1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * Macros and functions to access KVM PTEs (also known as SPTEs) 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2020 Red Hat, Inc. and/or its affiliates. 9 */ 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/kvm_host.h> 13 #include "mmu.h" 14 #include "mmu_internal.h" 15 #include "x86.h" 16 #include "spte.h" 17 18 #include <asm/e820/api.h> 19 #include <asm/memtype.h> 20 #include <asm/vmx.h> 21 22 bool __read_mostly enable_mmio_caching = true; 23 static bool __ro_after_init allow_mmio_caching; 24 module_param_named(mmio_caching, enable_mmio_caching, bool, 0444); 25 EXPORT_SYMBOL_GPL(enable_mmio_caching); 26 27 u64 __read_mostly shadow_host_writable_mask; 28 u64 __read_mostly shadow_mmu_writable_mask; 29 u64 __read_mostly shadow_nx_mask; 30 u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ 31 u64 __read_mostly shadow_user_mask; 32 u64 __read_mostly shadow_accessed_mask; 33 u64 __read_mostly shadow_dirty_mask; 34 u64 __read_mostly shadow_mmio_value; 35 u64 __read_mostly shadow_mmio_mask; 36 u64 __read_mostly shadow_mmio_access_mask; 37 u64 __read_mostly shadow_present_mask; 38 u64 __read_mostly shadow_memtype_mask; 39 u64 __read_mostly shadow_me_value; 40 u64 __read_mostly shadow_me_mask; 41 u64 __read_mostly shadow_acc_track_mask; 42 43 u64 __read_mostly shadow_nonpresent_or_rsvd_mask; 44 u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; 45 46 u8 __read_mostly shadow_phys_bits; 47 48 void __init kvm_mmu_spte_module_init(void) 49 { 50 /* 51 * Snapshot userspace's desire to allow MMIO caching. Whether or not 52 * KVM can actually enable MMIO caching depends on vendor-specific 53 * hardware capabilities and other module params that can't be resolved 54 * until the vendor module is loaded, i.e. enable_mmio_caching can and 55 * will change when the vendor module is (re)loaded. 56 */ 57 allow_mmio_caching = enable_mmio_caching; 58 } 59 60 static u64 generation_mmio_spte_mask(u64 gen) 61 { 62 u64 mask; 63 64 WARN_ON_ONCE(gen & ~MMIO_SPTE_GEN_MASK); 65 66 mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK; 67 mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK; 68 return mask; 69 } 70 71 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access) 72 { 73 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK; 74 u64 spte = generation_mmio_spte_mask(gen); 75 u64 gpa = gfn << PAGE_SHIFT; 76 77 WARN_ON_ONCE(!shadow_mmio_value); 78 79 access &= shadow_mmio_access_mask; 80 spte |= shadow_mmio_value | access; 81 spte |= gpa | shadow_nonpresent_or_rsvd_mask; 82 spte |= (gpa & shadow_nonpresent_or_rsvd_mask) 83 << SHADOW_NONPRESENT_OR_RSVD_MASK_LEN; 84 85 return spte; 86 } 87 88 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn) 89 { 90 if (pfn_valid(pfn)) 91 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) && 92 /* 93 * Some reserved pages, such as those from NVDIMM 94 * DAX devices, are not for MMIO, and can be mapped 95 * with cached memory type for better performance. 96 * However, the above check misconceives those pages 97 * as MMIO, and results in KVM mapping them with UC 98 * memory type, which would hurt the performance. 99 * Therefore, we check the host memory type in addition 100 * and only treat UC/UC-/WC pages as MMIO. 101 */ 102 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn)); 103 104 return !e820__mapped_raw_any(pfn_to_hpa(pfn), 105 pfn_to_hpa(pfn + 1) - 1, 106 E820_TYPE_RAM); 107 } 108 109 /* 110 * Returns true if the SPTE has bits that may be set without holding mmu_lock. 111 * The caller is responsible for checking if the SPTE is shadow-present, and 112 * for determining whether or not the caller cares about non-leaf SPTEs. 113 */ 114 bool spte_has_volatile_bits(u64 spte) 115 { 116 /* 117 * Always atomically update spte if it can be updated 118 * out of mmu-lock, it can ensure dirty bit is not lost, 119 * also, it can help us to get a stable is_writable_pte() 120 * to ensure tlb flush is not missed. 121 */ 122 if (!is_writable_pte(spte) && is_mmu_writable_spte(spte)) 123 return true; 124 125 if (is_access_track_spte(spte)) 126 return true; 127 128 if (spte_ad_enabled(spte)) { 129 if (!(spte & shadow_accessed_mask) || 130 (is_writable_pte(spte) && !(spte & shadow_dirty_mask))) 131 return true; 132 } 133 134 return false; 135 } 136 137 bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 138 const struct kvm_memory_slot *slot, 139 unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn, 140 u64 old_spte, bool prefetch, bool can_unsync, 141 bool host_writable, u64 *new_spte) 142 { 143 int level = sp->role.level; 144 u64 spte = SPTE_MMU_PRESENT_MASK; 145 bool wrprot = false; 146 147 WARN_ON_ONCE(!pte_access && !shadow_present_mask); 148 149 if (sp->role.ad_disabled) 150 spte |= SPTE_TDP_AD_DISABLED; 151 else if (kvm_mmu_page_ad_need_write_protect(sp)) 152 spte |= SPTE_TDP_AD_WRPROT_ONLY; 153 154 /* 155 * For the EPT case, shadow_present_mask is 0 if hardware 156 * supports exec-only page table entries. In that case, 157 * ACC_USER_MASK and shadow_user_mask are used to represent 158 * read access. See FNAME(gpte_access) in paging_tmpl.h. 159 */ 160 spte |= shadow_present_mask; 161 if (!prefetch) 162 spte |= spte_shadow_accessed_mask(spte); 163 164 /* 165 * For simplicity, enforce the NX huge page mitigation even if not 166 * strictly necessary. KVM could ignore the mitigation if paging is 167 * disabled in the guest, as the guest doesn't have any page tables to 168 * abuse. But to safely ignore the mitigation, KVM would have to 169 * ensure a new MMU is loaded (or all shadow pages zapped) when CR0.PG 170 * is toggled on, and that's a net negative for performance when TDP is 171 * enabled. When TDP is disabled, KVM will always switch to a new MMU 172 * when CR0.PG is toggled, but leveraging that to ignore the mitigation 173 * would tie make_spte() further to vCPU/MMU state, and add complexity 174 * just to optimize a mode that is anything but performance critical. 175 */ 176 if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) && 177 is_nx_huge_page_enabled(vcpu->kvm)) { 178 pte_access &= ~ACC_EXEC_MASK; 179 } 180 181 if (pte_access & ACC_EXEC_MASK) 182 spte |= shadow_x_mask; 183 else 184 spte |= shadow_nx_mask; 185 186 if (pte_access & ACC_USER_MASK) 187 spte |= shadow_user_mask; 188 189 if (level > PG_LEVEL_4K) 190 spte |= PT_PAGE_SIZE_MASK; 191 192 if (shadow_memtype_mask) 193 spte |= static_call(kvm_x86_get_mt_mask)(vcpu, gfn, 194 kvm_is_mmio_pfn(pfn)); 195 if (host_writable) 196 spte |= shadow_host_writable_mask; 197 else 198 pte_access &= ~ACC_WRITE_MASK; 199 200 if (shadow_me_value && !kvm_is_mmio_pfn(pfn)) 201 spte |= shadow_me_value; 202 203 spte |= (u64)pfn << PAGE_SHIFT; 204 205 if (pte_access & ACC_WRITE_MASK) { 206 spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask; 207 208 /* 209 * When overwriting an existing leaf SPTE, and the old SPTE was 210 * writable, skip trying to unsync shadow pages as any relevant 211 * shadow pages must already be unsync, i.e. the hash lookup is 212 * unnecessary (and expensive). 213 * 214 * The same reasoning applies to dirty page/folio accounting; 215 * KVM will mark the folio dirty using the old SPTE, thus 216 * there's no need to immediately mark the new SPTE as dirty. 217 * 218 * Note, both cases rely on KVM not changing PFNs without first 219 * zapping the old SPTE, which is guaranteed by both the shadow 220 * MMU and the TDP MMU. 221 */ 222 if (is_last_spte(old_spte, level) && is_writable_pte(old_spte)) 223 goto out; 224 225 /* 226 * Unsync shadow pages that are reachable by the new, writable 227 * SPTE. Write-protect the SPTE if the page can't be unsync'd, 228 * e.g. it's write-tracked (upper-level SPs) or has one or more 229 * shadow pages and unsync'ing pages is not allowed. 230 */ 231 if (mmu_try_to_unsync_pages(vcpu->kvm, slot, gfn, can_unsync, prefetch)) { 232 wrprot = true; 233 pte_access &= ~ACC_WRITE_MASK; 234 spte &= ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask); 235 } 236 } 237 238 if (pte_access & ACC_WRITE_MASK) 239 spte |= spte_shadow_dirty_mask(spte); 240 241 out: 242 if (prefetch) 243 spte = mark_spte_for_access_track(spte); 244 245 WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level), 246 "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level, 247 get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level)); 248 249 if ((spte & PT_WRITABLE_MASK) && kvm_slot_dirty_track_enabled(slot)) { 250 /* Enforced by kvm_mmu_hugepage_adjust. */ 251 WARN_ON_ONCE(level > PG_LEVEL_4K); 252 mark_page_dirty_in_slot(vcpu->kvm, slot, gfn); 253 } 254 255 *new_spte = spte; 256 return wrprot; 257 } 258 259 static u64 make_spte_executable(u64 spte) 260 { 261 bool is_access_track = is_access_track_spte(spte); 262 263 if (is_access_track) 264 spte = restore_acc_track_spte(spte); 265 266 spte &= ~shadow_nx_mask; 267 spte |= shadow_x_mask; 268 269 if (is_access_track) 270 spte = mark_spte_for_access_track(spte); 271 272 return spte; 273 } 274 275 /* 276 * Construct an SPTE that maps a sub-page of the given huge page SPTE where 277 * `index` identifies which sub-page. 278 * 279 * This is used during huge page splitting to build the SPTEs that make up the 280 * new page table. 281 */ 282 u64 make_huge_page_split_spte(struct kvm *kvm, u64 huge_spte, union kvm_mmu_page_role role, 283 int index) 284 { 285 u64 child_spte; 286 287 if (WARN_ON_ONCE(!is_shadow_present_pte(huge_spte))) 288 return 0; 289 290 if (WARN_ON_ONCE(!is_large_pte(huge_spte))) 291 return 0; 292 293 child_spte = huge_spte; 294 295 /* 296 * The child_spte already has the base address of the huge page being 297 * split. So we just have to OR in the offset to the page at the next 298 * lower level for the given index. 299 */ 300 child_spte |= (index * KVM_PAGES_PER_HPAGE(role.level)) << PAGE_SHIFT; 301 302 if (role.level == PG_LEVEL_4K) { 303 child_spte &= ~PT_PAGE_SIZE_MASK; 304 305 /* 306 * When splitting to a 4K page where execution is allowed, mark 307 * the page executable as the NX hugepage mitigation no longer 308 * applies. 309 */ 310 if ((role.access & ACC_EXEC_MASK) && is_nx_huge_page_enabled(kvm)) 311 child_spte = make_spte_executable(child_spte); 312 } 313 314 return child_spte; 315 } 316 317 318 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled) 319 { 320 u64 spte = SPTE_MMU_PRESENT_MASK; 321 322 spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK | 323 shadow_user_mask | shadow_x_mask | shadow_me_value; 324 325 if (ad_disabled) 326 spte |= SPTE_TDP_AD_DISABLED; 327 else 328 spte |= shadow_accessed_mask; 329 330 return spte; 331 } 332 333 u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn) 334 { 335 u64 new_spte; 336 337 new_spte = old_spte & ~SPTE_BASE_ADDR_MASK; 338 new_spte |= (u64)new_pfn << PAGE_SHIFT; 339 340 new_spte &= ~PT_WRITABLE_MASK; 341 new_spte &= ~shadow_host_writable_mask; 342 new_spte &= ~shadow_mmu_writable_mask; 343 344 new_spte = mark_spte_for_access_track(new_spte); 345 346 return new_spte; 347 } 348 349 u64 mark_spte_for_access_track(u64 spte) 350 { 351 if (spte_ad_enabled(spte)) 352 return spte & ~shadow_accessed_mask; 353 354 if (is_access_track_spte(spte)) 355 return spte; 356 357 check_spte_writable_invariants(spte); 358 359 WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK << 360 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT), 361 "Access Tracking saved bit locations are not zero\n"); 362 363 spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) << 364 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT; 365 spte &= ~shadow_acc_track_mask; 366 367 return spte; 368 } 369 370 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask) 371 { 372 BUG_ON((u64)(unsigned)access_mask != access_mask); 373 WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask); 374 375 /* 376 * Reset to the original module param value to honor userspace's desire 377 * to (dis)allow MMIO caching. Update the param itself so that 378 * userspace can see whether or not KVM is actually using MMIO caching. 379 */ 380 enable_mmio_caching = allow_mmio_caching; 381 if (!enable_mmio_caching) 382 mmio_value = 0; 383 384 /* 385 * The mask must contain only bits that are carved out specifically for 386 * the MMIO SPTE mask, e.g. to ensure there's no overlap with the MMIO 387 * generation. 388 */ 389 if (WARN_ON(mmio_mask & ~SPTE_MMIO_ALLOWED_MASK)) 390 mmio_value = 0; 391 392 /* 393 * Disable MMIO caching if the MMIO value collides with the bits that 394 * are used to hold the relocated GFN when the L1TF mitigation is 395 * enabled. This should never fire as there is no known hardware that 396 * can trigger this condition, e.g. SME/SEV CPUs that require a custom 397 * MMIO value are not susceptible to L1TF. 398 */ 399 if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << 400 SHADOW_NONPRESENT_OR_RSVD_MASK_LEN))) 401 mmio_value = 0; 402 403 /* 404 * The masked MMIO value must obviously match itself and a removed SPTE 405 * must not get a false positive. Removed SPTEs and MMIO SPTEs should 406 * never collide as MMIO must set some RWX bits, and removed SPTEs must 407 * not set any RWX bits. 408 */ 409 if (WARN_ON((mmio_value & mmio_mask) != mmio_value) || 410 WARN_ON(mmio_value && (REMOVED_SPTE & mmio_mask) == mmio_value)) 411 mmio_value = 0; 412 413 if (!mmio_value) 414 enable_mmio_caching = false; 415 416 shadow_mmio_value = mmio_value; 417 shadow_mmio_mask = mmio_mask; 418 shadow_mmio_access_mask = access_mask; 419 } 420 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); 421 422 void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask) 423 { 424 /* shadow_me_value must be a subset of shadow_me_mask */ 425 if (WARN_ON(me_value & ~me_mask)) 426 me_value = me_mask = 0; 427 428 shadow_me_value = me_value; 429 shadow_me_mask = me_mask; 430 } 431 EXPORT_SYMBOL_GPL(kvm_mmu_set_me_spte_mask); 432 433 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only) 434 { 435 shadow_user_mask = VMX_EPT_READABLE_MASK; 436 shadow_accessed_mask = has_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull; 437 shadow_dirty_mask = has_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull; 438 shadow_nx_mask = 0ull; 439 shadow_x_mask = VMX_EPT_EXECUTABLE_MASK; 440 shadow_present_mask = has_exec_only ? 0ull : VMX_EPT_READABLE_MASK; 441 /* 442 * EPT overrides the host MTRRs, and so KVM must program the desired 443 * memtype directly into the SPTEs. Note, this mask is just the mask 444 * of all bits that factor into the memtype, the actual memtype must be 445 * dynamically calculated, e.g. to ensure host MMIO is mapped UC. 446 */ 447 shadow_memtype_mask = VMX_EPT_MT_MASK | VMX_EPT_IPAT_BIT; 448 shadow_acc_track_mask = VMX_EPT_RWX_MASK; 449 shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE; 450 shadow_mmu_writable_mask = EPT_SPTE_MMU_WRITABLE; 451 452 /* 453 * EPT Misconfigurations are generated if the value of bits 2:0 454 * of an EPT paging-structure entry is 110b (write/execute). 455 */ 456 kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, 457 VMX_EPT_RWX_MASK, 0); 458 } 459 EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks); 460 461 void kvm_mmu_reset_all_pte_masks(void) 462 { 463 u8 low_phys_bits; 464 u64 mask; 465 466 shadow_phys_bits = kvm_get_shadow_phys_bits(); 467 468 /* 469 * If the CPU has 46 or less physical address bits, then set an 470 * appropriate mask to guard against L1TF attacks. Otherwise, it is 471 * assumed that the CPU is not vulnerable to L1TF. 472 * 473 * Some Intel CPUs address the L1 cache using more PA bits than are 474 * reported by CPUID. Use the PA width of the L1 cache when possible 475 * to achieve more effective mitigation, e.g. if system RAM overlaps 476 * the most significant bits of legal physical address space. 477 */ 478 shadow_nonpresent_or_rsvd_mask = 0; 479 low_phys_bits = boot_cpu_data.x86_phys_bits; 480 if (boot_cpu_has_bug(X86_BUG_L1TF) && 481 !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >= 482 52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) { 483 low_phys_bits = boot_cpu_data.x86_cache_bits 484 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN; 485 shadow_nonpresent_or_rsvd_mask = 486 rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1); 487 } 488 489 shadow_nonpresent_or_rsvd_lower_gfn_mask = 490 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT); 491 492 shadow_user_mask = PT_USER_MASK; 493 shadow_accessed_mask = PT_ACCESSED_MASK; 494 shadow_dirty_mask = PT_DIRTY_MASK; 495 shadow_nx_mask = PT64_NX_MASK; 496 shadow_x_mask = 0; 497 shadow_present_mask = PT_PRESENT_MASK; 498 499 /* 500 * For shadow paging and NPT, KVM uses PAT entry '0' to encode WB 501 * memtype in the SPTEs, i.e. relies on host MTRRs to provide the 502 * correct memtype (WB is the "weakest" memtype). 503 */ 504 shadow_memtype_mask = 0; 505 shadow_acc_track_mask = 0; 506 shadow_me_mask = 0; 507 shadow_me_value = 0; 508 509 shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITABLE; 510 shadow_mmu_writable_mask = DEFAULT_SPTE_MMU_WRITABLE; 511 512 /* 513 * Set a reserved PA bit in MMIO SPTEs to generate page faults with 514 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT 515 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports 516 * 52-bit physical addresses then there are no reserved PA bits in the 517 * PTEs and so the reserved PA approach must be disabled. 518 */ 519 if (shadow_phys_bits < 52) 520 mask = BIT_ULL(51) | PT_PRESENT_MASK; 521 else 522 mask = 0; 523 524 kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK); 525 } 526