xref: /openbmc/linux/arch/x86/kvm/mmu/spte.c (revision d6b87f25)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * Macros and functions to access KVM PTEs (also known as SPTEs)
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2020 Red Hat, Inc. and/or its affiliates.
9  */
10 
11 
12 #include <linux/kvm_host.h>
13 #include "mmu.h"
14 #include "mmu_internal.h"
15 #include "x86.h"
16 #include "spte.h"
17 
18 #include <asm/e820/api.h>
19 
20 static bool __read_mostly enable_mmio_caching = true;
21 module_param_named(mmio_caching, enable_mmio_caching, bool, 0444);
22 
23 u64 __read_mostly shadow_nx_mask;
24 u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
25 u64 __read_mostly shadow_user_mask;
26 u64 __read_mostly shadow_accessed_mask;
27 u64 __read_mostly shadow_dirty_mask;
28 u64 __read_mostly shadow_mmio_value;
29 u64 __read_mostly shadow_mmio_mask;
30 u64 __read_mostly shadow_mmio_access_mask;
31 u64 __read_mostly shadow_present_mask;
32 u64 __read_mostly shadow_me_mask;
33 u64 __read_mostly shadow_acc_track_mask;
34 
35 u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
36 u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
37 
38 u8 __read_mostly shadow_phys_bits;
39 
40 static u64 generation_mmio_spte_mask(u64 gen)
41 {
42 	u64 mask;
43 
44 	WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
45 
46 	mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
47 	mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
48 	return mask;
49 }
50 
51 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
52 {
53 	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
54 	u64 spte = generation_mmio_spte_mask(gen);
55 	u64 gpa = gfn << PAGE_SHIFT;
56 
57 	WARN_ON_ONCE(!shadow_mmio_value);
58 
59 	access &= shadow_mmio_access_mask;
60 	spte |= shadow_mmio_value | access;
61 	spte |= gpa | shadow_nonpresent_or_rsvd_mask;
62 	spte |= (gpa & shadow_nonpresent_or_rsvd_mask)
63 		<< SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
64 
65 	return spte;
66 }
67 
68 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
69 {
70 	if (pfn_valid(pfn))
71 		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
72 			/*
73 			 * Some reserved pages, such as those from NVDIMM
74 			 * DAX devices, are not for MMIO, and can be mapped
75 			 * with cached memory type for better performance.
76 			 * However, the above check misconceives those pages
77 			 * as MMIO, and results in KVM mapping them with UC
78 			 * memory type, which would hurt the performance.
79 			 * Therefore, we check the host memory type in addition
80 			 * and only treat UC/UC-/WC pages as MMIO.
81 			 */
82 			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
83 
84 	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
85 				     pfn_to_hpa(pfn + 1) - 1,
86 				     E820_TYPE_RAM);
87 }
88 
89 int make_spte(struct kvm_vcpu *vcpu, unsigned int pte_access, int level,
90 		     gfn_t gfn, kvm_pfn_t pfn, u64 old_spte, bool speculative,
91 		     bool can_unsync, bool host_writable, bool ad_disabled,
92 		     u64 *new_spte)
93 {
94 	u64 spte = 0;
95 	int ret = 0;
96 
97 	if (ad_disabled)
98 		spte |= SPTE_TDP_AD_DISABLED_MASK;
99 	else if (kvm_vcpu_ad_need_write_protect(vcpu))
100 		spte |= SPTE_TDP_AD_WRPROT_ONLY_MASK;
101 
102 	/*
103 	 * Bits 62:52 of PAE SPTEs are reserved.  WARN if said bits are set
104 	 * if PAE paging may be employed (shadow paging or any 32-bit KVM).
105 	 */
106 	WARN_ON_ONCE((!tdp_enabled || !IS_ENABLED(CONFIG_X86_64)) &&
107 		     (spte & SPTE_TDP_AD_MASK));
108 
109 	/*
110 	 * For the EPT case, shadow_present_mask is 0 if hardware
111 	 * supports exec-only page table entries.  In that case,
112 	 * ACC_USER_MASK and shadow_user_mask are used to represent
113 	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
114 	 */
115 	spte |= shadow_present_mask;
116 	if (!speculative)
117 		spte |= spte_shadow_accessed_mask(spte);
118 
119 	if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
120 	    is_nx_huge_page_enabled()) {
121 		pte_access &= ~ACC_EXEC_MASK;
122 	}
123 
124 	if (pte_access & ACC_EXEC_MASK)
125 		spte |= shadow_x_mask;
126 	else
127 		spte |= shadow_nx_mask;
128 
129 	if (pte_access & ACC_USER_MASK)
130 		spte |= shadow_user_mask;
131 
132 	if (level > PG_LEVEL_4K)
133 		spte |= PT_PAGE_SIZE_MASK;
134 	if (tdp_enabled)
135 		spte |= static_call(kvm_x86_get_mt_mask)(vcpu, gfn,
136 			kvm_is_mmio_pfn(pfn));
137 
138 	if (host_writable)
139 		spte |= SPTE_HOST_WRITEABLE;
140 	else
141 		pte_access &= ~ACC_WRITE_MASK;
142 
143 	if (!kvm_is_mmio_pfn(pfn))
144 		spte |= shadow_me_mask;
145 
146 	spte |= (u64)pfn << PAGE_SHIFT;
147 
148 	if (pte_access & ACC_WRITE_MASK) {
149 		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
150 
151 		/*
152 		 * Optimization: for pte sync, if spte was writable the hash
153 		 * lookup is unnecessary (and expensive). Write protection
154 		 * is responsibility of mmu_get_page / kvm_sync_page.
155 		 * Same reasoning can be applied to dirty page accounting.
156 		 */
157 		if (!can_unsync && is_writable_pte(old_spte))
158 			goto out;
159 
160 		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
161 			pgprintk("%s: found shadow page for %llx, marking ro\n",
162 				 __func__, gfn);
163 			ret |= SET_SPTE_WRITE_PROTECTED_PT;
164 			pte_access &= ~ACC_WRITE_MASK;
165 			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
166 		}
167 	}
168 
169 	if (pte_access & ACC_WRITE_MASK)
170 		spte |= spte_shadow_dirty_mask(spte);
171 
172 	if (speculative)
173 		spte = mark_spte_for_access_track(spte);
174 
175 out:
176 	WARN_ON(is_mmio_spte(spte));
177 	*new_spte = spte;
178 	return ret;
179 }
180 
181 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
182 {
183 	u64 spte;
184 
185 	spte = __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
186 	       shadow_user_mask | shadow_x_mask | shadow_me_mask;
187 
188 	if (ad_disabled)
189 		spte |= SPTE_TDP_AD_DISABLED_MASK;
190 	else
191 		spte |= shadow_accessed_mask;
192 
193 	return spte;
194 }
195 
196 u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn)
197 {
198 	u64 new_spte;
199 
200 	new_spte = old_spte & ~PT64_BASE_ADDR_MASK;
201 	new_spte |= (u64)new_pfn << PAGE_SHIFT;
202 
203 	new_spte &= ~PT_WRITABLE_MASK;
204 	new_spte &= ~SPTE_HOST_WRITEABLE;
205 
206 	new_spte = mark_spte_for_access_track(new_spte);
207 
208 	return new_spte;
209 }
210 
211 static u8 kvm_get_shadow_phys_bits(void)
212 {
213 	/*
214 	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
215 	 * in CPU detection code, but the processor treats those reduced bits as
216 	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
217 	 * the physical address bits reported by CPUID.
218 	 */
219 	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
220 		return cpuid_eax(0x80000008) & 0xff;
221 
222 	/*
223 	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
224 	 * custom CPUID.  Proceed with whatever the kernel found since these features
225 	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
226 	 */
227 	return boot_cpu_data.x86_phys_bits;
228 }
229 
230 u64 mark_spte_for_access_track(u64 spte)
231 {
232 	if (spte_ad_enabled(spte))
233 		return spte & ~shadow_accessed_mask;
234 
235 	if (is_access_track_spte(spte))
236 		return spte;
237 
238 	/*
239 	 * Making an Access Tracking PTE will result in removal of write access
240 	 * from the PTE. So, verify that we will be able to restore the write
241 	 * access in the fast page fault path later on.
242 	 */
243 	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
244 		  !spte_can_locklessly_be_made_writable(spte),
245 		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");
246 
247 	WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
248 			  SHADOW_ACC_TRACK_SAVED_BITS_SHIFT),
249 		  "kvm: Access Tracking saved bit locations are not zero\n");
250 
251 	spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) <<
252 		SHADOW_ACC_TRACK_SAVED_BITS_SHIFT;
253 	spte &= ~shadow_acc_track_mask;
254 
255 	return spte;
256 }
257 
258 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask)
259 {
260 	BUG_ON((u64)(unsigned)access_mask != access_mask);
261 	WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
262 
263 	if (!enable_mmio_caching)
264 		mmio_value = 0;
265 
266 	/*
267 	 * Disable MMIO caching if the MMIO value collides with the bits that
268 	 * are used to hold the relocated GFN when the L1TF mitigation is
269 	 * enabled.  This should never fire as there is no known hardware that
270 	 * can trigger this condition, e.g. SME/SEV CPUs that require a custom
271 	 * MMIO value are not susceptible to L1TF.
272 	 */
273 	if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask <<
274 				  SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)))
275 		mmio_value = 0;
276 
277 	WARN_ON((mmio_value & mmio_mask) != mmio_value);
278 	shadow_mmio_value = mmio_value;
279 	shadow_mmio_mask  = mmio_mask;
280 	shadow_mmio_access_mask = access_mask;
281 }
282 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
283 
284 /*
285  * Sets the shadow PTE masks used by the MMU.
286  *
287  * Assumptions:
288  *  - Setting either @accessed_mask or @dirty_mask requires setting both
289  *  - At least one of @accessed_mask or @acc_track_mask must be set
290  */
291 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
292 		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
293 		u64 acc_track_mask, u64 me_mask)
294 {
295 	BUG_ON(!dirty_mask != !accessed_mask);
296 	BUG_ON(!accessed_mask && !acc_track_mask);
297 	BUG_ON(acc_track_mask & SPTE_TDP_AD_MASK);
298 
299 	shadow_user_mask = user_mask;
300 	shadow_accessed_mask = accessed_mask;
301 	shadow_dirty_mask = dirty_mask;
302 	shadow_nx_mask = nx_mask;
303 	shadow_x_mask = x_mask;
304 	shadow_present_mask = p_mask;
305 	shadow_acc_track_mask = acc_track_mask;
306 	shadow_me_mask = me_mask;
307 }
308 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
309 
310 void kvm_mmu_reset_all_pte_masks(void)
311 {
312 	u8 low_phys_bits;
313 	u64 mask;
314 
315 	shadow_user_mask = 0;
316 	shadow_accessed_mask = 0;
317 	shadow_dirty_mask = 0;
318 	shadow_nx_mask = 0;
319 	shadow_x_mask = 0;
320 	shadow_present_mask = 0;
321 	shadow_acc_track_mask = 0;
322 
323 	shadow_phys_bits = kvm_get_shadow_phys_bits();
324 
325 	/*
326 	 * If the CPU has 46 or less physical address bits, then set an
327 	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
328 	 * assumed that the CPU is not vulnerable to L1TF.
329 	 *
330 	 * Some Intel CPUs address the L1 cache using more PA bits than are
331 	 * reported by CPUID. Use the PA width of the L1 cache when possible
332 	 * to achieve more effective mitigation, e.g. if system RAM overlaps
333 	 * the most significant bits of legal physical address space.
334 	 */
335 	shadow_nonpresent_or_rsvd_mask = 0;
336 	low_phys_bits = boot_cpu_data.x86_phys_bits;
337 	if (boot_cpu_has_bug(X86_BUG_L1TF) &&
338 	    !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
339 			  52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) {
340 		low_phys_bits = boot_cpu_data.x86_cache_bits
341 			- SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
342 		shadow_nonpresent_or_rsvd_mask =
343 			rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
344 	}
345 
346 	shadow_nonpresent_or_rsvd_lower_gfn_mask =
347 		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
348 
349 	/*
350 	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
351 	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
352 	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
353 	 * 52-bit physical addresses then there are no reserved PA bits in the
354 	 * PTEs and so the reserved PA approach must be disabled.
355 	 */
356 	if (shadow_phys_bits < 52)
357 		mask = BIT_ULL(51) | PT_PRESENT_MASK;
358 	else
359 		mask = 0;
360 
361 	kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
362 
363 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
364 			PT_DIRTY_MASK, PT64_NX_MASK, 0,
365 			PT_PRESENT_MASK, 0, sme_me_mask);
366 }
367