xref: /openbmc/linux/arch/x86/kvm/mmu/spte.c (revision c83eeec79ff64f777cbd59a8bd15d0a3fe1f92c0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * Macros and functions to access KVM PTEs (also known as SPTEs)
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2020 Red Hat, Inc. and/or its affiliates.
9  */
10 
11 
12 #include <linux/kvm_host.h>
13 #include "mmu.h"
14 #include "mmu_internal.h"
15 #include "x86.h"
16 #include "spte.h"
17 
18 #include <asm/e820/api.h>
19 #include <asm/vmx.h>
20 
21 static bool __read_mostly enable_mmio_caching = true;
22 module_param_named(mmio_caching, enable_mmio_caching, bool, 0444);
23 
24 u64 __read_mostly shadow_host_writable_mask;
25 u64 __read_mostly shadow_mmu_writable_mask;
26 u64 __read_mostly shadow_nx_mask;
27 u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
28 u64 __read_mostly shadow_user_mask;
29 u64 __read_mostly shadow_accessed_mask;
30 u64 __read_mostly shadow_dirty_mask;
31 u64 __read_mostly shadow_mmio_value;
32 u64 __read_mostly shadow_mmio_mask;
33 u64 __read_mostly shadow_mmio_access_mask;
34 u64 __read_mostly shadow_present_mask;
35 u64 __read_mostly shadow_me_mask;
36 u64 __read_mostly shadow_acc_track_mask;
37 
38 u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
39 u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
40 
41 u8 __read_mostly shadow_phys_bits;
42 
43 static u64 generation_mmio_spte_mask(u64 gen)
44 {
45 	u64 mask;
46 
47 	WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
48 
49 	mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
50 	mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
51 	return mask;
52 }
53 
54 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
55 {
56 	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
57 	u64 spte = generation_mmio_spte_mask(gen);
58 	u64 gpa = gfn << PAGE_SHIFT;
59 
60 	WARN_ON_ONCE(!shadow_mmio_value);
61 
62 	access &= shadow_mmio_access_mask;
63 	spte |= shadow_mmio_value | access;
64 	spte |= gpa | shadow_nonpresent_or_rsvd_mask;
65 	spte |= (gpa & shadow_nonpresent_or_rsvd_mask)
66 		<< SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
67 
68 	return spte;
69 }
70 
71 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
72 {
73 	if (pfn_valid(pfn))
74 		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
75 			/*
76 			 * Some reserved pages, such as those from NVDIMM
77 			 * DAX devices, are not for MMIO, and can be mapped
78 			 * with cached memory type for better performance.
79 			 * However, the above check misconceives those pages
80 			 * as MMIO, and results in KVM mapping them with UC
81 			 * memory type, which would hurt the performance.
82 			 * Therefore, we check the host memory type in addition
83 			 * and only treat UC/UC-/WC pages as MMIO.
84 			 */
85 			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
86 
87 	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
88 				     pfn_to_hpa(pfn + 1) - 1,
89 				     E820_TYPE_RAM);
90 }
91 
92 bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
93 	       struct kvm_memory_slot *slot,
94 	       unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
95 	       u64 old_spte, bool prefetch, bool can_unsync,
96 	       bool host_writable, u64 *new_spte)
97 {
98 	int level = sp->role.level;
99 	u64 spte = SPTE_MMU_PRESENT_MASK;
100 	bool wrprot = false;
101 
102 	if (sp->role.ad_disabled)
103 		spte |= SPTE_TDP_AD_DISABLED_MASK;
104 	else if (kvm_vcpu_ad_need_write_protect(vcpu))
105 		spte |= SPTE_TDP_AD_WRPROT_ONLY_MASK;
106 
107 	/*
108 	 * For the EPT case, shadow_present_mask is 0 if hardware
109 	 * supports exec-only page table entries.  In that case,
110 	 * ACC_USER_MASK and shadow_user_mask are used to represent
111 	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
112 	 */
113 	spte |= shadow_present_mask;
114 	if (!prefetch)
115 		spte |= spte_shadow_accessed_mask(spte);
116 
117 	if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
118 	    is_nx_huge_page_enabled()) {
119 		pte_access &= ~ACC_EXEC_MASK;
120 	}
121 
122 	if (pte_access & ACC_EXEC_MASK)
123 		spte |= shadow_x_mask;
124 	else
125 		spte |= shadow_nx_mask;
126 
127 	if (pte_access & ACC_USER_MASK)
128 		spte |= shadow_user_mask;
129 
130 	if (level > PG_LEVEL_4K)
131 		spte |= PT_PAGE_SIZE_MASK;
132 	if (tdp_enabled)
133 		spte |= static_call(kvm_x86_get_mt_mask)(vcpu, gfn,
134 			kvm_is_mmio_pfn(pfn));
135 
136 	if (host_writable)
137 		spte |= shadow_host_writable_mask;
138 	else
139 		pte_access &= ~ACC_WRITE_MASK;
140 
141 	if (!kvm_is_mmio_pfn(pfn))
142 		spte |= shadow_me_mask;
143 
144 	spte |= (u64)pfn << PAGE_SHIFT;
145 
146 	if (pte_access & ACC_WRITE_MASK) {
147 		spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask;
148 
149 		/*
150 		 * Optimization: for pte sync, if spte was writable the hash
151 		 * lookup is unnecessary (and expensive). Write protection
152 		 * is responsibility of kvm_mmu_get_page / kvm_mmu_sync_roots.
153 		 * Same reasoning can be applied to dirty page accounting.
154 		 */
155 		if (is_writable_pte(old_spte))
156 			goto out;
157 
158 		/*
159 		 * Unsync shadow pages that are reachable by the new, writable
160 		 * SPTE.  Write-protect the SPTE if the page can't be unsync'd,
161 		 * e.g. it's write-tracked (upper-level SPs) or has one or more
162 		 * shadow pages and unsync'ing pages is not allowed.
163 		 */
164 		if (mmu_try_to_unsync_pages(vcpu, slot, gfn, can_unsync, prefetch)) {
165 			pgprintk("%s: found shadow page for %llx, marking ro\n",
166 				 __func__, gfn);
167 			wrprot = true;
168 			pte_access &= ~ACC_WRITE_MASK;
169 			spte &= ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
170 		}
171 	}
172 
173 	if (pte_access & ACC_WRITE_MASK)
174 		spte |= spte_shadow_dirty_mask(spte);
175 
176 out:
177 	if (prefetch)
178 		spte = mark_spte_for_access_track(spte);
179 
180 	WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level),
181 		  "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level,
182 		  get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level));
183 
184 	if ((spte & PT_WRITABLE_MASK) && kvm_slot_dirty_track_enabled(slot)) {
185 		/* Enforced by kvm_mmu_hugepage_adjust. */
186 		WARN_ON(level > PG_LEVEL_4K);
187 		mark_page_dirty_in_slot(vcpu->kvm, slot, gfn);
188 	}
189 
190 	*new_spte = spte;
191 	return wrprot;
192 }
193 
194 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
195 {
196 	u64 spte = SPTE_MMU_PRESENT_MASK;
197 
198 	spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
199 		shadow_user_mask | shadow_x_mask | shadow_me_mask;
200 
201 	if (ad_disabled)
202 		spte |= SPTE_TDP_AD_DISABLED_MASK;
203 	else
204 		spte |= shadow_accessed_mask;
205 
206 	return spte;
207 }
208 
209 u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn)
210 {
211 	u64 new_spte;
212 
213 	new_spte = old_spte & ~PT64_BASE_ADDR_MASK;
214 	new_spte |= (u64)new_pfn << PAGE_SHIFT;
215 
216 	new_spte &= ~PT_WRITABLE_MASK;
217 	new_spte &= ~shadow_host_writable_mask;
218 
219 	new_spte = mark_spte_for_access_track(new_spte);
220 
221 	return new_spte;
222 }
223 
224 static u8 kvm_get_shadow_phys_bits(void)
225 {
226 	/*
227 	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
228 	 * in CPU detection code, but the processor treats those reduced bits as
229 	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
230 	 * the physical address bits reported by CPUID.
231 	 */
232 	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
233 		return cpuid_eax(0x80000008) & 0xff;
234 
235 	/*
236 	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
237 	 * custom CPUID.  Proceed with whatever the kernel found since these features
238 	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
239 	 */
240 	return boot_cpu_data.x86_phys_bits;
241 }
242 
243 u64 mark_spte_for_access_track(u64 spte)
244 {
245 	if (spte_ad_enabled(spte))
246 		return spte & ~shadow_accessed_mask;
247 
248 	if (is_access_track_spte(spte))
249 		return spte;
250 
251 	/*
252 	 * Making an Access Tracking PTE will result in removal of write access
253 	 * from the PTE. So, verify that we will be able to restore the write
254 	 * access in the fast page fault path later on.
255 	 */
256 	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
257 		  !spte_can_locklessly_be_made_writable(spte),
258 		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");
259 
260 	WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
261 			  SHADOW_ACC_TRACK_SAVED_BITS_SHIFT),
262 		  "kvm: Access Tracking saved bit locations are not zero\n");
263 
264 	spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) <<
265 		SHADOW_ACC_TRACK_SAVED_BITS_SHIFT;
266 	spte &= ~shadow_acc_track_mask;
267 
268 	return spte;
269 }
270 
271 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask)
272 {
273 	BUG_ON((u64)(unsigned)access_mask != access_mask);
274 	WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
275 
276 	if (!enable_mmio_caching)
277 		mmio_value = 0;
278 
279 	/*
280 	 * Disable MMIO caching if the MMIO value collides with the bits that
281 	 * are used to hold the relocated GFN when the L1TF mitigation is
282 	 * enabled.  This should never fire as there is no known hardware that
283 	 * can trigger this condition, e.g. SME/SEV CPUs that require a custom
284 	 * MMIO value are not susceptible to L1TF.
285 	 */
286 	if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask <<
287 				  SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)))
288 		mmio_value = 0;
289 
290 	/*
291 	 * The masked MMIO value must obviously match itself and a removed SPTE
292 	 * must not get a false positive.  Removed SPTEs and MMIO SPTEs should
293 	 * never collide as MMIO must set some RWX bits, and removed SPTEs must
294 	 * not set any RWX bits.
295 	 */
296 	if (WARN_ON((mmio_value & mmio_mask) != mmio_value) ||
297 	    WARN_ON(mmio_value && (REMOVED_SPTE & mmio_mask) == mmio_value))
298 		mmio_value = 0;
299 
300 	shadow_mmio_value = mmio_value;
301 	shadow_mmio_mask  = mmio_mask;
302 	shadow_mmio_access_mask = access_mask;
303 }
304 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
305 
306 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only)
307 {
308 	shadow_user_mask	= VMX_EPT_READABLE_MASK;
309 	shadow_accessed_mask	= has_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull;
310 	shadow_dirty_mask	= has_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull;
311 	shadow_nx_mask		= 0ull;
312 	shadow_x_mask		= VMX_EPT_EXECUTABLE_MASK;
313 	shadow_present_mask	= has_exec_only ? 0ull : VMX_EPT_READABLE_MASK;
314 	shadow_acc_track_mask	= VMX_EPT_RWX_MASK;
315 	shadow_me_mask		= 0ull;
316 
317 	shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE;
318 	shadow_mmu_writable_mask  = EPT_SPTE_MMU_WRITABLE;
319 
320 	/*
321 	 * EPT Misconfigurations are generated if the value of bits 2:0
322 	 * of an EPT paging-structure entry is 110b (write/execute).
323 	 */
324 	kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE,
325 				   VMX_EPT_RWX_MASK, 0);
326 }
327 EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks);
328 
329 void kvm_mmu_reset_all_pte_masks(void)
330 {
331 	u8 low_phys_bits;
332 	u64 mask;
333 
334 	shadow_phys_bits = kvm_get_shadow_phys_bits();
335 
336 	/*
337 	 * If the CPU has 46 or less physical address bits, then set an
338 	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
339 	 * assumed that the CPU is not vulnerable to L1TF.
340 	 *
341 	 * Some Intel CPUs address the L1 cache using more PA bits than are
342 	 * reported by CPUID. Use the PA width of the L1 cache when possible
343 	 * to achieve more effective mitigation, e.g. if system RAM overlaps
344 	 * the most significant bits of legal physical address space.
345 	 */
346 	shadow_nonpresent_or_rsvd_mask = 0;
347 	low_phys_bits = boot_cpu_data.x86_phys_bits;
348 	if (boot_cpu_has_bug(X86_BUG_L1TF) &&
349 	    !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
350 			  52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) {
351 		low_phys_bits = boot_cpu_data.x86_cache_bits
352 			- SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
353 		shadow_nonpresent_or_rsvd_mask =
354 			rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
355 	}
356 
357 	shadow_nonpresent_or_rsvd_lower_gfn_mask =
358 		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
359 
360 	shadow_user_mask	= PT_USER_MASK;
361 	shadow_accessed_mask	= PT_ACCESSED_MASK;
362 	shadow_dirty_mask	= PT_DIRTY_MASK;
363 	shadow_nx_mask		= PT64_NX_MASK;
364 	shadow_x_mask		= 0;
365 	shadow_present_mask	= PT_PRESENT_MASK;
366 	shadow_acc_track_mask	= 0;
367 	shadow_me_mask		= sme_me_mask;
368 
369 	shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITEABLE;
370 	shadow_mmu_writable_mask  = DEFAULT_SPTE_MMU_WRITEABLE;
371 
372 	/*
373 	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
374 	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
375 	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
376 	 * 52-bit physical addresses then there are no reserved PA bits in the
377 	 * PTEs and so the reserved PA approach must be disabled.
378 	 */
379 	if (shadow_phys_bits < 52)
380 		mask = BIT_ULL(51) | PT_PRESENT_MASK;
381 	else
382 		mask = 0;
383 
384 	kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
385 }
386