b05dSBen Gardon 
819a6a0b05dSBen Gardon 		tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
820a6a0b05dSBen Gardon 		spte_set = true;
821a6a0b05dSBen Gardon 
822a6a0b05dSBen Gardon 		tdp_mmu_iter_cond_resched(kvm, &iter);
823a6a0b05dSBen Gardon 	}
824a6a0b05dSBen Gardon 	return spte_set;
825a6a0b05dSBen Gardon }
826a6a0b05dSBen Gardon 
827a6a0b05dSBen Gardon /*
828a6a0b05dSBen Gardon  * Remove write access from all the SPTEs mapping GFNs in the memslot. Will
829a6a0b05dSBen Gardon  * only affect leaf SPTEs down to min_level.
830a6a0b05dSBen Gardon  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
831a6a0b05dSBen Gardon  */
832a6a0b05dSBen Gardon bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, struct kvm_memory_slot *slot,
833a6a0b05dSBen Gardon 			     int min_level)
834a6a0b05dSBen Gardon {
835a6a0b05dSBen Gardon 	struct kvm_mmu_page *root;
836a6a0b05dSBen Gardon 	int root_as_id;
837a6a0b05dSBen Gardon 	bool spte_set = false;
838a6a0b05dSBen Gardon 
839a6a0b05dSBen Gardon 	for_each_tdp_mmu_root(kvm, root) {
840a6a0b05dSBen Gardon 		root_as_id = kvm_mmu_page_as_id(root);
841a6a0b05dSBen Gardon 		if (root_as_id != slot->as_id)
842a6a0b05dSBen Gardon 			continue;
843a6a0b05dSBen Gardon 
844a6a0b05dSBen Gardon 		/*
845a6a0b05dSBen Gardon 		 * Take a reference on the root so that it cannot be freed if
846a6a0b05dSBen Gardon 		 * this thread releases the MMU lock and yields in this loop.
847a6a0b05dSBen Gardon 		 */
848a6a0b05dSBen Gardon 		kvm_mmu_get_root(kvm, root);
849a6a0b05dSBen Gardon 
850a6a0b05dSBen Gardon 		spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
851a6a0b05dSBen Gardon 			     slot->base_gfn + slot->npages, min_level);
852a6a0b05dSBen Gardon 
853a6a0b05dSBen Gardon 		kvm_mmu_put_root(kvm, root);
854a6a0b05dSBen Gardon 	}
855a6a0b05dSBen Gardon 
856a6a0b05dSBen Gardon 	return spte_set;
857a6a0b05dSBen Gardon }
858a6a0b05dSBen Gardon 
859a6a0b05dSBen Gardon /*
860a6a0b05dSBen Gardon  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
861a6a0b05dSBen Gardon  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
862a6a0b05dSBen Gardon  * If AD bits are not enabled, this will require clearing the writable bit on
863a6a0b05dSBen Gardon  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
864a6a0b05dSBen Gardon  * be flushed.
865a6a0b05dSBen Gardon  */
866a6a0b05dSBen Gardon static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
867a6a0b05dSBen Gardon 			   gfn_t start, gfn_t end)
868a6a0b05dSBen Gardon {
869a6a0b05dSBen Gardon 	struct tdp_iter iter;
870a6a0b05dSBen Gardon 	u64 new_spte;
871a6a0b05dSBen Gardon 	bool spte_set = false;
872a6a0b05dSBen Gardon 
873a6a0b05dSBen Gardon 	tdp_root_for_each_leaf_pte(iter, root, start, end) {
874a6a0b05dSBen Gardon 		if (spte_ad_need_write_protect(iter.old_spte)) {
875a6a0b05dSBen Gardon 			if (is_writable_pte(iter.old_spte))
876a6a0b05dSBen Gardon 				new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
877a6a0b05dSBen Gardon 			else
878a6a0b05dSBen Gardon 				continue;
879a6a0b05dSBen Gardon 		} else {
880a6a0b05dSBen Gardon 			if (iter.old_spte & shadow_dirty_mask)
881a6a0b05dSBen Gardon 				new_spte = iter.old_spte & ~shadow_dirty_mask;
882a6a0b05dSBen Gardon 			else
883a6a0b05dSBen Gardon 				continue;
884a6a0b05dSBen Gardon 		}
885a6a0b05dSBen Gardon 
886a6a0b05dSBen Gardon 		tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
887a6a0b05dSBen Gardon 		spte_set = true;
888a6a0b05dSBen Gardon 
889a6a0b05dSBen Gardon 		tdp_mmu_iter_cond_resched(kvm, &iter);
890a6a0b05dSBen Gardon 	}
891a6a0b05dSBen Gardon 	return spte_set;
892a6a0b05dSBen Gardon }
893a6a0b05dSBen Gardon 
894a6a0b05dSBen Gardon /*
895a6a0b05dSBen Gardon  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
896a6a0b05dSBen Gardon  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
897a6a0b05dSBen Gardon  * If AD bits are not enabled, this will require clearing the writable bit on
898a6a0b05dSBen Gardon  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
899a6a0b05dSBen Gardon  * be flushed.
900a6a0b05dSBen Gardon  */
901a6a0b05dSBen Gardon bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, struct kvm_memory_slot *slot)
902a6a0b05dSBen Gardon {
903a6a0b05dSBen Gardon 	struct kvm_mmu_page *root;
904a6a0b05dSBen Gardon 	int root_as_id;
905a6a0b05dSBen Gardon 	bool spte_set = false;
906a6a0b05dSBen Gardon 
907a6a0b05dSBen Gardon 	for_each_tdp_mmu_root(kvm, root) {
908a6a0b05dSBen Gardon 		root_as_id = kvm_mmu_page_as_id(root);
909a6a0b05dSBen Gardon 		if (root_as_id != slot->as_id)
910a6a0b05dSBen Gardon 			continue;
911a6a0b05dSBen Gardon 
912a6a0b05dSBen Gardon 		/*
913a6a0b05dSBen Gardon 		 * Take a reference on the root so that it cannot be freed if
914a6a0b05dSBen Gardon 		 * this thread releases the MMU lock and yields in this loop.
915a6a0b05dSBen Gardon 		 */
916a6a0b05dSBen Gardon 		kvm_mmu_get_root(kvm, root);
917a6a0b05dSBen Gardon 
918a6a0b05dSBen Gardon 		spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
919a6a0b05dSBen Gardon 				slot->base_gfn + slot->npages);
920a6a0b05dSBen Gardon 
921a6a0b05dSBen Gardon 		kvm_mmu_put_root(kvm, root);
922a6a0b05dSBen Gardon 	}
923a6a0b05dSBen Gardon 
924a6a0b05dSBen Gardon 	return spte_set;
925a6a0b05dSBen Gardon }
926a6a0b05dSBen Gardon 
927a6a0b05dSBen Gardon /*
928a6a0b05dSBen Gardon  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
929a6a0b05dSBen Gardon  * set in mask, starting at gfn. The given memslot is expected to contain all
930a6a0b05dSBen Gardon  * the GFNs represented by set bits in the mask. If AD bits are enabled,
931a6a0b05dSBen Gardon  * clearing the dirty status will involve clearing the dirty bit on each SPTE
932a6a0b05dSBen Gardon  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
933a6a0b05dSBen Gardon  */
934a6a0b05dSBen Gardon static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
935a6a0b05dSBen Gardon 				  gfn_t gfn, unsigned long mask, bool wrprot)
936a6a0b05dSBen Gardon {
937a6a0b05dSBen Gardon 	struct tdp_iter iter;
938a6a0b05dSBen Gardon 	u64 new_spte;
939a6a0b05dSBen Gardon 
940a6a0b05dSBen Gardon 	tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
941a6a0b05dSBen Gardon 				    gfn + BITS_PER_LONG) {
942a6a0b05dSBen Gardon 		if (!mask)
943a6a0b05dSBen Gardon 			break;
944a6a0b05dSBen Gardon 
945a6a0b05dSBen Gardon 		if (iter.level > PG_LEVEL_4K ||
946a6a0b05dSBen Gardon 		    !(mask & (1UL << (iter.gfn - gfn))))
947a6a0b05dSBen Gardon 			continue;
948a6a0b05dSBen Gardon 
949a6a0b05dSBen Gardon 		if (wrprot || spte_ad_need_write_protect(iter.old_spte)) {
950a6a0b05dSBen Gardon 			if (is_writable_pte(iter.old_spte))
951a6a0b05dSBen Gardon 				new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
952a6a0b05dSBen Gardon 			else
953a6a0b05dSBen Gardon 				continue;
954a6a0b05dSBen Gardon 		} else {
955a6a0b05dSBen Gardon 			if (iter.old_spte & shadow_dirty_mask)
956a6a0b05dSBen Gardon 				new_spte = iter.old_spte & ~shadow_dirty_mask;
957a6a0b05dSBen Gardon 			else
958a6a0b05dSBen Gardon 				continue;
959a6a0b05dSBen Gardon 		}
960a6a0b05dSBen Gardon 
961a6a0b05dSBen Gardon 		tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
962a6a0b05dSBen Gardon 
963a6a0b05dSBen Gardon 		mask &= ~(1UL << (iter.gfn - gfn));
964a6a0b05dSBen Gardon 	}
965a6a0b05dSBen Gardon }
966a6a0b05dSBen Gardon 
967a6a0b05dSBen Gardon /*
968a6a0b05dSBen Gardon  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
969a6a0b05dSBen Gardon  * set in mask, starting at gfn. The given memslot is expected to contain all
970a6a0b05dSBen Gardon  * the GFNs represented by set bits in the mask. If AD bits are enabled,
971a6a0b05dSBen Gardon  * clearing the dirty status will involve clearing the dirty bit on each SPTE
972a6a0b05dSBen Gardon  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
973a6a0b05dSBen Gardon  */
974a6a0b05dSBen Gardon void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
975a6a0b05dSBen Gardon 				       struct kvm_memory_slot *slot,
976a6a0b05dSBen Gardon 				       gfn_t gfn, unsigned long mask,
977a6a0b05dSBen Gardon 				       bool wrprot)
978a6a0b05dSBen Gardon {
979a6a0b05dSBen Gardon 	struct kvm_mmu_page *root;
980a6a0b05dSBen Gardon 	int root_as_id;
981a6a0b05dSBen Gardon 
982a6a0b05dSBen Gardon 	lockdep_assert_held(&kvm->mmu_lock);
983a6a0b05dSBen Gardon 	for_each_tdp_mmu_root(kvm, root) {
984a6a0b05dSBen Gardon 		root_as_id = kvm_mmu_page_as_id(root);
985a6a0b05dSBen Gardon 		if (root_as_id != slot->as_id)
986a6a0b05dSBen Gardon 			continue;
987a6a0b05dSBen Gardon 
988a6a0b05dSBen Gardon 		clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
989a6a0b05dSBen Gardon 	}
990a6a0b05dSBen Gardon }
991a6a0b05dSBen Gardon 
992a6a0b05dSBen Gardon /*
993a6a0b05dSBen Gardon  * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
994a6a0b05dSBen Gardon  * only used for PML, and so will involve setting the dirty bit on each SPTE.
995a6a0b05dSBen Gardon  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
996a6a0b05dSBen Gardon  */
997a6a0b05dSBen Gardon static bool set_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
998a6a0b05dSBen Gardon 				gfn_t start, gfn_t end)
999a6a0b05dSBen Gardon {
1000a6a0b05dSBen Gardon 	struct tdp_iter iter;
1001a6a0b05dSBen Gardon 	u64 new_spte;
1002a6a0b05dSBen Gardon 	bool spte_set = false;
1003a6a0b05dSBen Gardon 
1004a6a0b05dSBen Gardon 	tdp_root_for_each_pte(iter, root, start, end) {
1005a6a0b05dSBen Gardon 		if (!is_shadow_present_pte(iter.old_spte))
1006a6a0b05dSBen Gardon 			continue;
1007a6a0b05dSBen Gardon 
1008a6a0b05dSBen Gardon 		new_spte = iter.old_spte | shadow_dirty_mask;
1009a6a0b05dSBen Gardon 
1010a6a0b05dSBen Gardon 		tdp_mmu_set_spte(kvm, &iter, new_spte);
1011a6a0b05dSBen Gardon 		spte_set = true;
1012a6a0b05dSBen Gardon 
1013a6a0b05dSBen Gardon 		tdp_mmu_iter_cond_resched(kvm, &iter);
1014a6a0b05dSBen Gardon 	}
1015a6a0b05dSBen Gardon 
1016a6a0b05dSBen Gardon 	return spte_set;
1017a6a0b05dSBen Gardon }
1018a6a0b05dSBen Gardon 
1019a6a0b05dSBen Gardon /*
1020a6a0b05dSBen Gardon  * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
1021a6a0b05dSBen Gardon  * only used for PML, and so will involve setting the dirty bit on each SPTE.
1022a6a0b05dSBen Gardon  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1023a6a0b05dSBen Gardon  */
1024a6a0b05dSBen Gardon bool kvm_tdp_mmu_slot_set_dirty(struct kvm *kvm, struct kvm_memory_slot *slot)
1025a6a0b05dSBen Gardon {
1026a6a0b05dSBen Gardon 	struct kvm_mmu_page *root;
1027a6a0b05dSBen Gardon 	int root_as_id;
1028a6a0b05dSBen Gardon 	bool spte_set = false;
1029a6a0b05dSBen Gardon 
1030a6a0b05dSBen Gardon 	for_each_tdp_mmu_root(kvm, root) {
1031a6a0b05dSBen Gardon 		root_as_id = kvm_mmu_page_as_id(root);
1032a6a0b05dSBen Gardon 		if (root_as_id != slot->as_id)
1033a6a0b05dSBen Gardon 			continue;
1034a6a0b05dSBen Gardon 
1035a6a0b05dSBen Gardon 		/*
1036a6a0b05dSBen Gardon 		 * Take a reference on the root so that it cannot be freed if
1037a6a0b05dSBen Gardon 		 * this thread releases the MMU lock and yields in this loop.
1038a6a0b05dSBen Gardon 		 */
1039a6a0b05dSBen Gardon 		kvm_mmu_get_root(kvm, root);
1040a6a0b05dSBen Gardon 
1041a6a0b05dSBen Gardon 		spte_set |= set_dirty_gfn_range(kvm, root, slot->base_gfn,
1042a6a0b05dSBen Gardon 				slot->base_gfn + slot->npages);
1043a6a0b05dSBen Gardon 
1044a6a0b05dSBen Gardon 		kvm_mmu_put_root(kvm, root);
1045a6a0b05dSBen Gardon 	}
1046a6a0b05dSBen Gardon 	return spte_set;
1047a6a0b05dSBen Gardon }
1048a6a0b05dSBen Gardon 
104914881998SBen Gardon /*
105014881998SBen Gardon  * Clear non-leaf entries (and free associated page tables) which could
105114881998SBen Gardon  * be replaced by large mappings, for GFNs within the slot.
105214881998SBen Gardon  */
105314881998SBen Gardon static void zap_collapsible_spte_range(struct kvm *kvm,
105414881998SBen Gardon 				       struct kvm_mmu_page *root,
105514881998SBen Gardon 				       gfn_t start, gfn_t end)
105614881998SBen Gardon {
105714881998SBen Gardon 	struct tdp_iter iter;
105814881998SBen Gardon 	kvm_pfn_t pfn;
105914881998SBen Gardon 	bool spte_set = false;
106014881998SBen Gardon 
106114881998SBen Gardon 	tdp_root_for_each_pte(iter, root, start, end) {
106214881998SBen Gardon 		if (!is_shadow_present_pte(iter.old_spte) ||
106314881998SBen Gardon 		    is_last_spte(iter.old_spte, iter.level))
106414881998SBen Gardon 			continue;
106514881998SBen Gardon 
106614881998SBen Gardon 		pfn = spte_to_pfn(iter.old_spte);
106714881998SBen Gardon 		if (kvm_is_reserved_pfn(pfn) ||
106814881998SBen Gardon 		    !PageTransCompoundMap(pfn_to_page(pfn)))
106914881998SBen Gardon 			continue;
107014881998SBen Gardon 
107114881998SBen Gardon 		tdp_mmu_set_spte(kvm, &iter, 0);
107214881998SBen Gardon 
107314881998SBen Gardon 		spte_set = tdp_mmu_iter_flush_cond_resched(kvm, &iter);
107414881998SBen Gardon 	}
107514881998SBen Gardon 
107614881998SBen Gardon 	if (spte_set)
107714881998SBen Gardon 		kvm_flush_remote_tlbs(kvm);
107814881998SBen Gardon }
107914881998SBen Gardon 
108014881998SBen Gardon /*
108114881998SBen Gardon  * Clear non-leaf entries (and free associated page tables) which could
108214881998SBen Gardon  * be replaced by large mappings, for GFNs within the slot.
108314881998SBen Gardon  */
108414881998SBen Gardon void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm,
108514881998SBen Gardon 				       const struct kvm_memory_slot *slot)
108614881998SBen Gardon {
108714881998SBen Gardon 	struct kvm_mmu_page *root;
108814881998SBen Gardon 	int root_as_id;
108914881998SBen Gardon 
109014881998SBen Gardon 	for_each_tdp_mmu_root(kvm, root) {
109114881998SBen Gardon 		root_as_id = kvm_mmu_page_as_id(root);
109214881998SBen Gardon 		if (root_as_id != slot->as_id)
109314881998SBen Gardon 			continue;
109414881998SBen Gardon 
109514881998SBen Gardon 		/*
109614881998SBen Gardon 		 * Take a reference on the root so that it cannot be freed if
109714881998SBen Gardon 		 * this thread releases the MMU lock and yields in this loop.
109814881998SBen Gardon 		 */
109914881998SBen Gardon 		kvm_mmu_get_root(kvm, root);
110014881998SBen Gardon 
110114881998SBen Gardon 		zap_collapsible_spte_range(kvm, root, slot->base_gfn,
110214881998SBen Gardon 					   slot->base_gfn + slot->npages);
110314881998SBen Gardon 
110414881998SBen Gardon 		kvm_mmu_put_root(kvm, root);
110514881998SBen Gardon 	}
110614881998SBen Gardon }
110746044f72SBen Gardon 
110846044f72SBen Gardon /*
110946044f72SBen Gardon  * Removes write access on the last level SPTE mapping this GFN and unsets the
111046044f72SBen Gardon  * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
111146044f72SBen Gardon  * Returns true if an SPTE was set and a TLB flush is needed.
111246044f72SBen Gardon  */
111346044f72SBen Gardon static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
111446044f72SBen Gardon 			      gfn_t gfn)
111546044f72SBen Gardon {
111646044f72SBen Gardon 	struct tdp_iter iter;
111746044f72SBen Gardon 	u64 new_spte;
111846044f72SBen Gardon 	bool spte_set = false;
111946044f72SBen Gardon 
112046044f72SBen Gardon 	tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1) {
112146044f72SBen Gardon 		if (!is_writable_pte(iter.old_spte))
112246044f72SBen Gardon 			break;
112346044f72SBen Gardon 
112446044f72SBen Gardon 		new_spte = iter.old_spte &
112546044f72SBen Gardon 			~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
112646044f72SBen Gardon 
112746044f72SBen Gardon 		tdp_mmu_set_spte(kvm, &iter, new_spte);
112846044f72SBen Gardon 		spte_set = true;
112946044f72SBen Gardon 	}
113046044f72SBen Gardon 
113146044f72SBen Gardon 	return spte_set;
113246044f72SBen Gardon }
113346044f72SBen Gardon 
113446044f72SBen Gardon /*
113546044f72SBen Gardon  * Removes write access on the last level SPTE mapping this GFN and unsets the
113646044f72SBen Gardon  * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
113746044f72SBen Gardon  * Returns true if an SPTE was set and a TLB flush is needed.
113846044f72SBen Gardon  */
113946044f72SBen Gardon bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
114046044f72SBen Gardon 				   struct kvm_memory_slot *slot, gfn_t gfn)
114146044f72SBen Gardon {
114246044f72SBen Gardon 	struct kvm_mmu_page *root;
114346044f72SBen Gardon 	int root_as_id;
114446044f72SBen Gardon 	bool spte_set = false;
114546044f72SBen Gardon 
114646044f72SBen Gardon 	lockdep_assert_held(&kvm->mmu_lock);
114746044f72SBen Gardon 	for_each_tdp_mmu_root(kvm, root) {
114846044f72SBen Gardon 		root_as_id = kvm_mmu_page_as_id(root);
114946044f72SBen Gardon 		if (root_as_id != slot->as_id)
115046044f72SBen Gardon 			continue;
115146044f72SBen Gardon 
115246044f72SBen Gardon 		spte_set |= write_protect_gfn(kvm, root, gfn);
115346044f72SBen Gardon 	}
115446044f72SBen Gardon 	return spte_set;
115546044f72SBen Gardon }
115646044f72SBen Gardon 
115795fb5b02SBen Gardon /*
115895fb5b02SBen Gardon  * Return the level of the lowest level SPTE added to sptes.
115995fb5b02SBen Gardon  * That SPTE may be non-present.
116095fb5b02SBen Gardon  */
116195fb5b02SBen Gardon int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes)
116295fb5b02SBen Gardon {
116395fb5b02SBen Gardon 	struct tdp_iter iter;
116495fb5b02SBen Gardon 	struct kvm_mmu *mmu = vcpu->arch.mmu;
116595fb5b02SBen Gardon 	int leaf = vcpu->arch.mmu->shadow_root_level;
116695fb5b02SBen Gardon 	gfn_t gfn = addr >> PAGE_SHIFT;
116795fb5b02SBen Gardon 
116895fb5b02SBen Gardon 	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
116995fb5b02SBen Gardon 		leaf = iter.level;
117095fb5b02SBen Gardon 		sptes[leaf - 1] = iter.old_spte;
117195fb5b02SBen Gardon 	}
117295fb5b02SBen Gardon 
117395fb5b02SBen Gardon 	return leaf;
117495fb5b02SBen Gardon }
1175