xref: /openbmc/linux/arch/x86/kvm/mmu/tdp_mmu.c (revision 0f99ee2c)
1fe5db27dSBen Gardon // SPDX-License-Identifier: GPL-2.0
2fe5db27dSBen Gardon 
302c00b3aSBen Gardon #include "mmu.h"
402c00b3aSBen Gardon #include "mmu_internal.h"
5bb18842eSBen Gardon #include "mmutrace.h"
62f2fad08SBen Gardon #include "tdp_iter.h"
7fe5db27dSBen Gardon #include "tdp_mmu.h"
802c00b3aSBen Gardon #include "spte.h"
9fe5db27dSBen Gardon 
1033dd3574SBen Gardon #include <trace/events/kvm.h>
1133dd3574SBen Gardon 
1295fb5b02SBen Gardon #ifdef CONFIG_X86_64
13fe5db27dSBen Gardon static bool __read_mostly tdp_mmu_enabled = false;
1495fb5b02SBen Gardon module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644);
1595fb5b02SBen Gardon #endif
16fe5db27dSBen Gardon 
17fe5db27dSBen Gardon static bool is_tdp_mmu_enabled(void)
18fe5db27dSBen Gardon {
19fe5db27dSBen Gardon #ifdef CONFIG_X86_64
20fe5db27dSBen Gardon 	return tdp_enabled && READ_ONCE(tdp_mmu_enabled);
21fe5db27dSBen Gardon #else
22fe5db27dSBen Gardon 	return false;
23fe5db27dSBen Gardon #endif /* CONFIG_X86_64 */
24fe5db27dSBen Gardon }
25fe5db27dSBen Gardon 
26fe5db27dSBen Gardon /* Initializes the TDP MMU for the VM, if enabled. */
27fe5db27dSBen Gardon void kvm_mmu_init_tdp_mmu(struct kvm *kvm)
28fe5db27dSBen Gardon {
29fe5db27dSBen Gardon 	if (!is_tdp_mmu_enabled())
30fe5db27dSBen Gardon 		return;
31fe5db27dSBen Gardon 
32fe5db27dSBen Gardon 	/* This should not be changed for the lifetime of the VM. */
33fe5db27dSBen Gardon 	kvm->arch.tdp_mmu_enabled = true;
3402c00b3aSBen Gardon 
3502c00b3aSBen Gardon 	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
3689c0fd49SBen Gardon 	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages);
37fe5db27dSBen Gardon }
38fe5db27dSBen Gardon 
39fe5db27dSBen Gardon void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
40fe5db27dSBen Gardon {
41fe5db27dSBen Gardon 	if (!kvm->arch.tdp_mmu_enabled)
42fe5db27dSBen Gardon 		return;
4302c00b3aSBen Gardon 
4402c00b3aSBen Gardon 	WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
4502c00b3aSBen Gardon }
4602c00b3aSBen Gardon 
47a889ea54SBen Gardon static void tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root)
48a889ea54SBen Gardon {
49a889ea54SBen Gardon 	if (kvm_mmu_put_root(kvm, root))
50a889ea54SBen Gardon 		kvm_tdp_mmu_free_root(kvm, root);
51a889ea54SBen Gardon }
52a889ea54SBen Gardon 
53a889ea54SBen Gardon static inline bool tdp_mmu_next_root_valid(struct kvm *kvm,
54a889ea54SBen Gardon 					   struct kvm_mmu_page *root)
55a889ea54SBen Gardon {
56a889ea54SBen Gardon 	lockdep_assert_held(&kvm->mmu_lock);
57a889ea54SBen Gardon 
58a889ea54SBen Gardon 	if (list_entry_is_head(root, &kvm->arch.tdp_mmu_roots, link))
59a889ea54SBen Gardon 		return false;
60a889ea54SBen Gardon 
61a889ea54SBen Gardon 	kvm_mmu_get_root(kvm, root);
62a889ea54SBen Gardon 	return true;
63a889ea54SBen Gardon 
64a889ea54SBen Gardon }
65a889ea54SBen Gardon 
66a889ea54SBen Gardon static inline struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm,
67a889ea54SBen Gardon 						     struct kvm_mmu_page *root)
68a889ea54SBen Gardon {
69a889ea54SBen Gardon 	struct kvm_mmu_page *next_root;
70a889ea54SBen Gardon 
71a889ea54SBen Gardon 	next_root = list_next_entry(root, link);
72a889ea54SBen Gardon 	tdp_mmu_put_root(kvm, root);
73a889ea54SBen Gardon 	return next_root;
74a889ea54SBen Gardon }
75a889ea54SBen Gardon 
76a889ea54SBen Gardon /*
77a889ea54SBen Gardon  * Note: this iterator gets and puts references to the roots it iterates over.
78a889ea54SBen Gardon  * This makes it safe to release the MMU lock and yield within the loop, but
79a889ea54SBen Gardon  * if exiting the loop early, the caller must drop the reference to the most
80a889ea54SBen Gardon  * recent root. (Unless keeping a live reference is desirable.)
81a889ea54SBen Gardon  */
82a889ea54SBen Gardon #define for_each_tdp_mmu_root_yield_safe(_kvm, _root)				\
83a889ea54SBen Gardon 	for (_root = list_first_entry(&_kvm->arch.tdp_mmu_roots,	\
84a889ea54SBen Gardon 				      typeof(*_root), link);		\
85a889ea54SBen Gardon 	     tdp_mmu_next_root_valid(_kvm, _root);			\
86a889ea54SBen Gardon 	     _root = tdp_mmu_next_root(_kvm, _root))
87a889ea54SBen Gardon 
8802c00b3aSBen Gardon #define for_each_tdp_mmu_root(_kvm, _root)				\
8902c00b3aSBen Gardon 	list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link)
9002c00b3aSBen Gardon 
9102c00b3aSBen Gardon bool is_tdp_mmu_root(struct kvm *kvm, hpa_t hpa)
9202c00b3aSBen Gardon {
9302c00b3aSBen Gardon 	struct kvm_mmu_page *sp;
9402c00b3aSBen Gardon 
95c887c9b9SPaolo Bonzini 	if (!kvm->arch.tdp_mmu_enabled)
96c887c9b9SPaolo Bonzini 		return false;
97c887c9b9SPaolo Bonzini 	if (WARN_ON(!VALID_PAGE(hpa)))
98c887c9b9SPaolo Bonzini 		return false;
99c887c9b9SPaolo Bonzini 
10002c00b3aSBen Gardon 	sp = to_shadow_page(hpa);
101c887c9b9SPaolo Bonzini 	if (WARN_ON(!sp))
102c887c9b9SPaolo Bonzini 		return false;
10302c00b3aSBen Gardon 
10402c00b3aSBen Gardon 	return sp->tdp_mmu_page && sp->root_count;
10502c00b3aSBen Gardon }
10602c00b3aSBen Gardon 
107faaf05b0SBen Gardon static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
108063afacdSBen Gardon 			  gfn_t start, gfn_t end, bool can_yield);
109faaf05b0SBen Gardon 
11002c00b3aSBen Gardon void kvm_tdp_mmu_free_root(struct kvm *kvm, struct kvm_mmu_page *root)
11102c00b3aSBen Gardon {
112339f5a7fSRick Edgecombe 	gfn_t max_gfn = 1ULL << (shadow_phys_bits - PAGE_SHIFT);
113faaf05b0SBen Gardon 
11402c00b3aSBen Gardon 	lockdep_assert_held(&kvm->mmu_lock);
11502c00b3aSBen Gardon 
11602c00b3aSBen Gardon 	WARN_ON(root->root_count);
11702c00b3aSBen Gardon 	WARN_ON(!root->tdp_mmu_page);
11802c00b3aSBen Gardon 
11902c00b3aSBen Gardon 	list_del(&root->link);
12002c00b3aSBen Gardon 
121063afacdSBen Gardon 	zap_gfn_range(kvm, root, 0, max_gfn, false);
122faaf05b0SBen Gardon 
12302c00b3aSBen Gardon 	free_page((unsigned long)root->spt);
12402c00b3aSBen Gardon 	kmem_cache_free(mmu_page_header_cache, root);
12502c00b3aSBen Gardon }
12602c00b3aSBen Gardon 
12702c00b3aSBen Gardon static union kvm_mmu_page_role page_role_for_level(struct kvm_vcpu *vcpu,
12802c00b3aSBen Gardon 						   int level)
12902c00b3aSBen Gardon {
13002c00b3aSBen Gardon 	union kvm_mmu_page_role role;
13102c00b3aSBen Gardon 
13202c00b3aSBen Gardon 	role = vcpu->arch.mmu->mmu_role.base;
13302c00b3aSBen Gardon 	role.level = level;
13402c00b3aSBen Gardon 	role.direct = true;
13502c00b3aSBen Gardon 	role.gpte_is_8_bytes = true;
13602c00b3aSBen Gardon 	role.access = ACC_ALL;
13702c00b3aSBen Gardon 
13802c00b3aSBen Gardon 	return role;
13902c00b3aSBen Gardon }
14002c00b3aSBen Gardon 
14102c00b3aSBen Gardon static struct kvm_mmu_page *alloc_tdp_mmu_page(struct kvm_vcpu *vcpu, gfn_t gfn,
14202c00b3aSBen Gardon 					       int level)
14302c00b3aSBen Gardon {
14402c00b3aSBen Gardon 	struct kvm_mmu_page *sp;
14502c00b3aSBen Gardon 
14602c00b3aSBen Gardon 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
14702c00b3aSBen Gardon 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
14802c00b3aSBen Gardon 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
14902c00b3aSBen Gardon 
15002c00b3aSBen Gardon 	sp->role.word = page_role_for_level(vcpu, level).word;
15102c00b3aSBen Gardon 	sp->gfn = gfn;
15202c00b3aSBen Gardon 	sp->tdp_mmu_page = true;
15302c00b3aSBen Gardon 
15433dd3574SBen Gardon 	trace_kvm_mmu_get_page(sp, true);
15533dd3574SBen Gardon 
15602c00b3aSBen Gardon 	return sp;
15702c00b3aSBen Gardon }
15802c00b3aSBen Gardon 
15902c00b3aSBen Gardon static struct kvm_mmu_page *get_tdp_mmu_vcpu_root(struct kvm_vcpu *vcpu)
16002c00b3aSBen Gardon {
16102c00b3aSBen Gardon 	union kvm_mmu_page_role role;
16202c00b3aSBen Gardon 	struct kvm *kvm = vcpu->kvm;
16302c00b3aSBen Gardon 	struct kvm_mmu_page *root;
16402c00b3aSBen Gardon 
16502c00b3aSBen Gardon 	role = page_role_for_level(vcpu, vcpu->arch.mmu->shadow_root_level);
16602c00b3aSBen Gardon 
16702c00b3aSBen Gardon 	spin_lock(&kvm->mmu_lock);
16802c00b3aSBen Gardon 
16902c00b3aSBen Gardon 	/* Check for an existing root before allocating a new one. */
17002c00b3aSBen Gardon 	for_each_tdp_mmu_root(kvm, root) {
17102c00b3aSBen Gardon 		if (root->role.word == role.word) {
17202c00b3aSBen Gardon 			kvm_mmu_get_root(kvm, root);
17302c00b3aSBen Gardon 			spin_unlock(&kvm->mmu_lock);
17402c00b3aSBen Gardon 			return root;
17502c00b3aSBen Gardon 		}
17602c00b3aSBen Gardon 	}
17702c00b3aSBen Gardon 
17802c00b3aSBen Gardon 	root = alloc_tdp_mmu_page(vcpu, 0, vcpu->arch.mmu->shadow_root_level);
17902c00b3aSBen Gardon 	root->root_count = 1;
18002c00b3aSBen Gardon 
18102c00b3aSBen Gardon 	list_add(&root->link, &kvm->arch.tdp_mmu_roots);
18202c00b3aSBen Gardon 
18302c00b3aSBen Gardon 	spin_unlock(&kvm->mmu_lock);
18402c00b3aSBen Gardon 
18502c00b3aSBen Gardon 	return root;
18602c00b3aSBen Gardon }
18702c00b3aSBen Gardon 
18802c00b3aSBen Gardon hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu)
18902c00b3aSBen Gardon {
19002c00b3aSBen Gardon 	struct kvm_mmu_page *root;
19102c00b3aSBen Gardon 
19202c00b3aSBen Gardon 	root = get_tdp_mmu_vcpu_root(vcpu);
19302c00b3aSBen Gardon 	if (!root)
19402c00b3aSBen Gardon 		return INVALID_PAGE;
19502c00b3aSBen Gardon 
19602c00b3aSBen Gardon 	return __pa(root->spt);
197fe5db27dSBen Gardon }
1982f2fad08SBen Gardon 
1992f2fad08SBen Gardon static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
2002f2fad08SBen Gardon 				u64 old_spte, u64 new_spte, int level);
2012f2fad08SBen Gardon 
202faaf05b0SBen Gardon static int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
203faaf05b0SBen Gardon {
204faaf05b0SBen Gardon 	return sp->role.smm ? 1 : 0;
205faaf05b0SBen Gardon }
206faaf05b0SBen Gardon 
207f8e14497SBen Gardon static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level)
208f8e14497SBen Gardon {
209f8e14497SBen Gardon 	bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
210f8e14497SBen Gardon 
211f8e14497SBen Gardon 	if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level))
212f8e14497SBen Gardon 		return;
213f8e14497SBen Gardon 
214f8e14497SBen Gardon 	if (is_accessed_spte(old_spte) &&
215f8e14497SBen Gardon 	    (!is_accessed_spte(new_spte) || pfn_changed))
216f8e14497SBen Gardon 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
217f8e14497SBen Gardon }
218f8e14497SBen Gardon 
219a6a0b05dSBen Gardon static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn,
220a6a0b05dSBen Gardon 					  u64 old_spte, u64 new_spte, int level)
221a6a0b05dSBen Gardon {
222a6a0b05dSBen Gardon 	bool pfn_changed;
223a6a0b05dSBen Gardon 	struct kvm_memory_slot *slot;
224a6a0b05dSBen Gardon 
225a6a0b05dSBen Gardon 	if (level > PG_LEVEL_4K)
226a6a0b05dSBen Gardon 		return;
227a6a0b05dSBen Gardon 
228a6a0b05dSBen Gardon 	pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
229a6a0b05dSBen Gardon 
230a6a0b05dSBen Gardon 	if ((!is_writable_pte(old_spte) || pfn_changed) &&
231a6a0b05dSBen Gardon 	    is_writable_pte(new_spte)) {
232a6a0b05dSBen Gardon 		slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn);
233fb04a1edSPeter Xu 		mark_page_dirty_in_slot(kvm, slot, gfn);
234a6a0b05dSBen Gardon 	}
235a6a0b05dSBen Gardon }
236a6a0b05dSBen Gardon 
2372f2fad08SBen Gardon /**
238a066e61fSBen Gardon  * handle_removed_tdp_mmu_page - handle a pt removed from the TDP structure
239a066e61fSBen Gardon  *
240a066e61fSBen Gardon  * @kvm: kvm instance
241a066e61fSBen Gardon  * @pt: the page removed from the paging structure
242a066e61fSBen Gardon  *
243a066e61fSBen Gardon  * Given a page table that has been removed from the TDP paging structure,
244a066e61fSBen Gardon  * iterates through the page table to clear SPTEs and free child page tables.
245a066e61fSBen Gardon  */
246a066e61fSBen Gardon static void handle_removed_tdp_mmu_page(struct kvm *kvm, u64 *pt)
247a066e61fSBen Gardon {
248a066e61fSBen Gardon 	struct kvm_mmu_page *sp = sptep_to_sp(pt);
249a066e61fSBen Gardon 	int level = sp->role.level;
250a066e61fSBen Gardon 	gfn_t gfn = sp->gfn;
251a066e61fSBen Gardon 	u64 old_child_spte;
252a066e61fSBen Gardon 	int i;
253a066e61fSBen Gardon 
254a066e61fSBen Gardon 	trace_kvm_mmu_prepare_zap_page(sp);
255a066e61fSBen Gardon 
256a066e61fSBen Gardon 	list_del(&sp->link);
257a066e61fSBen Gardon 
258a066e61fSBen Gardon 	if (sp->lpage_disallowed)
259a066e61fSBen Gardon 		unaccount_huge_nx_page(kvm, sp);
260a066e61fSBen Gardon 
261a066e61fSBen Gardon 	for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
262a066e61fSBen Gardon 		old_child_spte = READ_ONCE(*(pt + i));
263a066e61fSBen Gardon 		WRITE_ONCE(*(pt + i), 0);
264a066e61fSBen Gardon 		handle_changed_spte(kvm, kvm_mmu_page_as_id(sp),
265a066e61fSBen Gardon 			gfn + (i * KVM_PAGES_PER_HPAGE(level - 1)),
266a066e61fSBen Gardon 			old_child_spte, 0, level - 1);
267a066e61fSBen Gardon 	}
268a066e61fSBen Gardon 
269a066e61fSBen Gardon 	kvm_flush_remote_tlbs_with_address(kvm, gfn,
270a066e61fSBen Gardon 					   KVM_PAGES_PER_HPAGE(level));
271a066e61fSBen Gardon 
272a066e61fSBen Gardon 	free_page((unsigned long)pt);
273a066e61fSBen Gardon 	kmem_cache_free(mmu_page_header_cache, sp);
274a066e61fSBen Gardon }
275a066e61fSBen Gardon 
276a066e61fSBen Gardon /**
2772f2fad08SBen Gardon  * handle_changed_spte - handle bookkeeping associated with an SPTE change
2782f2fad08SBen Gardon  * @kvm: kvm instance
2792f2fad08SBen Gardon  * @as_id: the address space of the paging structure the SPTE was a part of
2802f2fad08SBen Gardon  * @gfn: the base GFN that was mapped by the SPTE
2812f2fad08SBen Gardon  * @old_spte: The value of the SPTE before the change
2822f2fad08SBen Gardon  * @new_spte: The value of the SPTE after the change
2832f2fad08SBen Gardon  * @level: the level of the PT the SPTE is part of in the paging structure
2842f2fad08SBen Gardon  *
2852f2fad08SBen Gardon  * Handle bookkeeping that might result from the modification of a SPTE.
2862f2fad08SBen Gardon  * This function must be called for all TDP SPTE modifications.
2872f2fad08SBen Gardon  */
2882f2fad08SBen Gardon static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
2892f2fad08SBen Gardon 				u64 old_spte, u64 new_spte, int level)
2902f2fad08SBen Gardon {
2912f2fad08SBen Gardon 	bool was_present = is_shadow_present_pte(old_spte);
2922f2fad08SBen Gardon 	bool is_present = is_shadow_present_pte(new_spte);
2932f2fad08SBen Gardon 	bool was_leaf = was_present && is_last_spte(old_spte, level);
2942f2fad08SBen Gardon 	bool is_leaf = is_present && is_last_spte(new_spte, level);
2952f2fad08SBen Gardon 	bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
2962f2fad08SBen Gardon 
2972f2fad08SBen Gardon 	WARN_ON(level > PT64_ROOT_MAX_LEVEL);
2982f2fad08SBen Gardon 	WARN_ON(level < PG_LEVEL_4K);
299764388ceSSean Christopherson 	WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
3002f2fad08SBen Gardon 
3012f2fad08SBen Gardon 	/*
3022f2fad08SBen Gardon 	 * If this warning were to trigger it would indicate that there was a
3032f2fad08SBen Gardon 	 * missing MMU notifier or a race with some notifier handler.
3042f2fad08SBen Gardon 	 * A present, leaf SPTE should never be directly replaced with another
3052f2fad08SBen Gardon 	 * present leaf SPTE pointing to a differnt PFN. A notifier handler
3062f2fad08SBen Gardon 	 * should be zapping the SPTE before the main MM's page table is
3072f2fad08SBen Gardon 	 * changed, or the SPTE should be zeroed, and the TLBs flushed by the
3082f2fad08SBen Gardon 	 * thread before replacement.
3092f2fad08SBen Gardon 	 */
3102f2fad08SBen Gardon 	if (was_leaf && is_leaf && pfn_changed) {
3112f2fad08SBen Gardon 		pr_err("Invalid SPTE change: cannot replace a present leaf\n"
3122f2fad08SBen Gardon 		       "SPTE with another present leaf SPTE mapping a\n"
3132f2fad08SBen Gardon 		       "different PFN!\n"
3142f2fad08SBen Gardon 		       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
3152f2fad08SBen Gardon 		       as_id, gfn, old_spte, new_spte, level);
3162f2fad08SBen Gardon 
3172f2fad08SBen Gardon 		/*
3182f2fad08SBen Gardon 		 * Crash the host to prevent error propagation and guest data
3192f2fad08SBen Gardon 		 * courruption.
3202f2fad08SBen Gardon 		 */
3212f2fad08SBen Gardon 		BUG();
3222f2fad08SBen Gardon 	}
3232f2fad08SBen Gardon 
3242f2fad08SBen Gardon 	if (old_spte == new_spte)
3252f2fad08SBen Gardon 		return;
3262f2fad08SBen Gardon 
327b9a98c34SBen Gardon 	trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte);
328b9a98c34SBen Gardon 
3292f2fad08SBen Gardon 	/*
3302f2fad08SBen Gardon 	 * The only times a SPTE should be changed from a non-present to
3312f2fad08SBen Gardon 	 * non-present state is when an MMIO entry is installed/modified/
3322f2fad08SBen Gardon 	 * removed. In that case, there is nothing to do here.
3332f2fad08SBen Gardon 	 */
3342f2fad08SBen Gardon 	if (!was_present && !is_present) {
3352f2fad08SBen Gardon 		/*
3362f2fad08SBen Gardon 		 * If this change does not involve a MMIO SPTE, it is
3372f2fad08SBen Gardon 		 * unexpected. Log the change, though it should not impact the
3382f2fad08SBen Gardon 		 * guest since both the former and current SPTEs are nonpresent.
3392f2fad08SBen Gardon 		 */
3402f2fad08SBen Gardon 		if (WARN_ON(!is_mmio_spte(old_spte) && !is_mmio_spte(new_spte)))
3412f2fad08SBen Gardon 			pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
3422f2fad08SBen Gardon 			       "should not be replaced with another,\n"
3432f2fad08SBen Gardon 			       "different nonpresent SPTE, unless one or both\n"
3442f2fad08SBen Gardon 			       "are MMIO SPTEs.\n"
3452f2fad08SBen Gardon 			       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
3462f2fad08SBen Gardon 			       as_id, gfn, old_spte, new_spte, level);
3472f2fad08SBen Gardon 		return;
3482f2fad08SBen Gardon 	}
3492f2fad08SBen Gardon 
3502f2fad08SBen Gardon 
3512f2fad08SBen Gardon 	if (was_leaf && is_dirty_spte(old_spte) &&
3522f2fad08SBen Gardon 	    (!is_dirty_spte(new_spte) || pfn_changed))
3532f2fad08SBen Gardon 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
3542f2fad08SBen Gardon 
3552f2fad08SBen Gardon 	/*
3562f2fad08SBen Gardon 	 * Recursively handle child PTs if the change removed a subtree from
3572f2fad08SBen Gardon 	 * the paging structure.
3582f2fad08SBen Gardon 	 */
359a066e61fSBen Gardon 	if (was_present && !was_leaf && (pfn_changed || !is_present))
360a066e61fSBen Gardon 		handle_removed_tdp_mmu_page(kvm,
361a066e61fSBen Gardon 				spte_to_child_pt(old_spte, level));
3622f2fad08SBen Gardon }
3632f2fad08SBen Gardon 
3642f2fad08SBen Gardon static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
3652f2fad08SBen Gardon 				u64 old_spte, u64 new_spte, int level)
3662f2fad08SBen Gardon {
3672f2fad08SBen Gardon 	__handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level);
368f8e14497SBen Gardon 	handle_changed_spte_acc_track(old_spte, new_spte, level);
369a6a0b05dSBen Gardon 	handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
370a6a0b05dSBen Gardon 				      new_spte, level);
3712f2fad08SBen Gardon }
372faaf05b0SBen Gardon 
373fe43fa2fSBen Gardon /*
374fe43fa2fSBen Gardon  * __tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping
375fe43fa2fSBen Gardon  * @kvm: kvm instance
376fe43fa2fSBen Gardon  * @iter: a tdp_iter instance currently on the SPTE that should be set
377fe43fa2fSBen Gardon  * @new_spte: The value the SPTE should be set to
378fe43fa2fSBen Gardon  * @record_acc_track: Notify the MM subsystem of changes to the accessed state
379fe43fa2fSBen Gardon  *		      of the page. Should be set unless handling an MMU
380fe43fa2fSBen Gardon  *		      notifier for access tracking. Leaving record_acc_track
381fe43fa2fSBen Gardon  *		      unset in that case prevents page accesses from being
382fe43fa2fSBen Gardon  *		      double counted.
383fe43fa2fSBen Gardon  * @record_dirty_log: Record the page as dirty in the dirty bitmap if
384fe43fa2fSBen Gardon  *		      appropriate for the change being made. Should be set
385fe43fa2fSBen Gardon  *		      unless performing certain dirty logging operations.
386fe43fa2fSBen Gardon  *		      Leaving record_dirty_log unset in that case prevents page
387fe43fa2fSBen Gardon  *		      writes from being double counted.
388fe43fa2fSBen Gardon  */
389f8e14497SBen Gardon static inline void __tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
390a6a0b05dSBen Gardon 				      u64 new_spte, bool record_acc_track,
391a6a0b05dSBen Gardon 				      bool record_dirty_log)
392faaf05b0SBen Gardon {
393faaf05b0SBen Gardon 	u64 *root_pt = tdp_iter_root_pt(iter);
394faaf05b0SBen Gardon 	struct kvm_mmu_page *root = sptep_to_sp(root_pt);
395faaf05b0SBen Gardon 	int as_id = kvm_mmu_page_as_id(root);
396faaf05b0SBen Gardon 
3973a9a4aa5SBen Gardon 	lockdep_assert_held(&kvm->mmu_lock);
3983a9a4aa5SBen Gardon 
399f8e14497SBen Gardon 	WRITE_ONCE(*iter->sptep, new_spte);
400faaf05b0SBen Gardon 
401f8e14497SBen Gardon 	__handle_changed_spte(kvm, as_id, iter->gfn, iter->old_spte, new_spte,
402faaf05b0SBen Gardon 			      iter->level);
403f8e14497SBen Gardon 	if (record_acc_track)
404f8e14497SBen Gardon 		handle_changed_spte_acc_track(iter->old_spte, new_spte,
405f8e14497SBen Gardon 					      iter->level);
406a6a0b05dSBen Gardon 	if (record_dirty_log)
407a6a0b05dSBen Gardon 		handle_changed_spte_dirty_log(kvm, as_id, iter->gfn,
408a6a0b05dSBen Gardon 					      iter->old_spte, new_spte,
409a6a0b05dSBen Gardon 					      iter->level);
410f8e14497SBen Gardon }
411f8e14497SBen Gardon 
412f8e14497SBen Gardon static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
413f8e14497SBen Gardon 				    u64 new_spte)
414f8e14497SBen Gardon {
415a6a0b05dSBen Gardon 	__tdp_mmu_set_spte(kvm, iter, new_spte, true, true);
416f8e14497SBen Gardon }
417f8e14497SBen Gardon 
418f8e14497SBen Gardon static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm,
419f8e14497SBen Gardon 						 struct tdp_iter *iter,
420f8e14497SBen Gardon 						 u64 new_spte)
421f8e14497SBen Gardon {
422a6a0b05dSBen Gardon 	__tdp_mmu_set_spte(kvm, iter, new_spte, false, true);
423a6a0b05dSBen Gardon }
424a6a0b05dSBen Gardon 
425a6a0b05dSBen Gardon static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm,
426a6a0b05dSBen Gardon 						 struct tdp_iter *iter,
427a6a0b05dSBen Gardon 						 u64 new_spte)
428a6a0b05dSBen Gardon {
429a6a0b05dSBen Gardon 	__tdp_mmu_set_spte(kvm, iter, new_spte, true, false);
430faaf05b0SBen Gardon }
431faaf05b0SBen Gardon 
432faaf05b0SBen Gardon #define tdp_root_for_each_pte(_iter, _root, _start, _end) \
433faaf05b0SBen Gardon 	for_each_tdp_pte(_iter, _root->spt, _root->role.level, _start, _end)
434faaf05b0SBen Gardon 
435f8e14497SBen Gardon #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end)	\
436f8e14497SBen Gardon 	tdp_root_for_each_pte(_iter, _root, _start, _end)		\
437f8e14497SBen Gardon 		if (!is_shadow_present_pte(_iter.old_spte) ||		\
438f8e14497SBen Gardon 		    !is_last_spte(_iter.old_spte, _iter.level))		\
439f8e14497SBen Gardon 			continue;					\
440f8e14497SBen Gardon 		else
441f8e14497SBen Gardon 
442bb18842eSBen Gardon #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end)		\
443bb18842eSBen Gardon 	for_each_tdp_pte(_iter, __va(_mmu->root_hpa),		\
444bb18842eSBen Gardon 			 _mmu->shadow_root_level, _start, _end)
445bb18842eSBen Gardon 
446faaf05b0SBen Gardon /*
447e28a436cSBen Gardon  * Yield if the MMU lock is contended or this thread needs to return control
448e28a436cSBen Gardon  * to the scheduler.
449e28a436cSBen Gardon  *
450e139a34eSBen Gardon  * If this function should yield and flush is set, it will perform a remote
451e139a34eSBen Gardon  * TLB flush before yielding.
452e139a34eSBen Gardon  *
453e28a436cSBen Gardon  * If this function yields, it will also reset the tdp_iter's walk over the
454ed5e484bSBen Gardon  * paging structure and the calling function should skip to the next
455ed5e484bSBen Gardon  * iteration to allow the iterator to continue its traversal from the
456ed5e484bSBen Gardon  * paging structure root.
457e28a436cSBen Gardon  *
458e28a436cSBen Gardon  * Return true if this function yielded and the iterator's traversal was reset.
459e28a436cSBen Gardon  * Return false if a yield was not needed.
460e28a436cSBen Gardon  */
461e139a34eSBen Gardon static inline bool tdp_mmu_iter_cond_resched(struct kvm *kvm,
462e139a34eSBen Gardon 					     struct tdp_iter *iter, bool flush)
463a6a0b05dSBen Gardon {
464ed5e484bSBen Gardon 	/* Ensure forward progress has been made before yielding. */
465ed5e484bSBen Gardon 	if (iter->next_last_level_gfn == iter->yielded_gfn)
466ed5e484bSBen Gardon 		return false;
467ed5e484bSBen Gardon 
468a6a0b05dSBen Gardon 	if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
469e139a34eSBen Gardon 		if (flush)
470e139a34eSBen Gardon 			kvm_flush_remote_tlbs(kvm);
471e139a34eSBen Gardon 
472a6a0b05dSBen Gardon 		cond_resched_lock(&kvm->mmu_lock);
473ed5e484bSBen Gardon 
474ed5e484bSBen Gardon 		WARN_ON(iter->gfn > iter->next_last_level_gfn);
475ed5e484bSBen Gardon 
476ed5e484bSBen Gardon 		tdp_iter_start(iter, iter->pt_path[iter->root_level - 1],
477ed5e484bSBen Gardon 			       iter->root_level, iter->min_level,
478ed5e484bSBen Gardon 			       iter->next_last_level_gfn);
479ed5e484bSBen Gardon 
480e28a436cSBen Gardon 		return true;
481a6a0b05dSBen Gardon 	}
482e28a436cSBen Gardon 
483e28a436cSBen Gardon 	return false;
484a6a0b05dSBen Gardon }
485a6a0b05dSBen Gardon 
486faaf05b0SBen Gardon /*
487faaf05b0SBen Gardon  * Tears down the mappings for the range of gfns, [start, end), and frees the
488faaf05b0SBen Gardon  * non-root pages mapping GFNs strictly within that range. Returns true if
489faaf05b0SBen Gardon  * SPTEs have been cleared and a TLB flush is needed before releasing the
490faaf05b0SBen Gardon  * MMU lock.
491063afacdSBen Gardon  * If can_yield is true, will release the MMU lock and reschedule if the
492063afacdSBen Gardon  * scheduler needs the CPU or there is contention on the MMU lock. If this
493063afacdSBen Gardon  * function cannot yield, it will not release the MMU lock or reschedule and
494063afacdSBen Gardon  * the caller must ensure it does not supply too large a GFN range, or the
495063afacdSBen Gardon  * operation can cause a soft lockup.
496faaf05b0SBen Gardon  */
497faaf05b0SBen Gardon static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
498063afacdSBen Gardon 			  gfn_t start, gfn_t end, bool can_yield)
499faaf05b0SBen Gardon {
500faaf05b0SBen Gardon 	struct tdp_iter iter;
501faaf05b0SBen Gardon 	bool flush_needed = false;
502faaf05b0SBen Gardon 
503faaf05b0SBen Gardon 	tdp_root_for_each_pte(iter, root, start, end) {
5041af4a960SBen Gardon 		if (can_yield &&
5051af4a960SBen Gardon 		    tdp_mmu_iter_cond_resched(kvm, &iter, flush_needed)) {
5061af4a960SBen Gardon 			flush_needed = false;
5071af4a960SBen Gardon 			continue;
5081af4a960SBen Gardon 		}
5091af4a960SBen Gardon 
510faaf05b0SBen Gardon 		if (!is_shadow_present_pte(iter.old_spte))
511faaf05b0SBen Gardon 			continue;
512faaf05b0SBen Gardon 
513faaf05b0SBen Gardon 		/*
514faaf05b0SBen Gardon 		 * If this is a non-last-level SPTE that covers a larger range
515faaf05b0SBen Gardon 		 * than should be zapped, continue, and zap the mappings at a
516faaf05b0SBen Gardon 		 * lower level.
517faaf05b0SBen Gardon 		 */
518faaf05b0SBen Gardon 		if ((iter.gfn < start ||
519faaf05b0SBen Gardon 		     iter.gfn + KVM_PAGES_PER_HPAGE(iter.level) > end) &&
520faaf05b0SBen Gardon 		    !is_last_spte(iter.old_spte, iter.level))
521faaf05b0SBen Gardon 			continue;
522faaf05b0SBen Gardon 
523faaf05b0SBen Gardon 		tdp_mmu_set_spte(kvm, &iter, 0);
5241af4a960SBen Gardon 		flush_needed = true;
525faaf05b0SBen Gardon 	}
526faaf05b0SBen Gardon 	return flush_needed;
527faaf05b0SBen Gardon }
528faaf05b0SBen Gardon 
529faaf05b0SBen Gardon /*
530faaf05b0SBen Gardon  * Tears down the mappings for the range of gfns, [start, end), and frees the
531faaf05b0SBen Gardon  * non-root pages mapping GFNs strictly within that range. Returns true if
532faaf05b0SBen Gardon  * SPTEs have been cleared and a TLB flush is needed before releasing the
533faaf05b0SBen Gardon  * MMU lock.
534faaf05b0SBen Gardon  */
535faaf05b0SBen Gardon bool kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, gfn_t start, gfn_t end)
536faaf05b0SBen Gardon {
537faaf05b0SBen Gardon 	struct kvm_mmu_page *root;
538faaf05b0SBen Gardon 	bool flush = false;
539faaf05b0SBen Gardon 
540a889ea54SBen Gardon 	for_each_tdp_mmu_root_yield_safe(kvm, root)
541063afacdSBen Gardon 		flush |= zap_gfn_range(kvm, root, start, end, true);
542faaf05b0SBen Gardon 
543faaf05b0SBen Gardon 	return flush;
544faaf05b0SBen Gardon }
545faaf05b0SBen Gardon 
546faaf05b0SBen Gardon void kvm_tdp_mmu_zap_all(struct kvm *kvm)
547faaf05b0SBen Gardon {
548339f5a7fSRick Edgecombe 	gfn_t max_gfn = 1ULL << (shadow_phys_bits - PAGE_SHIFT);
549faaf05b0SBen Gardon 	bool flush;
550faaf05b0SBen Gardon 
551faaf05b0SBen Gardon 	flush = kvm_tdp_mmu_zap_gfn_range(kvm, 0, max_gfn);
552faaf05b0SBen Gardon 	if (flush)
553faaf05b0SBen Gardon 		kvm_flush_remote_tlbs(kvm);
554faaf05b0SBen Gardon }
555bb18842eSBen Gardon 
556bb18842eSBen Gardon /*
557bb18842eSBen Gardon  * Installs a last-level SPTE to handle a TDP page fault.
558bb18842eSBen Gardon  * (NPT/EPT violation/misconfiguration)
559bb18842eSBen Gardon  */
560bb18842eSBen Gardon static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, int write,
561bb18842eSBen Gardon 					  int map_writable,
562bb18842eSBen Gardon 					  struct tdp_iter *iter,
563bb18842eSBen Gardon 					  kvm_pfn_t pfn, bool prefault)
564bb18842eSBen Gardon {
565bb18842eSBen Gardon 	u64 new_spte;
566bb18842eSBen Gardon 	int ret = 0;
567bb18842eSBen Gardon 	int make_spte_ret = 0;
568bb18842eSBen Gardon 
569bb18842eSBen Gardon 	if (unlikely(is_noslot_pfn(pfn))) {
570bb18842eSBen Gardon 		new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
571bb18842eSBen Gardon 		trace_mark_mmio_spte(iter->sptep, iter->gfn, new_spte);
57233dd3574SBen Gardon 	} else {
573bb18842eSBen Gardon 		make_spte_ret = make_spte(vcpu, ACC_ALL, iter->level, iter->gfn,
574bb18842eSBen Gardon 					 pfn, iter->old_spte, prefault, true,
575bb18842eSBen Gardon 					 map_writable, !shadow_accessed_mask,
576bb18842eSBen Gardon 					 &new_spte);
57733dd3574SBen Gardon 		trace_kvm_mmu_set_spte(iter->level, iter->gfn, iter->sptep);
57833dd3574SBen Gardon 	}
579bb18842eSBen Gardon 
580bb18842eSBen Gardon 	if (new_spte == iter->old_spte)
581bb18842eSBen Gardon 		ret = RET_PF_SPURIOUS;
582bb18842eSBen Gardon 	else
583bb18842eSBen Gardon 		tdp_mmu_set_spte(vcpu->kvm, iter, new_spte);
584bb18842eSBen Gardon 
585bb18842eSBen Gardon 	/*
586bb18842eSBen Gardon 	 * If the page fault was caused by a write but the page is write
587bb18842eSBen Gardon 	 * protected, emulation is needed. If the emulation was skipped,
588bb18842eSBen Gardon 	 * the vCPU would have the same fault again.
589bb18842eSBen Gardon 	 */
590bb18842eSBen Gardon 	if (make_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
591bb18842eSBen Gardon 		if (write)
592bb18842eSBen Gardon 			ret = RET_PF_EMULATE;
593bb18842eSBen Gardon 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
594bb18842eSBen Gardon 	}
595bb18842eSBen Gardon 
596bb18842eSBen Gardon 	/* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
597bb18842eSBen Gardon 	if (unlikely(is_mmio_spte(new_spte)))
598bb18842eSBen Gardon 		ret = RET_PF_EMULATE;
599bb18842eSBen Gardon 
600bb18842eSBen Gardon 	trace_kvm_mmu_set_spte(iter->level, iter->gfn, iter->sptep);
601bb18842eSBen Gardon 	if (!prefault)
602bb18842eSBen Gardon 		vcpu->stat.pf_fixed++;
603bb18842eSBen Gardon 
604bb18842eSBen Gardon 	return ret;
605bb18842eSBen Gardon }
606bb18842eSBen Gardon 
607bb18842eSBen Gardon /*
608bb18842eSBen Gardon  * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
609bb18842eSBen Gardon  * page tables and SPTEs to translate the faulting guest physical address.
610bb18842eSBen Gardon  */
611bb18842eSBen Gardon int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
612bb18842eSBen Gardon 		    int map_writable, int max_level, kvm_pfn_t pfn,
613bb18842eSBen Gardon 		    bool prefault)
614bb18842eSBen Gardon {
615bb18842eSBen Gardon 	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
616bb18842eSBen Gardon 	bool write = error_code & PFERR_WRITE_MASK;
617bb18842eSBen Gardon 	bool exec = error_code & PFERR_FETCH_MASK;
618bb18842eSBen Gardon 	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
619bb18842eSBen Gardon 	struct kvm_mmu *mmu = vcpu->arch.mmu;
620bb18842eSBen Gardon 	struct tdp_iter iter;
62189c0fd49SBen Gardon 	struct kvm_mmu_page *sp;
622bb18842eSBen Gardon 	u64 *child_pt;
623bb18842eSBen Gardon 	u64 new_spte;
624bb18842eSBen Gardon 	int ret;
625bb18842eSBen Gardon 	gfn_t gfn = gpa >> PAGE_SHIFT;
626bb18842eSBen Gardon 	int level;
627bb18842eSBen Gardon 	int req_level;
628bb18842eSBen Gardon 
629bb18842eSBen Gardon 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
630bb18842eSBen Gardon 		return RET_PF_RETRY;
631bb18842eSBen Gardon 	if (WARN_ON(!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)))
632bb18842eSBen Gardon 		return RET_PF_RETRY;
633bb18842eSBen Gardon 
634bb18842eSBen Gardon 	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
635bb18842eSBen Gardon 					huge_page_disallowed, &req_level);
636bb18842eSBen Gardon 
637bb18842eSBen Gardon 	trace_kvm_mmu_spte_requested(gpa, level, pfn);
638bb18842eSBen Gardon 	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
639bb18842eSBen Gardon 		if (nx_huge_page_workaround_enabled)
640bb18842eSBen Gardon 			disallowed_hugepage_adjust(iter.old_spte, gfn,
641bb18842eSBen Gardon 						   iter.level, &pfn, &level);
642bb18842eSBen Gardon 
643bb18842eSBen Gardon 		if (iter.level == level)
644bb18842eSBen Gardon 			break;
645bb18842eSBen Gardon 
646bb18842eSBen Gardon 		/*
647bb18842eSBen Gardon 		 * If there is an SPTE mapping a large page at a higher level
648bb18842eSBen Gardon 		 * than the target, that SPTE must be cleared and replaced
649bb18842eSBen Gardon 		 * with a non-leaf SPTE.
650bb18842eSBen Gardon 		 */
651bb18842eSBen Gardon 		if (is_shadow_present_pte(iter.old_spte) &&
652bb18842eSBen Gardon 		    is_large_pte(iter.old_spte)) {
653bb18842eSBen Gardon 			tdp_mmu_set_spte(vcpu->kvm, &iter, 0);
654bb18842eSBen Gardon 
655bb18842eSBen Gardon 			kvm_flush_remote_tlbs_with_address(vcpu->kvm, iter.gfn,
656bb18842eSBen Gardon 					KVM_PAGES_PER_HPAGE(iter.level));
657bb18842eSBen Gardon 
658bb18842eSBen Gardon 			/*
659bb18842eSBen Gardon 			 * The iter must explicitly re-read the spte here
660bb18842eSBen Gardon 			 * because the new value informs the !present
661bb18842eSBen Gardon 			 * path below.
662bb18842eSBen Gardon 			 */
663bb18842eSBen Gardon 			iter.old_spte = READ_ONCE(*iter.sptep);
664bb18842eSBen Gardon 		}
665bb18842eSBen Gardon 
666bb18842eSBen Gardon 		if (!is_shadow_present_pte(iter.old_spte)) {
66789c0fd49SBen Gardon 			sp = alloc_tdp_mmu_page(vcpu, iter.gfn, iter.level);
66889c0fd49SBen Gardon 			list_add(&sp->link, &vcpu->kvm->arch.tdp_mmu_pages);
66989c0fd49SBen Gardon 			child_pt = sp->spt;
670bb18842eSBen Gardon 			new_spte = make_nonleaf_spte(child_pt,
671bb18842eSBen Gardon 						     !shadow_accessed_mask);
672bb18842eSBen Gardon 
673bb18842eSBen Gardon 			trace_kvm_mmu_get_page(sp, true);
67429cf0f50SBen Gardon 			if (huge_page_disallowed && req_level >= iter.level)
67529cf0f50SBen Gardon 				account_huge_nx_page(vcpu->kvm, sp);
67629cf0f50SBen Gardon 
677bb18842eSBen Gardon 			tdp_mmu_set_spte(vcpu->kvm, &iter, new_spte);
678bb18842eSBen Gardon 		}
679bb18842eSBen Gardon 	}
680bb18842eSBen Gardon 
681bb18842eSBen Gardon 	if (WARN_ON(iter.level != level))
682bb18842eSBen Gardon 		return RET_PF_RETRY;
683bb18842eSBen Gardon 
684bb18842eSBen Gardon 	ret = tdp_mmu_map_handle_target_level(vcpu, write, map_writable, &iter,
685bb18842eSBen Gardon 					      pfn, prefault);
686bb18842eSBen Gardon 
687bb18842eSBen Gardon 	return ret;
688bb18842eSBen Gardon }
689063afacdSBen Gardon 
690063afacdSBen Gardon static int kvm_tdp_mmu_handle_hva_range(struct kvm *kvm, unsigned long start,
691063afacdSBen Gardon 		unsigned long end, unsigned long data,
692063afacdSBen Gardon 		int (*handler)(struct kvm *kvm, struct kvm_memory_slot *slot,
693063afacdSBen Gardon 			       struct kvm_mmu_page *root, gfn_t start,
694063afacdSBen Gardon 			       gfn_t end, unsigned long data))
695063afacdSBen Gardon {
696063afacdSBen Gardon 	struct kvm_memslots *slots;
697063afacdSBen Gardon 	struct kvm_memory_slot *memslot;
698063afacdSBen Gardon 	struct kvm_mmu_page *root;
699063afacdSBen Gardon 	int ret = 0;
700063afacdSBen Gardon 	int as_id;
701063afacdSBen Gardon 
702a889ea54SBen Gardon 	for_each_tdp_mmu_root_yield_safe(kvm, root) {
703063afacdSBen Gardon 		as_id = kvm_mmu_page_as_id(root);
704063afacdSBen Gardon 		slots = __kvm_memslots(kvm, as_id);
705063afacdSBen Gardon 		kvm_for_each_memslot(memslot, slots) {
706063afacdSBen Gardon 			unsigned long hva_start, hva_end;
707063afacdSBen Gardon 			gfn_t gfn_start, gfn_end;
708063afacdSBen Gardon 
709063afacdSBen Gardon 			hva_start = max(start, memslot->userspace_addr);
710063afacdSBen Gardon 			hva_end = min(end, memslot->userspace_addr +
711063afacdSBen Gardon 				      (memslot->npages << PAGE_SHIFT));
712063afacdSBen Gardon 			if (hva_start >= hva_end)
713063afacdSBen Gardon 				continue;
714063afacdSBen Gardon 			/*
715063afacdSBen Gardon 			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
716063afacdSBen Gardon 			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
717063afacdSBen Gardon 			 */
718063afacdSBen Gardon 			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
719063afacdSBen Gardon 			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
720063afacdSBen Gardon 
721063afacdSBen Gardon 			ret |= handler(kvm, memslot, root, gfn_start,
722063afacdSBen Gardon 				       gfn_end, data);
723063afacdSBen Gardon 		}
724063afacdSBen Gardon 	}
725063afacdSBen Gardon 
726063afacdSBen Gardon 	return ret;
727063afacdSBen Gardon }
728063afacdSBen Gardon 
729063afacdSBen Gardon static int zap_gfn_range_hva_wrapper(struct kvm *kvm,
730063afacdSBen Gardon 				     struct kvm_memory_slot *slot,
731063afacdSBen Gardon 				     struct kvm_mmu_page *root, gfn_t start,
732063afacdSBen Gardon 				     gfn_t end, unsigned long unused)
733063afacdSBen Gardon {
734063afacdSBen Gardon 	return zap_gfn_range(kvm, root, start, end, false);
735063afacdSBen Gardon }
736063afacdSBen Gardon 
737063afacdSBen Gardon int kvm_tdp_mmu_zap_hva_range(struct kvm *kvm, unsigned long start,
738063afacdSBen Gardon 			      unsigned long end)
739063afacdSBen Gardon {
740063afacdSBen Gardon 	return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
741063afacdSBen Gardon 					    zap_gfn_range_hva_wrapper);
742063afacdSBen Gardon }
743f8e14497SBen Gardon 
744f8e14497SBen Gardon /*
745f8e14497SBen Gardon  * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
746f8e14497SBen Gardon  * if any of the GFNs in the range have been accessed.
747f8e14497SBen Gardon  */
748f8e14497SBen Gardon static int age_gfn_range(struct kvm *kvm, struct kvm_memory_slot *slot,
749f8e14497SBen Gardon 			 struct kvm_mmu_page *root, gfn_t start, gfn_t end,
750f8e14497SBen Gardon 			 unsigned long unused)
751f8e14497SBen Gardon {
752f8e14497SBen Gardon 	struct tdp_iter iter;
753f8e14497SBen Gardon 	int young = 0;
754f8e14497SBen Gardon 	u64 new_spte = 0;
755f8e14497SBen Gardon 
756f8e14497SBen Gardon 	tdp_root_for_each_leaf_pte(iter, root, start, end) {
757f8e14497SBen Gardon 		/*
758f8e14497SBen Gardon 		 * If we have a non-accessed entry we don't need to change the
759f8e14497SBen Gardon 		 * pte.
760f8e14497SBen Gardon 		 */
761f8e14497SBen Gardon 		if (!is_accessed_spte(iter.old_spte))
762f8e14497SBen Gardon 			continue;
763f8e14497SBen Gardon 
764f8e14497SBen Gardon 		new_spte = iter.old_spte;
765f8e14497SBen Gardon 
766f8e14497SBen Gardon 		if (spte_ad_enabled(new_spte)) {
767f8e14497SBen Gardon 			clear_bit((ffs(shadow_accessed_mask) - 1),
768f8e14497SBen Gardon 				  (unsigned long *)&new_spte);
769f8e14497SBen Gardon 		} else {
770f8e14497SBen Gardon 			/*
771f8e14497SBen Gardon 			 * Capture the dirty status of the page, so that it doesn't get
772f8e14497SBen Gardon 			 * lost when the SPTE is marked for access tracking.
773f8e14497SBen Gardon 			 */
774f8e14497SBen Gardon 			if (is_writable_pte(new_spte))
775f8e14497SBen Gardon 				kvm_set_pfn_dirty(spte_to_pfn(new_spte));
776f8e14497SBen Gardon 
777f8e14497SBen Gardon 			new_spte = mark_spte_for_access_track(new_spte);
778f8e14497SBen Gardon 		}
779a6a0b05dSBen Gardon 		new_spte &= ~shadow_dirty_mask;
780f8e14497SBen Gardon 
781f8e14497SBen Gardon 		tdp_mmu_set_spte_no_acc_track(kvm, &iter, new_spte);
782f8e14497SBen Gardon 		young = 1;
78333dd3574SBen Gardon 
78433dd3574SBen Gardon 		trace_kvm_age_page(iter.gfn, iter.level, slot, young);
785f8e14497SBen Gardon 	}
786f8e14497SBen Gardon 
787f8e14497SBen Gardon 	return young;
788f8e14497SBen Gardon }
789f8e14497SBen Gardon 
790f8e14497SBen Gardon int kvm_tdp_mmu_age_hva_range(struct kvm *kvm, unsigned long start,
791f8e14497SBen Gardon 			      unsigned long end)
792f8e14497SBen Gardon {
793f8e14497SBen Gardon 	return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
794f8e14497SBen Gardon 					    age_gfn_range);
795f8e14497SBen Gardon }
796f8e14497SBen Gardon 
797f8e14497SBen Gardon static int test_age_gfn(struct kvm *kvm, struct kvm_memory_slot *slot,
798f8e14497SBen Gardon 			struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
799f8e14497SBen Gardon 			unsigned long unused2)
800f8e14497SBen Gardon {
801f8e14497SBen Gardon 	struct tdp_iter iter;
802f8e14497SBen Gardon 
803f8e14497SBen Gardon 	tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1)
804f8e14497SBen Gardon 		if (is_accessed_spte(iter.old_spte))
805f8e14497SBen Gardon 			return 1;
806f8e14497SBen Gardon 
807f8e14497SBen Gardon 	return 0;
808f8e14497SBen Gardon }
809f8e14497SBen Gardon 
810f8e14497SBen Gardon int kvm_tdp_mmu_test_age_hva(struct kvm *kvm, unsigned long hva)
811f8e14497SBen Gardon {
812f8e14497SBen Gardon 	return kvm_tdp_mmu_handle_hva_range(kvm, hva, hva + 1, 0,
813f8e14497SBen Gardon 					    test_age_gfn);
814f8e14497SBen Gardon }
8151d8dd6b3SBen Gardon 
8161d8dd6b3SBen Gardon /*
8171d8dd6b3SBen Gardon  * Handle the changed_pte MMU notifier for the TDP MMU.
8181d8dd6b3SBen Gardon  * data is a pointer to the new pte_t mapping the HVA specified by the MMU
8191d8dd6b3SBen Gardon  * notifier.
8201d8dd6b3SBen Gardon  * Returns non-zero if a flush is needed before releasing the MMU lock.
8211d8dd6b3SBen Gardon  */
8221d8dd6b3SBen Gardon static int set_tdp_spte(struct kvm *kvm, struct kvm_memory_slot *slot,
8231d8dd6b3SBen Gardon 			struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
8241d8dd6b3SBen Gardon 			unsigned long data)
8251d8dd6b3SBen Gardon {
8261d8dd6b3SBen Gardon 	struct tdp_iter iter;
8271d8dd6b3SBen Gardon 	pte_t *ptep = (pte_t *)data;
8281d8dd6b3SBen Gardon 	kvm_pfn_t new_pfn;
8291d8dd6b3SBen Gardon 	u64 new_spte;
8301d8dd6b3SBen Gardon 	int need_flush = 0;
8311d8dd6b3SBen Gardon 
8321d8dd6b3SBen Gardon 	WARN_ON(pte_huge(*ptep));
8331d8dd6b3SBen Gardon 
8341d8dd6b3SBen Gardon 	new_pfn = pte_pfn(*ptep);
8351d8dd6b3SBen Gardon 
8361d8dd6b3SBen Gardon 	tdp_root_for_each_pte(iter, root, gfn, gfn + 1) {
8371d8dd6b3SBen Gardon 		if (iter.level != PG_LEVEL_4K)
8381d8dd6b3SBen Gardon 			continue;
8391d8dd6b3SBen Gardon 
8401d8dd6b3SBen Gardon 		if (!is_shadow_present_pte(iter.old_spte))
8411d8dd6b3SBen Gardon 			break;
8421d8dd6b3SBen Gardon 
8431d8dd6b3SBen Gardon 		tdp_mmu_set_spte(kvm, &iter, 0);
8441d8dd6b3SBen Gardon 
8451d8dd6b3SBen Gardon 		kvm_flush_remote_tlbs_with_address(kvm, iter.gfn, 1);
8461d8dd6b3SBen Gardon 
8471d8dd6b3SBen Gardon 		if (!pte_write(*ptep)) {
8481d8dd6b3SBen Gardon 			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
8491d8dd6b3SBen Gardon 					iter.old_spte, new_pfn);
8501d8dd6b3SBen Gardon 
8511d8dd6b3SBen Gardon 			tdp_mmu_set_spte(kvm, &iter, new_spte);
8521d8dd6b3SBen Gardon 		}
8531d8dd6b3SBen Gardon 
8541d8dd6b3SBen Gardon 		need_flush = 1;
8551d8dd6b3SBen Gardon 	}
8561d8dd6b3SBen Gardon 
8571d8dd6b3SBen Gardon 	if (need_flush)
8581d8dd6b3SBen Gardon 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
8591d8dd6b3SBen Gardon 
8601d8dd6b3SBen Gardon 	return 0;
8611d8dd6b3SBen Gardon }
8621d8dd6b3SBen Gardon 
8631d8dd6b3SBen Gardon int kvm_tdp_mmu_set_spte_hva(struct kvm *kvm, unsigned long address,
8641d8dd6b3SBen Gardon 			     pte_t *host_ptep)
8651d8dd6b3SBen Gardon {
8661d8dd6b3SBen Gardon 	return kvm_tdp_mmu_handle_hva_range(kvm, address, address + 1,
8671d8dd6b3SBen Gardon 					    (unsigned long)host_ptep,
8681d8dd6b3SBen Gardon 					    set_tdp_spte);
8691d8dd6b3SBen Gardon }
8701d8dd6b3SBen Gardon 
871a6a0b05dSBen Gardon /*
872a6a0b05dSBen Gardon  * Remove write access from all the SPTEs mapping GFNs [start, end). If
873a6a0b05dSBen Gardon  * skip_4k is set, SPTEs that map 4k pages, will not be write-protected.
874a6a0b05dSBen Gardon  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
875a6a0b05dSBen Gardon  */
876a6a0b05dSBen Gardon static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
877a6a0b05dSBen Gardon 			     gfn_t start, gfn_t end, int min_level)
878a6a0b05dSBen Gardon {
879a6a0b05dSBen Gardon 	struct tdp_iter iter;
880a6a0b05dSBen Gardon 	u64 new_spte;
881a6a0b05dSBen Gardon 	bool spte_set = false;
882a6a0b05dSBen Gardon 
883a6a0b05dSBen Gardon 	BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
884a6a0b05dSBen Gardon 
885a6a0b05dSBen Gardon 	for_each_tdp_pte_min_level(iter, root->spt, root->role.level,
886a6a0b05dSBen Gardon 				   min_level, start, end) {
8871af4a960SBen Gardon 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false))
8881af4a960SBen Gardon 			continue;
8891af4a960SBen Gardon 
890a6a0b05dSBen Gardon 		if (!is_shadow_present_pte(iter.old_spte) ||
891*0f99ee2cSBen Gardon 		    !is_last_spte(iter.old_spte, iter.level) ||
892*0f99ee2cSBen Gardon 		    !(iter.old_spte & PT_WRITABLE_MASK))
893a6a0b05dSBen Gardon 			continue;
894a6a0b05dSBen Gardon 
895a6a0b05dSBen Gardon 		new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
896a6a0b05dSBen Gardon 
897a6a0b05dSBen Gardon 		tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
898a6a0b05dSBen Gardon 		spte_set = true;
899a6a0b05dSBen Gardon 	}
900a6a0b05dSBen Gardon 	return spte_set;
901a6a0b05dSBen Gardon }
902a6a0b05dSBen Gardon 
903a6a0b05dSBen Gardon /*
904a6a0b05dSBen Gardon  * Remove write access from all the SPTEs mapping GFNs in the memslot. Will
905a6a0b05dSBen Gardon  * only affect leaf SPTEs down to min_level.
906a6a0b05dSBen Gardon  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
907a6a0b05dSBen Gardon  */
908a6a0b05dSBen Gardon bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, struct kvm_memory_slot *slot,
909a6a0b05dSBen Gardon 			     int min_level)
910a6a0b05dSBen Gardon {
911a6a0b05dSBen Gardon 	struct kvm_mmu_page *root;
912a6a0b05dSBen Gardon 	int root_as_id;
913a6a0b05dSBen Gardon 	bool spte_set = false;
914a6a0b05dSBen Gardon 
915a889ea54SBen Gardon 	for_each_tdp_mmu_root_yield_safe(kvm, root) {
916a6a0b05dSBen Gardon 		root_as_id = kvm_mmu_page_as_id(root);
917a6a0b05dSBen Gardon 		if (root_as_id != slot->as_id)
918a6a0b05dSBen Gardon 			continue;
919a6a0b05dSBen Gardon 
920a6a0b05dSBen Gardon 		spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
921a6a0b05dSBen Gardon 			     slot->base_gfn + slot->npages, min_level);
922a6a0b05dSBen Gardon 	}
923a6a0b05dSBen Gardon 
924a6a0b05dSBen Gardon 	return spte_set;
925a6a0b05dSBen Gardon }
926a6a0b05dSBen Gardon 
927a6a0b05dSBen Gardon /*
928a6a0b05dSBen Gardon  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
929a6a0b05dSBen Gardon  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
930a6a0b05dSBen Gardon  * If AD bits are not enabled, this will require clearing the writable bit on
931a6a0b05dSBen Gardon  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
932a6a0b05dSBen Gardon  * be flushed.
933a6a0b05dSBen Gardon  */
934a6a0b05dSBen Gardon static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
935a6a0b05dSBen Gardon 			   gfn_t start, gfn_t end)
936a6a0b05dSBen Gardon {
937a6a0b05dSBen Gardon 	struct tdp_iter iter;
938a6a0b05dSBen Gardon 	u64 new_spte;
939a6a0b05dSBen Gardon 	bool spte_set = false;
940a6a0b05dSBen Gardon 
941a6a0b05dSBen Gardon 	tdp_root_for_each_leaf_pte(iter, root, start, end) {
9421af4a960SBen Gardon 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false))
9431af4a960SBen Gardon 			continue;
9441af4a960SBen Gardon 
945a6a0b05dSBen Gardon 		if (spte_ad_need_write_protect(iter.old_spte)) {
946a6a0b05dSBen Gardon 			if (is_writable_pte(iter.old_spte))
947a6a0b05dSBen Gardon 				new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
948a6a0b05dSBen Gardon 			else
949a6a0b05dSBen Gardon 				continue;
950a6a0b05dSBen Gardon 		} else {
951a6a0b05dSBen Gardon 			if (iter.old_spte & shadow_dirty_mask)
952a6a0b05dSBen Gardon 				new_spte = iter.old_spte & ~shadow_dirty_mask;
953a6a0b05dSBen Gardon 			else
954a6a0b05dSBen Gardon 				continue;
955a6a0b05dSBen Gardon 		}
956a6a0b05dSBen Gardon 
957a6a0b05dSBen Gardon 		tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
958a6a0b05dSBen Gardon 		spte_set = true;
959a6a0b05dSBen Gardon 	}
960a6a0b05dSBen Gardon 	return spte_set;
961a6a0b05dSBen Gardon }
962a6a0b05dSBen Gardon 
963a6a0b05dSBen Gardon /*
964a6a0b05dSBen Gardon  * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
965a6a0b05dSBen Gardon  * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
966a6a0b05dSBen Gardon  * If AD bits are not enabled, this will require clearing the writable bit on
967a6a0b05dSBen Gardon  * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
968a6a0b05dSBen Gardon  * be flushed.
969a6a0b05dSBen Gardon  */
970a6a0b05dSBen Gardon bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, struct kvm_memory_slot *slot)
971a6a0b05dSBen Gardon {
972a6a0b05dSBen Gardon 	struct kvm_mmu_page *root;
973a6a0b05dSBen Gardon 	int root_as_id;
974a6a0b05dSBen Gardon 	bool spte_set = false;
975a6a0b05dSBen Gardon 
976a889ea54SBen Gardon 	for_each_tdp_mmu_root_yield_safe(kvm, root) {
977a6a0b05dSBen Gardon 		root_as_id = kvm_mmu_page_as_id(root);
978a6a0b05dSBen Gardon 		if (root_as_id != slot->as_id)
979a6a0b05dSBen Gardon 			continue;
980a6a0b05dSBen Gardon 
981a6a0b05dSBen Gardon 		spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
982a6a0b05dSBen Gardon 				slot->base_gfn + slot->npages);
983a6a0b05dSBen Gardon 	}
984a6a0b05dSBen Gardon 
985a6a0b05dSBen Gardon 	return spte_set;
986a6a0b05dSBen Gardon }
987a6a0b05dSBen Gardon 
988a6a0b05dSBen Gardon /*
989a6a0b05dSBen Gardon  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
990a6a0b05dSBen Gardon  * set in mask, starting at gfn. The given memslot is expected to contain all
991a6a0b05dSBen Gardon  * the GFNs represented by set bits in the mask. If AD bits are enabled,
992a6a0b05dSBen Gardon  * clearing the dirty status will involve clearing the dirty bit on each SPTE
993a6a0b05dSBen Gardon  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
994a6a0b05dSBen Gardon  */
995a6a0b05dSBen Gardon static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
996a6a0b05dSBen Gardon 				  gfn_t gfn, unsigned long mask, bool wrprot)
997a6a0b05dSBen Gardon {
998a6a0b05dSBen Gardon 	struct tdp_iter iter;
999a6a0b05dSBen Gardon 	u64 new_spte;
1000a6a0b05dSBen Gardon 
1001a6a0b05dSBen Gardon 	tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
1002a6a0b05dSBen Gardon 				    gfn + BITS_PER_LONG) {
1003a6a0b05dSBen Gardon 		if (!mask)
1004a6a0b05dSBen Gardon 			break;
1005a6a0b05dSBen Gardon 
1006a6a0b05dSBen Gardon 		if (iter.level > PG_LEVEL_4K ||
1007a6a0b05dSBen Gardon 		    !(mask & (1UL << (iter.gfn - gfn))))
1008a6a0b05dSBen Gardon 			continue;
1009a6a0b05dSBen Gardon 
1010a6a0b05dSBen Gardon 		if (wrprot || spte_ad_need_write_protect(iter.old_spte)) {
1011a6a0b05dSBen Gardon 			if (is_writable_pte(iter.old_spte))
1012a6a0b05dSBen Gardon 				new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
1013a6a0b05dSBen Gardon 			else
1014a6a0b05dSBen Gardon 				continue;
1015a6a0b05dSBen Gardon 		} else {
1016a6a0b05dSBen Gardon 			if (iter.old_spte & shadow_dirty_mask)
1017a6a0b05dSBen Gardon 				new_spte = iter.old_spte & ~shadow_dirty_mask;
1018a6a0b05dSBen Gardon 			else
1019a6a0b05dSBen Gardon 				continue;
1020a6a0b05dSBen Gardon 		}
1021a6a0b05dSBen Gardon 
1022a6a0b05dSBen Gardon 		tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
1023a6a0b05dSBen Gardon 
1024a6a0b05dSBen Gardon 		mask &= ~(1UL << (iter.gfn - gfn));
1025a6a0b05dSBen Gardon 	}
1026a6a0b05dSBen Gardon }
1027a6a0b05dSBen Gardon 
1028a6a0b05dSBen Gardon /*
1029a6a0b05dSBen Gardon  * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
1030a6a0b05dSBen Gardon  * set in mask, starting at gfn. The given memslot is expected to contain all
1031a6a0b05dSBen Gardon  * the GFNs represented by set bits in the mask. If AD bits are enabled,
1032a6a0b05dSBen Gardon  * clearing the dirty status will involve clearing the dirty bit on each SPTE
1033a6a0b05dSBen Gardon  * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
1034a6a0b05dSBen Gardon  */
1035a6a0b05dSBen Gardon void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1036a6a0b05dSBen Gardon 				       struct kvm_memory_slot *slot,
1037a6a0b05dSBen Gardon 				       gfn_t gfn, unsigned long mask,
1038a6a0b05dSBen Gardon 				       bool wrprot)
1039a6a0b05dSBen Gardon {
1040a6a0b05dSBen Gardon 	struct kvm_mmu_page *root;
1041a6a0b05dSBen Gardon 	int root_as_id;
1042a6a0b05dSBen Gardon 
1043a6a0b05dSBen Gardon 	lockdep_assert_held(&kvm->mmu_lock);
1044a6a0b05dSBen Gardon 	for_each_tdp_mmu_root(kvm, root) {
1045a6a0b05dSBen Gardon 		root_as_id = kvm_mmu_page_as_id(root);
1046a6a0b05dSBen Gardon 		if (root_as_id != slot->as_id)
1047a6a0b05dSBen Gardon 			continue;
1048a6a0b05dSBen Gardon 
1049a6a0b05dSBen Gardon 		clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
1050a6a0b05dSBen Gardon 	}
1051a6a0b05dSBen Gardon }
1052a6a0b05dSBen Gardon 
1053a6a0b05dSBen Gardon /*
1054a6a0b05dSBen Gardon  * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
1055a6a0b05dSBen Gardon  * only used for PML, and so will involve setting the dirty bit on each SPTE.
1056a6a0b05dSBen Gardon  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1057a6a0b05dSBen Gardon  */
1058a6a0b05dSBen Gardon static bool set_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1059a6a0b05dSBen Gardon 				gfn_t start, gfn_t end)
1060a6a0b05dSBen Gardon {
1061a6a0b05dSBen Gardon 	struct tdp_iter iter;
1062a6a0b05dSBen Gardon 	u64 new_spte;
1063a6a0b05dSBen Gardon 	bool spte_set = false;
1064a6a0b05dSBen Gardon 
1065a6a0b05dSBen Gardon 	tdp_root_for_each_pte(iter, root, start, end) {
10661af4a960SBen Gardon 		if (tdp_mmu_iter_cond_resched(kvm, &iter, false))
10671af4a960SBen Gardon 			continue;
10681af4a960SBen Gardon 
1069*0f99ee2cSBen Gardon 		if (!is_shadow_present_pte(iter.old_spte) ||
1070*0f99ee2cSBen Gardon 		    iter.old_spte & shadow_dirty_mask)
1071a6a0b05dSBen Gardon 			continue;
1072a6a0b05dSBen Gardon 
1073a6a0b05dSBen Gardon 		new_spte = iter.old_spte | shadow_dirty_mask;
1074a6a0b05dSBen Gardon 
1075a6a0b05dSBen Gardon 		tdp_mmu_set_spte(kvm, &iter, new_spte);
1076a6a0b05dSBen Gardon 		spte_set = true;
1077a6a0b05dSBen Gardon 	}
1078a6a0b05dSBen Gardon 
1079a6a0b05dSBen Gardon 	return spte_set;
1080a6a0b05dSBen Gardon }
1081a6a0b05dSBen Gardon 
1082a6a0b05dSBen Gardon /*
1083a6a0b05dSBen Gardon  * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
1084a6a0b05dSBen Gardon  * only used for PML, and so will involve setting the dirty bit on each SPTE.
1085a6a0b05dSBen Gardon  * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1086a6a0b05dSBen Gardon  */
1087a6a0b05dSBen Gardon bool kvm_tdp_mmu_slot_set_dirty(struct kvm *kvm, struct kvm_memory_slot *slot)
1088a6a0b05dSBen Gardon {
1089a6a0b05dSBen Gardon 	struct kvm_mmu_page *root;
1090a6a0b05dSBen Gardon 	int root_as_id;
1091a6a0b05dSBen Gardon 	bool spte_set = false;
1092a6a0b05dSBen Gardon 
1093a889ea54SBen Gardon 	for_each_tdp_mmu_root_yield_safe(kvm, root) {
1094a6a0b05dSBen Gardon 		root_as_id = kvm_mmu_page_as_id(root);
1095a6a0b05dSBen Gardon 		if (root_as_id != slot->as_id)
1096a6a0b05dSBen Gardon 			continue;
1097a6a0b05dSBen Gardon 
1098a6a0b05dSBen Gardon 		spte_set |= set_dirty_gfn_range(kvm, root, slot->base_gfn,
1099a6a0b05dSBen Gardon 				slot->base_gfn + slot->npages);
1100a6a0b05dSBen Gardon 	}
1101a6a0b05dSBen Gardon 	return spte_set;
1102a6a0b05dSBen Gardon }
1103a6a0b05dSBen Gardon 
110414881998SBen Gardon /*
110587aa9ec9SBen Gardon  * Clear leaf entries which could be replaced by large mappings, for
110687aa9ec9SBen Gardon  * GFNs within the slot.
110714881998SBen Gardon  */
110814881998SBen Gardon static void zap_collapsible_spte_range(struct kvm *kvm,
110914881998SBen Gardon 				       struct kvm_mmu_page *root,
111014881998SBen Gardon 				       gfn_t start, gfn_t end)
111114881998SBen Gardon {
111214881998SBen Gardon 	struct tdp_iter iter;
111314881998SBen Gardon 	kvm_pfn_t pfn;
111414881998SBen Gardon 	bool spte_set = false;
111514881998SBen Gardon 
111614881998SBen Gardon 	tdp_root_for_each_pte(iter, root, start, end) {
11171af4a960SBen Gardon 		if (tdp_mmu_iter_cond_resched(kvm, &iter, spte_set)) {
11181af4a960SBen Gardon 			spte_set = false;
11191af4a960SBen Gardon 			continue;
11201af4a960SBen Gardon 		}
11211af4a960SBen Gardon 
112214881998SBen Gardon 		if (!is_shadow_present_pte(iter.old_spte) ||
112387aa9ec9SBen Gardon 		    !is_last_spte(iter.old_spte, iter.level))
112414881998SBen Gardon 			continue;
112514881998SBen Gardon 
112614881998SBen Gardon 		pfn = spte_to_pfn(iter.old_spte);
112714881998SBen Gardon 		if (kvm_is_reserved_pfn(pfn) ||
112814881998SBen Gardon 		    !PageTransCompoundMap(pfn_to_page(pfn)))
112914881998SBen Gardon 			continue;
113014881998SBen Gardon 
113114881998SBen Gardon 		tdp_mmu_set_spte(kvm, &iter, 0);
113214881998SBen Gardon 
11331af4a960SBen Gardon 		spte_set = true;
113414881998SBen Gardon 	}
113514881998SBen Gardon 
113614881998SBen Gardon 	if (spte_set)
113714881998SBen Gardon 		kvm_flush_remote_tlbs(kvm);
113814881998SBen Gardon }
113914881998SBen Gardon 
114014881998SBen Gardon /*
114114881998SBen Gardon  * Clear non-leaf entries (and free associated page tables) which could
114214881998SBen Gardon  * be replaced by large mappings, for GFNs within the slot.
114314881998SBen Gardon  */
114414881998SBen Gardon void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm,
114514881998SBen Gardon 				       const struct kvm_memory_slot *slot)
114614881998SBen Gardon {
114714881998SBen Gardon 	struct kvm_mmu_page *root;
114814881998SBen Gardon 	int root_as_id;
114914881998SBen Gardon 
1150a889ea54SBen Gardon 	for_each_tdp_mmu_root_yield_safe(kvm, root) {
115114881998SBen Gardon 		root_as_id = kvm_mmu_page_as_id(root);
115214881998SBen Gardon 		if (root_as_id != slot->as_id)
115314881998SBen Gardon 			continue;
115414881998SBen Gardon 
115514881998SBen Gardon 		zap_collapsible_spte_range(kvm, root, slot->base_gfn,
115614881998SBen Gardon 					   slot->base_gfn + slot->npages);
115714881998SBen Gardon 	}
115814881998SBen Gardon }
115946044f72SBen Gardon 
116046044f72SBen Gardon /*
116146044f72SBen Gardon  * Removes write access on the last level SPTE mapping this GFN and unsets the
116246044f72SBen Gardon  * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
116346044f72SBen Gardon  * Returns true if an SPTE was set and a TLB flush is needed.
116446044f72SBen Gardon  */
116546044f72SBen Gardon static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
116646044f72SBen Gardon 			      gfn_t gfn)
116746044f72SBen Gardon {
116846044f72SBen Gardon 	struct tdp_iter iter;
116946044f72SBen Gardon 	u64 new_spte;
117046044f72SBen Gardon 	bool spte_set = false;
117146044f72SBen Gardon 
117246044f72SBen Gardon 	tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1) {
117346044f72SBen Gardon 		if (!is_writable_pte(iter.old_spte))
117446044f72SBen Gardon 			break;
117546044f72SBen Gardon 
117646044f72SBen Gardon 		new_spte = iter.old_spte &
117746044f72SBen Gardon 			~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
117846044f72SBen Gardon 
117946044f72SBen Gardon 		tdp_mmu_set_spte(kvm, &iter, new_spte);
118046044f72SBen Gardon 		spte_set = true;
118146044f72SBen Gardon 	}
118246044f72SBen Gardon 
118346044f72SBen Gardon 	return spte_set;
118446044f72SBen Gardon }
118546044f72SBen Gardon 
118646044f72SBen Gardon /*
118746044f72SBen Gardon  * Removes write access on the last level SPTE mapping this GFN and unsets the
118846044f72SBen Gardon  * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
118946044f72SBen Gardon  * Returns true if an SPTE was set and a TLB flush is needed.
119046044f72SBen Gardon  */
119146044f72SBen Gardon bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
119246044f72SBen Gardon 				   struct kvm_memory_slot *slot, gfn_t gfn)
119346044f72SBen Gardon {
119446044f72SBen Gardon 	struct kvm_mmu_page *root;
119546044f72SBen Gardon 	int root_as_id;
119646044f72SBen Gardon 	bool spte_set = false;
119746044f72SBen Gardon 
119846044f72SBen Gardon 	lockdep_assert_held(&kvm->mmu_lock);
119946044f72SBen Gardon 	for_each_tdp_mmu_root(kvm, root) {
120046044f72SBen Gardon 		root_as_id = kvm_mmu_page_as_id(root);
120146044f72SBen Gardon 		if (root_as_id != slot->as_id)
120246044f72SBen Gardon 			continue;
120346044f72SBen Gardon 
120446044f72SBen Gardon 		spte_set |= write_protect_gfn(kvm, root, gfn);
120546044f72SBen Gardon 	}
120646044f72SBen Gardon 	return spte_set;
120746044f72SBen Gardon }
120846044f72SBen Gardon 
120995fb5b02SBen Gardon /*
121095fb5b02SBen Gardon  * Return the level of the lowest level SPTE added to sptes.
121195fb5b02SBen Gardon  * That SPTE may be non-present.
121295fb5b02SBen Gardon  */
121339b4d43eSSean Christopherson int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
121439b4d43eSSean Christopherson 			 int *root_level)
121595fb5b02SBen Gardon {
121695fb5b02SBen Gardon 	struct tdp_iter iter;
121795fb5b02SBen Gardon 	struct kvm_mmu *mmu = vcpu->arch.mmu;
121895fb5b02SBen Gardon 	gfn_t gfn = addr >> PAGE_SHIFT;
12192aa07893SSean Christopherson 	int leaf = -1;
122095fb5b02SBen Gardon 
122139b4d43eSSean Christopherson 	*root_level = vcpu->arch.mmu->shadow_root_level;
122295fb5b02SBen Gardon 
122395fb5b02SBen Gardon 	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
122495fb5b02SBen Gardon 		leaf = iter.level;
1225dde81f94SSean Christopherson 		sptes[leaf] = iter.old_spte;
122695fb5b02SBen Gardon 	}
122795fb5b02SBen Gardon 
122895fb5b02SBen Gardon 	return leaf;
122995fb5b02SBen Gardon }
1230