xref: /openbmc/linux/arch/x86/kvm/mmu/spte.c (revision c236d962)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * Macros and functions to access KVM PTEs (also known as SPTEs)
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2020 Red Hat, Inc. and/or its affiliates.
9  */
10 
11 
12 #include <linux/kvm_host.h>
13 #include "mmu.h"
14 #include "mmu_internal.h"
15 #include "x86.h"
16 #include "spte.h"
17 
18 #include <asm/e820/api.h>
19 
20 u64 __read_mostly shadow_nx_mask;
21 u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
22 u64 __read_mostly shadow_user_mask;
23 u64 __read_mostly shadow_accessed_mask;
24 u64 __read_mostly shadow_dirty_mask;
25 u64 __read_mostly shadow_mmio_value;
26 u64 __read_mostly shadow_mmio_access_mask;
27 u64 __read_mostly shadow_present_mask;
28 u64 __read_mostly shadow_me_mask;
29 u64 __read_mostly shadow_acc_track_mask;
30 
31 u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
32 u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
33 
34 u8 __read_mostly shadow_phys_bits;
35 
36 static u64 generation_mmio_spte_mask(u64 gen)
37 {
38 	u64 mask;
39 
40 	WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
41 	BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
42 
43 	mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
44 	mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
45 	return mask;
46 }
47 
48 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
49 {
50 	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
51 	u64 spte = generation_mmio_spte_mask(gen);
52 	u64 gpa = gfn << PAGE_SHIFT;
53 
54 	WARN_ON_ONCE(!shadow_mmio_value);
55 
56 	access &= shadow_mmio_access_mask;
57 	spte |= shadow_mmio_value | access;
58 	spte |= gpa | shadow_nonpresent_or_rsvd_mask;
59 	spte |= (gpa & shadow_nonpresent_or_rsvd_mask)
60 		<< SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
61 
62 	return spte;
63 }
64 
65 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
66 {
67 	if (pfn_valid(pfn))
68 		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
69 			/*
70 			 * Some reserved pages, such as those from NVDIMM
71 			 * DAX devices, are not for MMIO, and can be mapped
72 			 * with cached memory type for better performance.
73 			 * However, the above check misconceives those pages
74 			 * as MMIO, and results in KVM mapping them with UC
75 			 * memory type, which would hurt the performance.
76 			 * Therefore, we check the host memory type in addition
77 			 * and only treat UC/UC-/WC pages as MMIO.
78 			 */
79 			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
80 
81 	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
82 				     pfn_to_hpa(pfn + 1) - 1,
83 				     E820_TYPE_RAM);
84 }
85 
86 int make_spte(struct kvm_vcpu *vcpu, unsigned int pte_access, int level,
87 		     gfn_t gfn, kvm_pfn_t pfn, u64 old_spte, bool speculative,
88 		     bool can_unsync, bool host_writable, bool ad_disabled,
89 		     u64 *new_spte)
90 {
91 	u64 spte = 0;
92 	int ret = 0;
93 
94 	if (ad_disabled)
95 		spte |= SPTE_AD_DISABLED_MASK;
96 	else if (kvm_vcpu_ad_need_write_protect(vcpu))
97 		spte |= SPTE_AD_WRPROT_ONLY_MASK;
98 
99 	/*
100 	 * For the EPT case, shadow_present_mask is 0 if hardware
101 	 * supports exec-only page table entries.  In that case,
102 	 * ACC_USER_MASK and shadow_user_mask are used to represent
103 	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
104 	 */
105 	spte |= shadow_present_mask;
106 	if (!speculative)
107 		spte |= spte_shadow_accessed_mask(spte);
108 
109 	if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
110 	    is_nx_huge_page_enabled()) {
111 		pte_access &= ~ACC_EXEC_MASK;
112 	}
113 
114 	if (pte_access & ACC_EXEC_MASK)
115 		spte |= shadow_x_mask;
116 	else
117 		spte |= shadow_nx_mask;
118 
119 	if (pte_access & ACC_USER_MASK)
120 		spte |= shadow_user_mask;
121 
122 	if (level > PG_LEVEL_4K)
123 		spte |= PT_PAGE_SIZE_MASK;
124 	if (tdp_enabled)
125 		spte |= static_call(kvm_x86_get_mt_mask)(vcpu, gfn,
126 			kvm_is_mmio_pfn(pfn));
127 
128 	if (host_writable)
129 		spte |= SPTE_HOST_WRITEABLE;
130 	else
131 		pte_access &= ~ACC_WRITE_MASK;
132 
133 	if (!kvm_is_mmio_pfn(pfn))
134 		spte |= shadow_me_mask;
135 
136 	spte |= (u64)pfn << PAGE_SHIFT;
137 
138 	if (pte_access & ACC_WRITE_MASK) {
139 		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
140 
141 		/*
142 		 * Optimization: for pte sync, if spte was writable the hash
143 		 * lookup is unnecessary (and expensive). Write protection
144 		 * is responsibility of mmu_get_page / kvm_sync_page.
145 		 * Same reasoning can be applied to dirty page accounting.
146 		 */
147 		if (!can_unsync && is_writable_pte(old_spte))
148 			goto out;
149 
150 		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
151 			pgprintk("%s: found shadow page for %llx, marking ro\n",
152 				 __func__, gfn);
153 			ret |= SET_SPTE_WRITE_PROTECTED_PT;
154 			pte_access &= ~ACC_WRITE_MASK;
155 			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
156 		}
157 	}
158 
159 	if (pte_access & ACC_WRITE_MASK)
160 		spte |= spte_shadow_dirty_mask(spte);
161 
162 	if (speculative)
163 		spte = mark_spte_for_access_track(spte);
164 
165 out:
166 	*new_spte = spte;
167 	return ret;
168 }
169 
170 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
171 {
172 	u64 spte;
173 
174 	spte = __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
175 	       shadow_user_mask | shadow_x_mask | shadow_me_mask;
176 
177 	if (ad_disabled)
178 		spte |= SPTE_AD_DISABLED_MASK;
179 	else
180 		spte |= shadow_accessed_mask;
181 
182 	return spte;
183 }
184 
185 u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn)
186 {
187 	u64 new_spte;
188 
189 	new_spte = old_spte & ~PT64_BASE_ADDR_MASK;
190 	new_spte |= (u64)new_pfn << PAGE_SHIFT;
191 
192 	new_spte &= ~PT_WRITABLE_MASK;
193 	new_spte &= ~SPTE_HOST_WRITEABLE;
194 
195 	new_spte = mark_spte_for_access_track(new_spte);
196 
197 	return new_spte;
198 }
199 
200 static u8 kvm_get_shadow_phys_bits(void)
201 {
202 	/*
203 	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
204 	 * in CPU detection code, but the processor treats those reduced bits as
205 	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
206 	 * the physical address bits reported by CPUID.
207 	 */
208 	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
209 		return cpuid_eax(0x80000008) & 0xff;
210 
211 	/*
212 	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
213 	 * custom CPUID.  Proceed with whatever the kernel found since these features
214 	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
215 	 */
216 	return boot_cpu_data.x86_phys_bits;
217 }
218 
219 u64 mark_spte_for_access_track(u64 spte)
220 {
221 	if (spte_ad_enabled(spte))
222 		return spte & ~shadow_accessed_mask;
223 
224 	if (is_access_track_spte(spte))
225 		return spte;
226 
227 	/*
228 	 * Making an Access Tracking PTE will result in removal of write access
229 	 * from the PTE. So, verify that we will be able to restore the write
230 	 * access in the fast page fault path later on.
231 	 */
232 	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
233 		  !spte_can_locklessly_be_made_writable(spte),
234 		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");
235 
236 	WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
237 			  SHADOW_ACC_TRACK_SAVED_BITS_SHIFT),
238 		  "kvm: Access Tracking saved bit locations are not zero\n");
239 
240 	spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) <<
241 		SHADOW_ACC_TRACK_SAVED_BITS_SHIFT;
242 	spte &= ~shadow_acc_track_mask;
243 
244 	return spte;
245 }
246 
247 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask)
248 {
249 	BUG_ON((u64)(unsigned)access_mask != access_mask);
250 	WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
251 
252 	/*
253 	 * Disable MMIO caching if the MMIO value collides with the bits that
254 	 * are used to hold the relocated GFN when the L1TF mitigation is
255 	 * enabled.  This should never fire as there is no known hardware that
256 	 * can trigger this condition, e.g. SME/SEV CPUs that require a custom
257 	 * MMIO value are not susceptible to L1TF.
258 	 */
259 	if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask <<
260 				  SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)))
261 		mmio_value = 0;
262 
263 	if (mmio_value)
264 		shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
265 	else
266 		shadow_mmio_value = 0;
267 	shadow_mmio_access_mask = access_mask;
268 }
269 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
270 
271 /*
272  * Sets the shadow PTE masks used by the MMU.
273  *
274  * Assumptions:
275  *  - Setting either @accessed_mask or @dirty_mask requires setting both
276  *  - At least one of @accessed_mask or @acc_track_mask must be set
277  */
278 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
279 		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
280 		u64 acc_track_mask, u64 me_mask)
281 {
282 	BUG_ON(!dirty_mask != !accessed_mask);
283 	BUG_ON(!accessed_mask && !acc_track_mask);
284 	BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
285 
286 	shadow_user_mask = user_mask;
287 	shadow_accessed_mask = accessed_mask;
288 	shadow_dirty_mask = dirty_mask;
289 	shadow_nx_mask = nx_mask;
290 	shadow_x_mask = x_mask;
291 	shadow_present_mask = p_mask;
292 	shadow_acc_track_mask = acc_track_mask;
293 	shadow_me_mask = me_mask;
294 }
295 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
296 
297 void kvm_mmu_reset_all_pte_masks(void)
298 {
299 	u8 low_phys_bits;
300 
301 	shadow_user_mask = 0;
302 	shadow_accessed_mask = 0;
303 	shadow_dirty_mask = 0;
304 	shadow_nx_mask = 0;
305 	shadow_x_mask = 0;
306 	shadow_present_mask = 0;
307 	shadow_acc_track_mask = 0;
308 
309 	shadow_phys_bits = kvm_get_shadow_phys_bits();
310 
311 	/*
312 	 * If the CPU has 46 or less physical address bits, then set an
313 	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
314 	 * assumed that the CPU is not vulnerable to L1TF.
315 	 *
316 	 * Some Intel CPUs address the L1 cache using more PA bits than are
317 	 * reported by CPUID. Use the PA width of the L1 cache when possible
318 	 * to achieve more effective mitigation, e.g. if system RAM overlaps
319 	 * the most significant bits of legal physical address space.
320 	 */
321 	shadow_nonpresent_or_rsvd_mask = 0;
322 	low_phys_bits = boot_cpu_data.x86_phys_bits;
323 	if (boot_cpu_has_bug(X86_BUG_L1TF) &&
324 	    !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
325 			  52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) {
326 		low_phys_bits = boot_cpu_data.x86_cache_bits
327 			- SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
328 		shadow_nonpresent_or_rsvd_mask =
329 			rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
330 	}
331 
332 	shadow_nonpresent_or_rsvd_lower_gfn_mask =
333 		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
334 }
335