1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * Macros and functions to access KVM PTEs (also known as SPTEs) 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2020 Red Hat, Inc. and/or its affiliates. 9 */ 10 11 12 #include <linux/kvm_host.h> 13 #include "mmu.h" 14 #include "mmu_internal.h" 15 #include "x86.h" 16 #include "spte.h" 17 18 #include <asm/e820/api.h> 19 #include <asm/vmx.h> 20 21 static bool __read_mostly enable_mmio_caching = true; 22 module_param_named(mmio_caching, enable_mmio_caching, bool, 0444); 23 24 u64 __read_mostly shadow_host_writable_mask; 25 u64 __read_mostly shadow_mmu_writable_mask; 26 u64 __read_mostly shadow_nx_mask; 27 u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ 28 u64 __read_mostly shadow_user_mask; 29 u64 __read_mostly shadow_accessed_mask; 30 u64 __read_mostly shadow_dirty_mask; 31 u64 __read_mostly shadow_mmio_value; 32 u64 __read_mostly shadow_mmio_mask; 33 u64 __read_mostly shadow_mmio_access_mask; 34 u64 __read_mostly shadow_present_mask; 35 u64 __read_mostly shadow_me_mask; 36 u64 __read_mostly shadow_acc_track_mask; 37 38 u64 __read_mostly shadow_nonpresent_or_rsvd_mask; 39 u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; 40 41 u8 __read_mostly shadow_phys_bits; 42 43 static u64 generation_mmio_spte_mask(u64 gen) 44 { 45 u64 mask; 46 47 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK); 48 49 mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK; 50 mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK; 51 return mask; 52 } 53 54 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access) 55 { 56 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK; 57 u64 spte = generation_mmio_spte_mask(gen); 58 u64 gpa = gfn << PAGE_SHIFT; 59 60 WARN_ON_ONCE(!shadow_mmio_value); 61 62 access &= shadow_mmio_access_mask; 63 spte |= shadow_mmio_value | access; 64 spte |= gpa | shadow_nonpresent_or_rsvd_mask; 65 spte |= (gpa & shadow_nonpresent_or_rsvd_mask) 66 << SHADOW_NONPRESENT_OR_RSVD_MASK_LEN; 67 68 return spte; 69 } 70 71 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn) 72 { 73 if (pfn_valid(pfn)) 74 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) && 75 /* 76 * Some reserved pages, such as those from NVDIMM 77 * DAX devices, are not for MMIO, and can be mapped 78 * with cached memory type for better performance. 79 * However, the above check misconceives those pages 80 * as MMIO, and results in KVM mapping them with UC 81 * memory type, which would hurt the performance. 82 * Therefore, we check the host memory type in addition 83 * and only treat UC/UC-/WC pages as MMIO. 84 */ 85 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn)); 86 87 return !e820__mapped_raw_any(pfn_to_hpa(pfn), 88 pfn_to_hpa(pfn + 1) - 1, 89 E820_TYPE_RAM); 90 } 91 92 bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 93 struct kvm_memory_slot *slot, 94 unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn, 95 u64 old_spte, bool prefetch, bool can_unsync, 96 bool host_writable, u64 *new_spte) 97 { 98 int level = sp->role.level; 99 u64 spte = SPTE_MMU_PRESENT_MASK; 100 bool wrprot = false; 101 102 if (sp->role.ad_disabled) 103 spte |= SPTE_TDP_AD_DISABLED_MASK; 104 else if (kvm_vcpu_ad_need_write_protect(vcpu)) 105 spte |= SPTE_TDP_AD_WRPROT_ONLY_MASK; 106 107 /* 108 * For the EPT case, shadow_present_mask is 0 if hardware 109 * supports exec-only page table entries. In that case, 110 * ACC_USER_MASK and shadow_user_mask are used to represent 111 * read access. See FNAME(gpte_access) in paging_tmpl.h. 112 */ 113 spte |= shadow_present_mask; 114 if (!prefetch) 115 spte |= spte_shadow_accessed_mask(spte); 116 117 if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) && 118 is_nx_huge_page_enabled()) { 119 pte_access &= ~ACC_EXEC_MASK; 120 } 121 122 if (pte_access & ACC_EXEC_MASK) 123 spte |= shadow_x_mask; 124 else 125 spte |= shadow_nx_mask; 126 127 if (pte_access & ACC_USER_MASK) 128 spte |= shadow_user_mask; 129 130 if (level > PG_LEVEL_4K) 131 spte |= PT_PAGE_SIZE_MASK; 132 if (tdp_enabled) 133 spte |= static_call(kvm_x86_get_mt_mask)(vcpu, gfn, 134 kvm_is_mmio_pfn(pfn)); 135 136 if (host_writable) 137 spte |= shadow_host_writable_mask; 138 else 139 pte_access &= ~ACC_WRITE_MASK; 140 141 if (!kvm_is_mmio_pfn(pfn)) 142 spte |= shadow_me_mask; 143 144 spte |= (u64)pfn << PAGE_SHIFT; 145 146 if (pte_access & ACC_WRITE_MASK) { 147 spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask; 148 149 /* 150 * Optimization: for pte sync, if spte was writable the hash 151 * lookup is unnecessary (and expensive). Write protection 152 * is responsibility of kvm_mmu_get_page / kvm_mmu_sync_roots. 153 * Same reasoning can be applied to dirty page accounting. 154 */ 155 if (is_writable_pte(old_spte)) 156 goto out; 157 158 /* 159 * Unsync shadow pages that are reachable by the new, writable 160 * SPTE. Write-protect the SPTE if the page can't be unsync'd, 161 * e.g. it's write-tracked (upper-level SPs) or has one or more 162 * shadow pages and unsync'ing pages is not allowed. 163 */ 164 if (mmu_try_to_unsync_pages(vcpu, slot, gfn, can_unsync, prefetch)) { 165 pgprintk("%s: found shadow page for %llx, marking ro\n", 166 __func__, gfn); 167 wrprot = true; 168 pte_access &= ~ACC_WRITE_MASK; 169 spte &= ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask); 170 } 171 } 172 173 if (pte_access & ACC_WRITE_MASK) 174 spte |= spte_shadow_dirty_mask(spte); 175 176 out: 177 if (prefetch) 178 spte = mark_spte_for_access_track(spte); 179 180 WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level), 181 "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level, 182 get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level)); 183 184 if ((spte & PT_WRITABLE_MASK) && kvm_slot_dirty_track_enabled(slot)) { 185 /* Enforced by kvm_mmu_hugepage_adjust. */ 186 WARN_ON(level > PG_LEVEL_4K); 187 mark_page_dirty_in_slot(vcpu->kvm, slot, gfn); 188 } 189 190 *new_spte = spte; 191 return wrprot; 192 } 193 194 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled) 195 { 196 u64 spte = SPTE_MMU_PRESENT_MASK; 197 198 spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK | 199 shadow_user_mask | shadow_x_mask | shadow_me_mask; 200 201 if (ad_disabled) 202 spte |= SPTE_TDP_AD_DISABLED_MASK; 203 else 204 spte |= shadow_accessed_mask; 205 206 return spte; 207 } 208 209 u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn) 210 { 211 u64 new_spte; 212 213 new_spte = old_spte & ~PT64_BASE_ADDR_MASK; 214 new_spte |= (u64)new_pfn << PAGE_SHIFT; 215 216 new_spte &= ~PT_WRITABLE_MASK; 217 new_spte &= ~shadow_host_writable_mask; 218 219 new_spte = mark_spte_for_access_track(new_spte); 220 221 return new_spte; 222 } 223 224 static u8 kvm_get_shadow_phys_bits(void) 225 { 226 /* 227 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected 228 * in CPU detection code, but the processor treats those reduced bits as 229 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at 230 * the physical address bits reported by CPUID. 231 */ 232 if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008)) 233 return cpuid_eax(0x80000008) & 0xff; 234 235 /* 236 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with 237 * custom CPUID. Proceed with whatever the kernel found since these features 238 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008). 239 */ 240 return boot_cpu_data.x86_phys_bits; 241 } 242 243 u64 mark_spte_for_access_track(u64 spte) 244 { 245 if (spte_ad_enabled(spte)) 246 return spte & ~shadow_accessed_mask; 247 248 if (is_access_track_spte(spte)) 249 return spte; 250 251 /* 252 * Making an Access Tracking PTE will result in removal of write access 253 * from the PTE. So, verify that we will be able to restore the write 254 * access in the fast page fault path later on. 255 */ 256 WARN_ONCE((spte & PT_WRITABLE_MASK) && 257 !spte_can_locklessly_be_made_writable(spte), 258 "kvm: Writable SPTE is not locklessly dirty-trackable\n"); 259 260 WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK << 261 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT), 262 "kvm: Access Tracking saved bit locations are not zero\n"); 263 264 spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) << 265 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT; 266 spte &= ~shadow_acc_track_mask; 267 268 return spte; 269 } 270 271 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask) 272 { 273 BUG_ON((u64)(unsigned)access_mask != access_mask); 274 WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask); 275 276 if (!enable_mmio_caching) 277 mmio_value = 0; 278 279 /* 280 * Disable MMIO caching if the MMIO value collides with the bits that 281 * are used to hold the relocated GFN when the L1TF mitigation is 282 * enabled. This should never fire as there is no known hardware that 283 * can trigger this condition, e.g. SME/SEV CPUs that require a custom 284 * MMIO value are not susceptible to L1TF. 285 */ 286 if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << 287 SHADOW_NONPRESENT_OR_RSVD_MASK_LEN))) 288 mmio_value = 0; 289 290 /* 291 * The masked MMIO value must obviously match itself and a removed SPTE 292 * must not get a false positive. Removed SPTEs and MMIO SPTEs should 293 * never collide as MMIO must set some RWX bits, and removed SPTEs must 294 * not set any RWX bits. 295 */ 296 if (WARN_ON((mmio_value & mmio_mask) != mmio_value) || 297 WARN_ON(mmio_value && (REMOVED_SPTE & mmio_mask) == mmio_value)) 298 mmio_value = 0; 299 300 shadow_mmio_value = mmio_value; 301 shadow_mmio_mask = mmio_mask; 302 shadow_mmio_access_mask = access_mask; 303 } 304 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); 305 306 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only) 307 { 308 shadow_user_mask = VMX_EPT_READABLE_MASK; 309 shadow_accessed_mask = has_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull; 310 shadow_dirty_mask = has_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull; 311 shadow_nx_mask = 0ull; 312 shadow_x_mask = VMX_EPT_EXECUTABLE_MASK; 313 shadow_present_mask = has_exec_only ? 0ull : VMX_EPT_READABLE_MASK; 314 shadow_acc_track_mask = VMX_EPT_RWX_MASK; 315 shadow_me_mask = 0ull; 316 317 shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE; 318 shadow_mmu_writable_mask = EPT_SPTE_MMU_WRITABLE; 319 320 /* 321 * EPT Misconfigurations are generated if the value of bits 2:0 322 * of an EPT paging-structure entry is 110b (write/execute). 323 */ 324 kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, 325 VMX_EPT_RWX_MASK, 0); 326 } 327 EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks); 328 329 void kvm_mmu_reset_all_pte_masks(void) 330 { 331 u8 low_phys_bits; 332 u64 mask; 333 334 shadow_phys_bits = kvm_get_shadow_phys_bits(); 335 336 /* 337 * If the CPU has 46 or less physical address bits, then set an 338 * appropriate mask to guard against L1TF attacks. Otherwise, it is 339 * assumed that the CPU is not vulnerable to L1TF. 340 * 341 * Some Intel CPUs address the L1 cache using more PA bits than are 342 * reported by CPUID. Use the PA width of the L1 cache when possible 343 * to achieve more effective mitigation, e.g. if system RAM overlaps 344 * the most significant bits of legal physical address space. 345 */ 346 shadow_nonpresent_or_rsvd_mask = 0; 347 low_phys_bits = boot_cpu_data.x86_phys_bits; 348 if (boot_cpu_has_bug(X86_BUG_L1TF) && 349 !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >= 350 52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) { 351 low_phys_bits = boot_cpu_data.x86_cache_bits 352 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN; 353 shadow_nonpresent_or_rsvd_mask = 354 rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1); 355 } 356 357 shadow_nonpresent_or_rsvd_lower_gfn_mask = 358 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT); 359 360 shadow_user_mask = PT_USER_MASK; 361 shadow_accessed_mask = PT_ACCESSED_MASK; 362 shadow_dirty_mask = PT_DIRTY_MASK; 363 shadow_nx_mask = PT64_NX_MASK; 364 shadow_x_mask = 0; 365 shadow_present_mask = PT_PRESENT_MASK; 366 shadow_acc_track_mask = 0; 367 shadow_me_mask = sme_me_mask; 368 369 shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITEABLE; 370 shadow_mmu_writable_mask = DEFAULT_SPTE_MMU_WRITEABLE; 371 372 /* 373 * Set a reserved PA bit in MMIO SPTEs to generate page faults with 374 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT 375 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports 376 * 52-bit physical addresses then there are no reserved PA bits in the 377 * PTEs and so the reserved PA approach must be disabled. 378 */ 379 if (shadow_phys_bits < 52) 380 mask = BIT_ULL(51) | PT_PRESENT_MASK; 381 else 382 mask = 0; 383 384 kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK); 385 } 386