xref: /openbmc/linux/arch/x86/kvm/mmu/spte.h (revision f019679ea5f2ab650c3348a79e7d9c3625f62899)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 #ifndef KVM_X86_MMU_SPTE_H
4 #define KVM_X86_MMU_SPTE_H
5 
6 #include "mmu_internal.h"
7 
8 extern bool __read_mostly enable_mmio_caching;
9 
10 /*
11  * A MMU present SPTE is backed by actual memory and may or may not be present
12  * in hardware.  E.g. MMIO SPTEs are not considered present.  Use bit 11, as it
13  * is ignored by all flavors of SPTEs and checking a low bit often generates
14  * better code than for a high bit, e.g. 56+.  MMU present checks are pervasive
15  * enough that the improved code generation is noticeable in KVM's footprint.
16  */
17 #define SPTE_MMU_PRESENT_MASK		BIT_ULL(11)
18 
19 /*
20  * TDP SPTES (more specifically, EPT SPTEs) may not have A/D bits, and may also
21  * be restricted to using write-protection (for L2 when CPU dirty logging, i.e.
22  * PML, is enabled).  Use bits 52 and 53 to hold the type of A/D tracking that
23  * is must be employed for a given TDP SPTE.
24  *
25  * Note, the "enabled" mask must be '0', as bits 62:52 are _reserved_ for PAE
26  * paging, including NPT PAE.  This scheme works because legacy shadow paging
27  * is guaranteed to have A/D bits and write-protection is forced only for
28  * TDP with CPU dirty logging (PML).  If NPT ever gains PML-like support, it
29  * must be restricted to 64-bit KVM.
30  */
31 #define SPTE_TDP_AD_SHIFT		52
32 #define SPTE_TDP_AD_MASK		(3ULL << SPTE_TDP_AD_SHIFT)
33 #define SPTE_TDP_AD_ENABLED_MASK	(0ULL << SPTE_TDP_AD_SHIFT)
34 #define SPTE_TDP_AD_DISABLED_MASK	(1ULL << SPTE_TDP_AD_SHIFT)
35 #define SPTE_TDP_AD_WRPROT_ONLY_MASK	(2ULL << SPTE_TDP_AD_SHIFT)
36 static_assert(SPTE_TDP_AD_ENABLED_MASK == 0);
37 
38 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
39 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
40 #else
41 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
42 #endif
43 
44 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
45 			| shadow_x_mask | shadow_nx_mask | shadow_me_mask)
46 
47 #define ACC_EXEC_MASK    1
48 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
49 #define ACC_USER_MASK    PT_USER_MASK
50 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
51 
52 /* The mask for the R/X bits in EPT PTEs */
53 #define PT64_EPT_READABLE_MASK			0x1ull
54 #define PT64_EPT_EXECUTABLE_MASK		0x4ull
55 
56 #define PT64_LEVEL_BITS 9
57 
58 #define PT64_LEVEL_SHIFT(level) \
59 		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
60 
61 #define PT64_INDEX(address, level)\
62 	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
63 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
64 
65 /*
66  * The mask/shift to use for saving the original R/X bits when marking the PTE
67  * as not-present for access tracking purposes. We do not save the W bit as the
68  * PTEs being access tracked also need to be dirty tracked, so the W bit will be
69  * restored only when a write is attempted to the page.  This mask obviously
70  * must not overlap the A/D type mask.
71  */
72 #define SHADOW_ACC_TRACK_SAVED_BITS_MASK (PT64_EPT_READABLE_MASK | \
73 					  PT64_EPT_EXECUTABLE_MASK)
74 #define SHADOW_ACC_TRACK_SAVED_BITS_SHIFT 54
75 #define SHADOW_ACC_TRACK_SAVED_MASK	(SHADOW_ACC_TRACK_SAVED_BITS_MASK << \
76 					 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
77 static_assert(!(SPTE_TDP_AD_MASK & SHADOW_ACC_TRACK_SAVED_MASK));
78 
79 /*
80  * {DEFAULT,EPT}_SPTE_{HOST,MMU}_WRITABLE are used to keep track of why a given
81  * SPTE is write-protected. See is_writable_pte() for details.
82  */
83 
84 /* Bits 9 and 10 are ignored by all non-EPT PTEs. */
85 #define DEFAULT_SPTE_HOST_WRITABLE	BIT_ULL(9)
86 #define DEFAULT_SPTE_MMU_WRITABLE	BIT_ULL(10)
87 
88 /*
89  * Low ignored bits are at a premium for EPT, use high ignored bits, taking care
90  * to not overlap the A/D type mask or the saved access bits of access-tracked
91  * SPTEs when A/D bits are disabled.
92  */
93 #define EPT_SPTE_HOST_WRITABLE		BIT_ULL(57)
94 #define EPT_SPTE_MMU_WRITABLE		BIT_ULL(58)
95 
96 static_assert(!(EPT_SPTE_HOST_WRITABLE & SPTE_TDP_AD_MASK));
97 static_assert(!(EPT_SPTE_MMU_WRITABLE & SPTE_TDP_AD_MASK));
98 static_assert(!(EPT_SPTE_HOST_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK));
99 static_assert(!(EPT_SPTE_MMU_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK));
100 
101 /* Defined only to keep the above static asserts readable. */
102 #undef SHADOW_ACC_TRACK_SAVED_MASK
103 
104 /*
105  * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
106  * the memslots generation and is derived as follows:
107  *
108  * Bits 0-7 of the MMIO generation are propagated to spte bits 3-10
109  * Bits 8-18 of the MMIO generation are propagated to spte bits 52-62
110  *
111  * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
112  * the MMIO generation number, as doing so would require stealing a bit from
113  * the "real" generation number and thus effectively halve the maximum number
114  * of MMIO generations that can be handled before encountering a wrap (which
115  * requires a full MMU zap).  The flag is instead explicitly queried when
116  * checking for MMIO spte cache hits.
117  */
118 
119 #define MMIO_SPTE_GEN_LOW_START		3
120 #define MMIO_SPTE_GEN_LOW_END		10
121 
122 #define MMIO_SPTE_GEN_HIGH_START	52
123 #define MMIO_SPTE_GEN_HIGH_END		62
124 
125 #define MMIO_SPTE_GEN_LOW_MASK		GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
126 						    MMIO_SPTE_GEN_LOW_START)
127 #define MMIO_SPTE_GEN_HIGH_MASK		GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
128 						    MMIO_SPTE_GEN_HIGH_START)
129 static_assert(!(SPTE_MMU_PRESENT_MASK &
130 		(MMIO_SPTE_GEN_LOW_MASK | MMIO_SPTE_GEN_HIGH_MASK)));
131 
132 #define MMIO_SPTE_GEN_LOW_BITS		(MMIO_SPTE_GEN_LOW_END - MMIO_SPTE_GEN_LOW_START + 1)
133 #define MMIO_SPTE_GEN_HIGH_BITS		(MMIO_SPTE_GEN_HIGH_END - MMIO_SPTE_GEN_HIGH_START + 1)
134 
135 /* remember to adjust the comment above as well if you change these */
136 static_assert(MMIO_SPTE_GEN_LOW_BITS == 8 && MMIO_SPTE_GEN_HIGH_BITS == 11);
137 
138 #define MMIO_SPTE_GEN_LOW_SHIFT		(MMIO_SPTE_GEN_LOW_START - 0)
139 #define MMIO_SPTE_GEN_HIGH_SHIFT	(MMIO_SPTE_GEN_HIGH_START - MMIO_SPTE_GEN_LOW_BITS)
140 
141 #define MMIO_SPTE_GEN_MASK		GENMASK_ULL(MMIO_SPTE_GEN_LOW_BITS + MMIO_SPTE_GEN_HIGH_BITS - 1, 0)
142 
143 extern u64 __read_mostly shadow_host_writable_mask;
144 extern u64 __read_mostly shadow_mmu_writable_mask;
145 extern u64 __read_mostly shadow_nx_mask;
146 extern u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
147 extern u64 __read_mostly shadow_user_mask;
148 extern u64 __read_mostly shadow_accessed_mask;
149 extern u64 __read_mostly shadow_dirty_mask;
150 extern u64 __read_mostly shadow_mmio_value;
151 extern u64 __read_mostly shadow_mmio_mask;
152 extern u64 __read_mostly shadow_mmio_access_mask;
153 extern u64 __read_mostly shadow_present_mask;
154 extern u64 __read_mostly shadow_me_value;
155 extern u64 __read_mostly shadow_me_mask;
156 
157 /*
158  * SPTEs in MMUs without A/D bits are marked with SPTE_TDP_AD_DISABLED_MASK;
159  * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
160  * pages.
161  */
162 extern u64 __read_mostly shadow_acc_track_mask;
163 
164 /*
165  * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
166  * to guard against L1TF attacks.
167  */
168 extern u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
169 
170 /*
171  * The number of high-order 1 bits to use in the mask above.
172  */
173 #define SHADOW_NONPRESENT_OR_RSVD_MASK_LEN 5
174 
175 /*
176  * If a thread running without exclusive control of the MMU lock must perform a
177  * multi-part operation on an SPTE, it can set the SPTE to REMOVED_SPTE as a
178  * non-present intermediate value. Other threads which encounter this value
179  * should not modify the SPTE.
180  *
181  * Use a semi-arbitrary value that doesn't set RWX bits, i.e. is not-present on
182  * bot AMD and Intel CPUs, and doesn't set PFN bits, i.e. doesn't create a L1TF
183  * vulnerability.  Use only low bits to avoid 64-bit immediates.
184  *
185  * Only used by the TDP MMU.
186  */
187 #define REMOVED_SPTE	0x5a0ULL
188 
189 /* Removed SPTEs must not be misconstrued as shadow present PTEs. */
190 static_assert(!(REMOVED_SPTE & SPTE_MMU_PRESENT_MASK));
191 
192 static inline bool is_removed_spte(u64 spte)
193 {
194 	return spte == REMOVED_SPTE;
195 }
196 
197 /*
198  * In some cases, we need to preserve the GFN of a non-present or reserved
199  * SPTE when we usurp the upper five bits of the physical address space to
200  * defend against L1TF, e.g. for MMIO SPTEs.  To preserve the GFN, we'll
201  * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
202  * left into the reserved bits, i.e. the GFN in the SPTE will be split into
203  * high and low parts.  This mask covers the lower bits of the GFN.
204  */
205 extern u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
206 
207 static inline bool is_mmio_spte(u64 spte)
208 {
209 	return (spte & shadow_mmio_mask) == shadow_mmio_value &&
210 	       likely(enable_mmio_caching);
211 }
212 
213 static inline bool is_shadow_present_pte(u64 pte)
214 {
215 	return !!(pte & SPTE_MMU_PRESENT_MASK);
216 }
217 
218 /*
219  * Returns true if A/D bits are supported in hardware and are enabled by KVM.
220  * When enabled, KVM uses A/D bits for all non-nested MMUs.  Because L1 can
221  * disable A/D bits in EPTP12, SP and SPTE variants are needed to handle the
222  * scenario where KVM is using A/D bits for L1, but not L2.
223  */
224 static inline bool kvm_ad_enabled(void)
225 {
226 	return !!shadow_accessed_mask;
227 }
228 
229 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
230 {
231 	return sp->role.ad_disabled;
232 }
233 
234 static inline bool spte_ad_enabled(u64 spte)
235 {
236 	MMU_WARN_ON(!is_shadow_present_pte(spte));
237 	return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_DISABLED_MASK;
238 }
239 
240 static inline bool spte_ad_need_write_protect(u64 spte)
241 {
242 	MMU_WARN_ON(!is_shadow_present_pte(spte));
243 	/*
244 	 * This is benign for non-TDP SPTEs as SPTE_TDP_AD_ENABLED_MASK is '0',
245 	 * and non-TDP SPTEs will never set these bits.  Optimize for 64-bit
246 	 * TDP and do the A/D type check unconditionally.
247 	 */
248 	return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_ENABLED_MASK;
249 }
250 
251 static inline u64 spte_shadow_accessed_mask(u64 spte)
252 {
253 	MMU_WARN_ON(!is_shadow_present_pte(spte));
254 	return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
255 }
256 
257 static inline u64 spte_shadow_dirty_mask(u64 spte)
258 {
259 	MMU_WARN_ON(!is_shadow_present_pte(spte));
260 	return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
261 }
262 
263 static inline bool is_access_track_spte(u64 spte)
264 {
265 	return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
266 }
267 
268 static inline bool is_large_pte(u64 pte)
269 {
270 	return pte & PT_PAGE_SIZE_MASK;
271 }
272 
273 static inline bool is_last_spte(u64 pte, int level)
274 {
275 	return (level == PG_LEVEL_4K) || is_large_pte(pte);
276 }
277 
278 static inline bool is_executable_pte(u64 spte)
279 {
280 	return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
281 }
282 
283 static inline kvm_pfn_t spte_to_pfn(u64 pte)
284 {
285 	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
286 }
287 
288 static inline bool is_accessed_spte(u64 spte)
289 {
290 	u64 accessed_mask = spte_shadow_accessed_mask(spte);
291 
292 	return accessed_mask ? spte & accessed_mask
293 			     : !is_access_track_spte(spte);
294 }
295 
296 static inline bool is_dirty_spte(u64 spte)
297 {
298 	u64 dirty_mask = spte_shadow_dirty_mask(spte);
299 
300 	return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
301 }
302 
303 static inline u64 get_rsvd_bits(struct rsvd_bits_validate *rsvd_check, u64 pte,
304 				int level)
305 {
306 	int bit7 = (pte >> 7) & 1;
307 
308 	return rsvd_check->rsvd_bits_mask[bit7][level-1];
309 }
310 
311 static inline bool __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check,
312 				      u64 pte, int level)
313 {
314 	return pte & get_rsvd_bits(rsvd_check, pte, level);
315 }
316 
317 static inline bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check,
318 				   u64 pte)
319 {
320 	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
321 }
322 
323 static __always_inline bool is_rsvd_spte(struct rsvd_bits_validate *rsvd_check,
324 					 u64 spte, int level)
325 {
326 	return __is_bad_mt_xwr(rsvd_check, spte) ||
327 	       __is_rsvd_bits_set(rsvd_check, spte, level);
328 }
329 
330 /*
331  * An shadow-present leaf SPTE may be non-writable for 3 possible reasons:
332  *
333  *  1. To intercept writes for dirty logging. KVM write-protects huge pages
334  *     so that they can be split be split down into the dirty logging
335  *     granularity (4KiB) whenever the guest writes to them. KVM also
336  *     write-protects 4KiB pages so that writes can be recorded in the dirty log
337  *     (e.g. if not using PML). SPTEs are write-protected for dirty logging
338  *     during the VM-iotcls that enable dirty logging.
339  *
340  *  2. To intercept writes to guest page tables that KVM is shadowing. When a
341  *     guest writes to its page table the corresponding shadow page table will
342  *     be marked "unsync". That way KVM knows which shadow page tables need to
343  *     be updated on the next TLB flush, INVLPG, etc. and which do not.
344  *
345  *  3. To prevent guest writes to read-only memory, such as for memory in a
346  *     read-only memslot or guest memory backed by a read-only VMA. Writes to
347  *     such pages are disallowed entirely.
348  *
349  * To keep track of why a given SPTE is write-protected, KVM uses 2
350  * software-only bits in the SPTE:
351  *
352  *  shadow_mmu_writable_mask, aka MMU-writable -
353  *    Cleared on SPTEs that KVM is currently write-protecting for shadow paging
354  *    purposes (case 2 above).
355  *
356  *  shadow_host_writable_mask, aka Host-writable -
357  *    Cleared on SPTEs that are not host-writable (case 3 above)
358  *
359  * Note, not all possible combinations of PT_WRITABLE_MASK,
360  * shadow_mmu_writable_mask, and shadow_host_writable_mask are valid. A given
361  * SPTE can be in only one of the following states, which map to the
362  * aforementioned 3 cases:
363  *
364  *   shadow_host_writable_mask | shadow_mmu_writable_mask | PT_WRITABLE_MASK
365  *   ------------------------- | ------------------------ | ----------------
366  *   1                         | 1                        | 1       (writable)
367  *   1                         | 1                        | 0       (case 1)
368  *   1                         | 0                        | 0       (case 2)
369  *   0                         | 0                        | 0       (case 3)
370  *
371  * The valid combinations of these bits are checked by
372  * check_spte_writable_invariants() whenever an SPTE is modified.
373  *
374  * Clearing the MMU-writable bit is always done under the MMU lock and always
375  * accompanied by a TLB flush before dropping the lock to avoid corrupting the
376  * shadow page tables between vCPUs. Write-protecting an SPTE for dirty logging
377  * (which does not clear the MMU-writable bit), does not flush TLBs before
378  * dropping the lock, as it only needs to synchronize guest writes with the
379  * dirty bitmap.
380  *
381  * So, there is the problem: clearing the MMU-writable bit can encounter a
382  * write-protected SPTE while CPUs still have writable mappings for that SPTE
383  * cached in their TLB. To address this, KVM always flushes TLBs when
384  * write-protecting SPTEs if the MMU-writable bit is set on the old SPTE.
385  *
386  * The Host-writable bit is not modified on present SPTEs, it is only set or
387  * cleared when an SPTE is first faulted in from non-present and then remains
388  * immutable.
389  */
390 static inline bool is_writable_pte(unsigned long pte)
391 {
392 	return pte & PT_WRITABLE_MASK;
393 }
394 
395 /* Note: spte must be a shadow-present leaf SPTE. */
396 static inline void check_spte_writable_invariants(u64 spte)
397 {
398 	if (spte & shadow_mmu_writable_mask)
399 		WARN_ONCE(!(spte & shadow_host_writable_mask),
400 			  "kvm: MMU-writable SPTE is not Host-writable: %llx",
401 			  spte);
402 	else
403 		WARN_ONCE(is_writable_pte(spte),
404 			  "kvm: Writable SPTE is not MMU-writable: %llx", spte);
405 }
406 
407 static inline bool is_mmu_writable_spte(u64 spte)
408 {
409 	return spte & shadow_mmu_writable_mask;
410 }
411 
412 static inline u64 get_mmio_spte_generation(u64 spte)
413 {
414 	u64 gen;
415 
416 	gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_SHIFT;
417 	gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_SHIFT;
418 	return gen;
419 }
420 
421 bool spte_has_volatile_bits(u64 spte);
422 
423 bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
424 	       const struct kvm_memory_slot *slot,
425 	       unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
426 	       u64 old_spte, bool prefetch, bool can_unsync,
427 	       bool host_writable, u64 *new_spte);
428 u64 make_huge_page_split_spte(u64 huge_spte, int huge_level, int index);
429 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled);
430 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access);
431 u64 mark_spte_for_access_track(u64 spte);
432 
433 /* Restore an acc-track PTE back to a regular PTE */
434 static inline u64 restore_acc_track_spte(u64 spte)
435 {
436 	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
437 			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
438 
439 	spte &= ~shadow_acc_track_mask;
440 	spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
441 		  SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
442 	spte |= saved_bits;
443 
444 	return spte;
445 }
446 
447 u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn);
448 
449 void kvm_mmu_reset_all_pte_masks(void);
450 
451 #endif
452