1 // SPDX-License-Identifier: GPL-2.0-only 2 3 #ifndef KVM_X86_MMU_SPTE_H 4 #define KVM_X86_MMU_SPTE_H 5 6 #include "mmu_internal.h" 7 8 /* 9 * A MMU present SPTE is backed by actual memory and may or may not be present 10 * in hardware. E.g. MMIO SPTEs are not considered present. Use bit 11, as it 11 * is ignored by all flavors of SPTEs and checking a low bit often generates 12 * better code than for a high bit, e.g. 56+. MMU present checks are pervasive 13 * enough that the improved code generation is noticeable in KVM's footprint. 14 */ 15 #define SPTE_MMU_PRESENT_MASK BIT_ULL(11) 16 17 /* 18 * TDP SPTES (more specifically, EPT SPTEs) may not have A/D bits, and may also 19 * be restricted to using write-protection (for L2 when CPU dirty logging, i.e. 20 * PML, is enabled). Use bits 52 and 53 to hold the type of A/D tracking that 21 * is must be employed for a given TDP SPTE. 22 * 23 * Note, the "enabled" mask must be '0', as bits 62:52 are _reserved_ for PAE 24 * paging, including NPT PAE. This scheme works because legacy shadow paging 25 * is guaranteed to have A/D bits and write-protection is forced only for 26 * TDP with CPU dirty logging (PML). If NPT ever gains PML-like support, it 27 * must be restricted to 64-bit KVM. 28 */ 29 #define SPTE_TDP_AD_SHIFT 52 30 #define SPTE_TDP_AD_MASK (3ULL << SPTE_TDP_AD_SHIFT) 31 #define SPTE_TDP_AD_ENABLED_MASK (0ULL << SPTE_TDP_AD_SHIFT) 32 #define SPTE_TDP_AD_DISABLED_MASK (1ULL << SPTE_TDP_AD_SHIFT) 33 #define SPTE_TDP_AD_WRPROT_ONLY_MASK (2ULL << SPTE_TDP_AD_SHIFT) 34 static_assert(SPTE_TDP_AD_ENABLED_MASK == 0); 35 36 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK 37 #define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1)) 38 #else 39 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) 40 #endif 41 42 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \ 43 | shadow_x_mask | shadow_nx_mask | shadow_me_mask) 44 45 #define ACC_EXEC_MASK 1 46 #define ACC_WRITE_MASK PT_WRITABLE_MASK 47 #define ACC_USER_MASK PT_USER_MASK 48 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) 49 50 /* The mask for the R/X bits in EPT PTEs */ 51 #define PT64_EPT_READABLE_MASK 0x1ull 52 #define PT64_EPT_EXECUTABLE_MASK 0x4ull 53 54 #define PT64_LEVEL_BITS 9 55 56 #define PT64_LEVEL_SHIFT(level) \ 57 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS) 58 59 #define PT64_INDEX(address, level)\ 60 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) 61 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) 62 63 /* 64 * The mask/shift to use for saving the original R/X bits when marking the PTE 65 * as not-present for access tracking purposes. We do not save the W bit as the 66 * PTEs being access tracked also need to be dirty tracked, so the W bit will be 67 * restored only when a write is attempted to the page. This mask obviously 68 * must not overlap the A/D type mask. 69 */ 70 #define SHADOW_ACC_TRACK_SAVED_BITS_MASK (PT64_EPT_READABLE_MASK | \ 71 PT64_EPT_EXECUTABLE_MASK) 72 #define SHADOW_ACC_TRACK_SAVED_BITS_SHIFT 54 73 #define SHADOW_ACC_TRACK_SAVED_MASK (SHADOW_ACC_TRACK_SAVED_BITS_MASK << \ 74 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) 75 static_assert(!(SPTE_TDP_AD_MASK & SHADOW_ACC_TRACK_SAVED_MASK)); 76 77 /* 78 * {DEFAULT,EPT}_SPTE_{HOST,MMU}_WRITABLE are used to keep track of why a given 79 * SPTE is write-protected. See is_writable_pte() for details. 80 */ 81 82 /* Bits 9 and 10 are ignored by all non-EPT PTEs. */ 83 #define DEFAULT_SPTE_HOST_WRITABLE BIT_ULL(9) 84 #define DEFAULT_SPTE_MMU_WRITABLE BIT_ULL(10) 85 86 /* 87 * Low ignored bits are at a premium for EPT, use high ignored bits, taking care 88 * to not overlap the A/D type mask or the saved access bits of access-tracked 89 * SPTEs when A/D bits are disabled. 90 */ 91 #define EPT_SPTE_HOST_WRITABLE BIT_ULL(57) 92 #define EPT_SPTE_MMU_WRITABLE BIT_ULL(58) 93 94 static_assert(!(EPT_SPTE_HOST_WRITABLE & SPTE_TDP_AD_MASK)); 95 static_assert(!(EPT_SPTE_MMU_WRITABLE & SPTE_TDP_AD_MASK)); 96 static_assert(!(EPT_SPTE_HOST_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK)); 97 static_assert(!(EPT_SPTE_MMU_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK)); 98 99 /* Defined only to keep the above static asserts readable. */ 100 #undef SHADOW_ACC_TRACK_SAVED_MASK 101 102 /* 103 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of 104 * the memslots generation and is derived as follows: 105 * 106 * Bits 0-7 of the MMIO generation are propagated to spte bits 3-10 107 * Bits 8-18 of the MMIO generation are propagated to spte bits 52-62 108 * 109 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in 110 * the MMIO generation number, as doing so would require stealing a bit from 111 * the "real" generation number and thus effectively halve the maximum number 112 * of MMIO generations that can be handled before encountering a wrap (which 113 * requires a full MMU zap). The flag is instead explicitly queried when 114 * checking for MMIO spte cache hits. 115 */ 116 117 #define MMIO_SPTE_GEN_LOW_START 3 118 #define MMIO_SPTE_GEN_LOW_END 10 119 120 #define MMIO_SPTE_GEN_HIGH_START 52 121 #define MMIO_SPTE_GEN_HIGH_END 62 122 123 #define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \ 124 MMIO_SPTE_GEN_LOW_START) 125 #define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \ 126 MMIO_SPTE_GEN_HIGH_START) 127 static_assert(!(SPTE_MMU_PRESENT_MASK & 128 (MMIO_SPTE_GEN_LOW_MASK | MMIO_SPTE_GEN_HIGH_MASK))); 129 130 #define MMIO_SPTE_GEN_LOW_BITS (MMIO_SPTE_GEN_LOW_END - MMIO_SPTE_GEN_LOW_START + 1) 131 #define MMIO_SPTE_GEN_HIGH_BITS (MMIO_SPTE_GEN_HIGH_END - MMIO_SPTE_GEN_HIGH_START + 1) 132 133 /* remember to adjust the comment above as well if you change these */ 134 static_assert(MMIO_SPTE_GEN_LOW_BITS == 8 && MMIO_SPTE_GEN_HIGH_BITS == 11); 135 136 #define MMIO_SPTE_GEN_LOW_SHIFT (MMIO_SPTE_GEN_LOW_START - 0) 137 #define MMIO_SPTE_GEN_HIGH_SHIFT (MMIO_SPTE_GEN_HIGH_START - MMIO_SPTE_GEN_LOW_BITS) 138 139 #define MMIO_SPTE_GEN_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_BITS + MMIO_SPTE_GEN_HIGH_BITS - 1, 0) 140 141 extern u64 __read_mostly shadow_host_writable_mask; 142 extern u64 __read_mostly shadow_mmu_writable_mask; 143 extern u64 __read_mostly shadow_nx_mask; 144 extern u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ 145 extern u64 __read_mostly shadow_user_mask; 146 extern u64 __read_mostly shadow_accessed_mask; 147 extern u64 __read_mostly shadow_dirty_mask; 148 extern u64 __read_mostly shadow_mmio_value; 149 extern u64 __read_mostly shadow_mmio_mask; 150 extern u64 __read_mostly shadow_mmio_access_mask; 151 extern u64 __read_mostly shadow_present_mask; 152 extern u64 __read_mostly shadow_me_mask; 153 154 /* 155 * SPTEs in MMUs without A/D bits are marked with SPTE_TDP_AD_DISABLED_MASK; 156 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed 157 * pages. 158 */ 159 extern u64 __read_mostly shadow_acc_track_mask; 160 161 /* 162 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order 163 * to guard against L1TF attacks. 164 */ 165 extern u64 __read_mostly shadow_nonpresent_or_rsvd_mask; 166 167 /* 168 * The number of high-order 1 bits to use in the mask above. 169 */ 170 #define SHADOW_NONPRESENT_OR_RSVD_MASK_LEN 5 171 172 /* 173 * If a thread running without exclusive control of the MMU lock must perform a 174 * multi-part operation on an SPTE, it can set the SPTE to REMOVED_SPTE as a 175 * non-present intermediate value. Other threads which encounter this value 176 * should not modify the SPTE. 177 * 178 * Use a semi-arbitrary value that doesn't set RWX bits, i.e. is not-present on 179 * bot AMD and Intel CPUs, and doesn't set PFN bits, i.e. doesn't create a L1TF 180 * vulnerability. Use only low bits to avoid 64-bit immediates. 181 * 182 * Only used by the TDP MMU. 183 */ 184 #define REMOVED_SPTE 0x5a0ULL 185 186 /* Removed SPTEs must not be misconstrued as shadow present PTEs. */ 187 static_assert(!(REMOVED_SPTE & SPTE_MMU_PRESENT_MASK)); 188 189 static inline bool is_removed_spte(u64 spte) 190 { 191 return spte == REMOVED_SPTE; 192 } 193 194 /* 195 * In some cases, we need to preserve the GFN of a non-present or reserved 196 * SPTE when we usurp the upper five bits of the physical address space to 197 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll 198 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask 199 * left into the reserved bits, i.e. the GFN in the SPTE will be split into 200 * high and low parts. This mask covers the lower bits of the GFN. 201 */ 202 extern u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; 203 204 /* 205 * The number of non-reserved physical address bits irrespective of features 206 * that repurpose legal bits, e.g. MKTME. 207 */ 208 extern u8 __read_mostly shadow_phys_bits; 209 210 static inline bool is_mmio_spte(u64 spte) 211 { 212 return (spte & shadow_mmio_mask) == shadow_mmio_value && 213 likely(shadow_mmio_value); 214 } 215 216 static inline bool is_shadow_present_pte(u64 pte) 217 { 218 return !!(pte & SPTE_MMU_PRESENT_MASK); 219 } 220 221 static inline bool sp_ad_disabled(struct kvm_mmu_page *sp) 222 { 223 return sp->role.ad_disabled; 224 } 225 226 static inline bool spte_ad_enabled(u64 spte) 227 { 228 MMU_WARN_ON(!is_shadow_present_pte(spte)); 229 return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_DISABLED_MASK; 230 } 231 232 static inline bool spte_ad_need_write_protect(u64 spte) 233 { 234 MMU_WARN_ON(!is_shadow_present_pte(spte)); 235 /* 236 * This is benign for non-TDP SPTEs as SPTE_TDP_AD_ENABLED_MASK is '0', 237 * and non-TDP SPTEs will never set these bits. Optimize for 64-bit 238 * TDP and do the A/D type check unconditionally. 239 */ 240 return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_ENABLED_MASK; 241 } 242 243 static inline u64 spte_shadow_accessed_mask(u64 spte) 244 { 245 MMU_WARN_ON(!is_shadow_present_pte(spte)); 246 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0; 247 } 248 249 static inline u64 spte_shadow_dirty_mask(u64 spte) 250 { 251 MMU_WARN_ON(!is_shadow_present_pte(spte)); 252 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0; 253 } 254 255 static inline bool is_access_track_spte(u64 spte) 256 { 257 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0; 258 } 259 260 static inline bool is_large_pte(u64 pte) 261 { 262 return pte & PT_PAGE_SIZE_MASK; 263 } 264 265 static inline bool is_last_spte(u64 pte, int level) 266 { 267 return (level == PG_LEVEL_4K) || is_large_pte(pte); 268 } 269 270 static inline bool is_executable_pte(u64 spte) 271 { 272 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask; 273 } 274 275 static inline kvm_pfn_t spte_to_pfn(u64 pte) 276 { 277 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; 278 } 279 280 static inline bool is_accessed_spte(u64 spte) 281 { 282 u64 accessed_mask = spte_shadow_accessed_mask(spte); 283 284 return accessed_mask ? spte & accessed_mask 285 : !is_access_track_spte(spte); 286 } 287 288 static inline bool is_dirty_spte(u64 spte) 289 { 290 u64 dirty_mask = spte_shadow_dirty_mask(spte); 291 292 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK; 293 } 294 295 static inline u64 get_rsvd_bits(struct rsvd_bits_validate *rsvd_check, u64 pte, 296 int level) 297 { 298 int bit7 = (pte >> 7) & 1; 299 300 return rsvd_check->rsvd_bits_mask[bit7][level-1]; 301 } 302 303 static inline bool __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, 304 u64 pte, int level) 305 { 306 return pte & get_rsvd_bits(rsvd_check, pte, level); 307 } 308 309 static inline bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, 310 u64 pte) 311 { 312 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f); 313 } 314 315 static __always_inline bool is_rsvd_spte(struct rsvd_bits_validate *rsvd_check, 316 u64 spte, int level) 317 { 318 return __is_bad_mt_xwr(rsvd_check, spte) || 319 __is_rsvd_bits_set(rsvd_check, spte, level); 320 } 321 322 /* 323 * An shadow-present leaf SPTE may be non-writable for 3 possible reasons: 324 * 325 * 1. To intercept writes for dirty logging. KVM write-protects huge pages 326 * so that they can be split be split down into the dirty logging 327 * granularity (4KiB) whenever the guest writes to them. KVM also 328 * write-protects 4KiB pages so that writes can be recorded in the dirty log 329 * (e.g. if not using PML). SPTEs are write-protected for dirty logging 330 * during the VM-iotcls that enable dirty logging. 331 * 332 * 2. To intercept writes to guest page tables that KVM is shadowing. When a 333 * guest writes to its page table the corresponding shadow page table will 334 * be marked "unsync". That way KVM knows which shadow page tables need to 335 * be updated on the next TLB flush, INVLPG, etc. and which do not. 336 * 337 * 3. To prevent guest writes to read-only memory, such as for memory in a 338 * read-only memslot or guest memory backed by a read-only VMA. Writes to 339 * such pages are disallowed entirely. 340 * 341 * To keep track of why a given SPTE is write-protected, KVM uses 2 342 * software-only bits in the SPTE: 343 * 344 * shadow_mmu_writable_mask, aka MMU-writable - 345 * Cleared on SPTEs that KVM is currently write-protecting for shadow paging 346 * purposes (case 2 above). 347 * 348 * shadow_host_writable_mask, aka Host-writable - 349 * Cleared on SPTEs that are not host-writable (case 3 above) 350 * 351 * Note, not all possible combinations of PT_WRITABLE_MASK, 352 * shadow_mmu_writable_mask, and shadow_host_writable_mask are valid. A given 353 * SPTE can be in only one of the following states, which map to the 354 * aforementioned 3 cases: 355 * 356 * shadow_host_writable_mask | shadow_mmu_writable_mask | PT_WRITABLE_MASK 357 * ------------------------- | ------------------------ | ---------------- 358 * 1 | 1 | 1 (writable) 359 * 1 | 1 | 0 (case 1) 360 * 1 | 0 | 0 (case 2) 361 * 0 | 0 | 0 (case 3) 362 * 363 * The valid combinations of these bits are checked by 364 * check_spte_writable_invariants() whenever an SPTE is modified. 365 * 366 * Clearing the MMU-writable bit is always done under the MMU lock and always 367 * accompanied by a TLB flush before dropping the lock to avoid corrupting the 368 * shadow page tables between vCPUs. Write-protecting an SPTE for dirty logging 369 * (which does not clear the MMU-writable bit), does not flush TLBs before 370 * dropping the lock, as it only needs to synchronize guest writes with the 371 * dirty bitmap. 372 * 373 * So, there is the problem: clearing the MMU-writable bit can encounter a 374 * write-protected SPTE while CPUs still have writable mappings for that SPTE 375 * cached in their TLB. To address this, KVM always flushes TLBs when 376 * write-protecting SPTEs if the MMU-writable bit is set on the old SPTE. 377 * 378 * The Host-writable bit is not modified on present SPTEs, it is only set or 379 * cleared when an SPTE is first faulted in from non-present and then remains 380 * immutable. 381 */ 382 static inline bool is_writable_pte(unsigned long pte) 383 { 384 return pte & PT_WRITABLE_MASK; 385 } 386 387 /* Note: spte must be a shadow-present leaf SPTE. */ 388 static inline void check_spte_writable_invariants(u64 spte) 389 { 390 if (spte & shadow_mmu_writable_mask) 391 WARN_ONCE(!(spte & shadow_host_writable_mask), 392 "kvm: MMU-writable SPTE is not Host-writable: %llx", 393 spte); 394 else 395 WARN_ONCE(is_writable_pte(spte), 396 "kvm: Writable SPTE is not MMU-writable: %llx", spte); 397 } 398 399 static inline bool spte_can_locklessly_be_made_writable(u64 spte) 400 { 401 return spte & shadow_mmu_writable_mask; 402 } 403 404 static inline u64 get_mmio_spte_generation(u64 spte) 405 { 406 u64 gen; 407 408 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_SHIFT; 409 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_SHIFT; 410 return gen; 411 } 412 413 bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 414 const struct kvm_memory_slot *slot, 415 unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn, 416 u64 old_spte, bool prefetch, bool can_unsync, 417 bool host_writable, u64 *new_spte); 418 u64 make_huge_page_split_spte(u64 huge_spte, int huge_level, int index); 419 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled); 420 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access); 421 u64 mark_spte_for_access_track(u64 spte); 422 423 /* Restore an acc-track PTE back to a regular PTE */ 424 static inline u64 restore_acc_track_spte(u64 spte) 425 { 426 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) 427 & SHADOW_ACC_TRACK_SAVED_BITS_MASK; 428 429 spte &= ~shadow_acc_track_mask; 430 spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK << 431 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT); 432 spte |= saved_bits; 433 434 return spte; 435 } 436 437 u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn); 438 439 void kvm_mmu_reset_all_pte_masks(void); 440 441 #endif 442