1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * Macros and functions to access KVM PTEs (also known as SPTEs) 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2020 Red Hat, Inc. and/or its affiliates. 9 */ 10 11 12 #include <linux/kvm_host.h> 13 #include "mmu.h" 14 #include "mmu_internal.h" 15 #include "x86.h" 16 #include "spte.h" 17 18 #include <asm/e820/api.h> 19 #include <asm/memtype.h> 20 #include <asm/vmx.h> 21 22 bool __read_mostly enable_mmio_caching = true; 23 module_param_named(mmio_caching, enable_mmio_caching, bool, 0444); 24 25 u64 __read_mostly shadow_host_writable_mask; 26 u64 __read_mostly shadow_mmu_writable_mask; 27 u64 __read_mostly shadow_nx_mask; 28 u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ 29 u64 __read_mostly shadow_user_mask; 30 u64 __read_mostly shadow_accessed_mask; 31 u64 __read_mostly shadow_dirty_mask; 32 u64 __read_mostly shadow_mmio_value; 33 u64 __read_mostly shadow_mmio_mask; 34 u64 __read_mostly shadow_mmio_access_mask; 35 u64 __read_mostly shadow_present_mask; 36 u64 __read_mostly shadow_memtype_mask; 37 u64 __read_mostly shadow_me_value; 38 u64 __read_mostly shadow_me_mask; 39 u64 __read_mostly shadow_acc_track_mask; 40 41 u64 __read_mostly shadow_nonpresent_or_rsvd_mask; 42 u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; 43 44 u8 __read_mostly shadow_phys_bits; 45 46 static u64 generation_mmio_spte_mask(u64 gen) 47 { 48 u64 mask; 49 50 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK); 51 52 mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK; 53 mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK; 54 return mask; 55 } 56 57 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access) 58 { 59 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK; 60 u64 spte = generation_mmio_spte_mask(gen); 61 u64 gpa = gfn << PAGE_SHIFT; 62 63 WARN_ON_ONCE(!shadow_mmio_value); 64 65 access &= shadow_mmio_access_mask; 66 spte |= shadow_mmio_value | access; 67 spte |= gpa | shadow_nonpresent_or_rsvd_mask; 68 spte |= (gpa & shadow_nonpresent_or_rsvd_mask) 69 << SHADOW_NONPRESENT_OR_RSVD_MASK_LEN; 70 71 return spte; 72 } 73 74 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn) 75 { 76 if (pfn_valid(pfn)) 77 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) && 78 /* 79 * Some reserved pages, such as those from NVDIMM 80 * DAX devices, are not for MMIO, and can be mapped 81 * with cached memory type for better performance. 82 * However, the above check misconceives those pages 83 * as MMIO, and results in KVM mapping them with UC 84 * memory type, which would hurt the performance. 85 * Therefore, we check the host memory type in addition 86 * and only treat UC/UC-/WC pages as MMIO. 87 */ 88 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn)); 89 90 return !e820__mapped_raw_any(pfn_to_hpa(pfn), 91 pfn_to_hpa(pfn + 1) - 1, 92 E820_TYPE_RAM); 93 } 94 95 /* 96 * Returns true if the SPTE has bits that may be set without holding mmu_lock. 97 * The caller is responsible for checking if the SPTE is shadow-present, and 98 * for determining whether or not the caller cares about non-leaf SPTEs. 99 */ 100 bool spte_has_volatile_bits(u64 spte) 101 { 102 /* 103 * Always atomically update spte if it can be updated 104 * out of mmu-lock, it can ensure dirty bit is not lost, 105 * also, it can help us to get a stable is_writable_pte() 106 * to ensure tlb flush is not missed. 107 */ 108 if (!is_writable_pte(spte) && is_mmu_writable_spte(spte)) 109 return true; 110 111 if (is_access_track_spte(spte)) 112 return true; 113 114 if (spte_ad_enabled(spte)) { 115 if (!(spte & shadow_accessed_mask) || 116 (is_writable_pte(spte) && !(spte & shadow_dirty_mask))) 117 return true; 118 } 119 120 return false; 121 } 122 123 bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 124 const struct kvm_memory_slot *slot, 125 unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn, 126 u64 old_spte, bool prefetch, bool can_unsync, 127 bool host_writable, u64 *new_spte) 128 { 129 int level = sp->role.level; 130 u64 spte = SPTE_MMU_PRESENT_MASK; 131 bool wrprot = false; 132 133 WARN_ON_ONCE(!pte_access && !shadow_present_mask); 134 135 if (sp->role.ad_disabled) 136 spte |= SPTE_TDP_AD_DISABLED_MASK; 137 else if (kvm_mmu_page_ad_need_write_protect(sp)) 138 spte |= SPTE_TDP_AD_WRPROT_ONLY_MASK; 139 140 /* 141 * For the EPT case, shadow_present_mask is 0 if hardware 142 * supports exec-only page table entries. In that case, 143 * ACC_USER_MASK and shadow_user_mask are used to represent 144 * read access. See FNAME(gpte_access) in paging_tmpl.h. 145 */ 146 spte |= shadow_present_mask; 147 if (!prefetch) 148 spte |= spte_shadow_accessed_mask(spte); 149 150 if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) && 151 is_nx_huge_page_enabled(vcpu->kvm)) { 152 pte_access &= ~ACC_EXEC_MASK; 153 } 154 155 if (pte_access & ACC_EXEC_MASK) 156 spte |= shadow_x_mask; 157 else 158 spte |= shadow_nx_mask; 159 160 if (pte_access & ACC_USER_MASK) 161 spte |= shadow_user_mask; 162 163 if (level > PG_LEVEL_4K) 164 spte |= PT_PAGE_SIZE_MASK; 165 166 if (shadow_memtype_mask) 167 spte |= static_call(kvm_x86_get_mt_mask)(vcpu, gfn, 168 kvm_is_mmio_pfn(pfn)); 169 if (host_writable) 170 spte |= shadow_host_writable_mask; 171 else 172 pte_access &= ~ACC_WRITE_MASK; 173 174 if (shadow_me_value && !kvm_is_mmio_pfn(pfn)) 175 spte |= shadow_me_value; 176 177 spte |= (u64)pfn << PAGE_SHIFT; 178 179 if (pte_access & ACC_WRITE_MASK) { 180 spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask; 181 182 /* 183 * Optimization: for pte sync, if spte was writable the hash 184 * lookup is unnecessary (and expensive). Write protection 185 * is responsibility of kvm_mmu_get_page / kvm_mmu_sync_roots. 186 * Same reasoning can be applied to dirty page accounting. 187 */ 188 if (is_writable_pte(old_spte)) 189 goto out; 190 191 /* 192 * Unsync shadow pages that are reachable by the new, writable 193 * SPTE. Write-protect the SPTE if the page can't be unsync'd, 194 * e.g. it's write-tracked (upper-level SPs) or has one or more 195 * shadow pages and unsync'ing pages is not allowed. 196 */ 197 if (mmu_try_to_unsync_pages(vcpu->kvm, slot, gfn, can_unsync, prefetch)) { 198 pgprintk("%s: found shadow page for %llx, marking ro\n", 199 __func__, gfn); 200 wrprot = true; 201 pte_access &= ~ACC_WRITE_MASK; 202 spte &= ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask); 203 } 204 } 205 206 if (pte_access & ACC_WRITE_MASK) 207 spte |= spte_shadow_dirty_mask(spte); 208 209 out: 210 if (prefetch) 211 spte = mark_spte_for_access_track(spte); 212 213 WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level), 214 "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level, 215 get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level)); 216 217 if ((spte & PT_WRITABLE_MASK) && kvm_slot_dirty_track_enabled(slot)) { 218 /* Enforced by kvm_mmu_hugepage_adjust. */ 219 WARN_ON(level > PG_LEVEL_4K); 220 mark_page_dirty_in_slot(vcpu->kvm, slot, gfn); 221 } 222 223 *new_spte = spte; 224 return wrprot; 225 } 226 227 static u64 make_spte_executable(u64 spte) 228 { 229 bool is_access_track = is_access_track_spte(spte); 230 231 if (is_access_track) 232 spte = restore_acc_track_spte(spte); 233 234 spte &= ~shadow_nx_mask; 235 spte |= shadow_x_mask; 236 237 if (is_access_track) 238 spte = mark_spte_for_access_track(spte); 239 240 return spte; 241 } 242 243 /* 244 * Construct an SPTE that maps a sub-page of the given huge page SPTE where 245 * `index` identifies which sub-page. 246 * 247 * This is used during huge page splitting to build the SPTEs that make up the 248 * new page table. 249 */ 250 u64 make_huge_page_split_spte(struct kvm *kvm, u64 huge_spte, union kvm_mmu_page_role role, 251 int index) 252 { 253 u64 child_spte; 254 255 if (WARN_ON_ONCE(!is_shadow_present_pte(huge_spte))) 256 return 0; 257 258 if (WARN_ON_ONCE(!is_large_pte(huge_spte))) 259 return 0; 260 261 child_spte = huge_spte; 262 263 /* 264 * The child_spte already has the base address of the huge page being 265 * split. So we just have to OR in the offset to the page at the next 266 * lower level for the given index. 267 */ 268 child_spte |= (index * KVM_PAGES_PER_HPAGE(role.level)) << PAGE_SHIFT; 269 270 if (role.level == PG_LEVEL_4K) { 271 child_spte &= ~PT_PAGE_SIZE_MASK; 272 273 /* 274 * When splitting to a 4K page where execution is allowed, mark 275 * the page executable as the NX hugepage mitigation no longer 276 * applies. 277 */ 278 if ((role.access & ACC_EXEC_MASK) && is_nx_huge_page_enabled(kvm)) 279 child_spte = make_spte_executable(child_spte); 280 } 281 282 return child_spte; 283 } 284 285 286 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled) 287 { 288 u64 spte = SPTE_MMU_PRESENT_MASK; 289 290 spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK | 291 shadow_user_mask | shadow_x_mask | shadow_me_value; 292 293 if (ad_disabled) 294 spte |= SPTE_TDP_AD_DISABLED_MASK; 295 else 296 spte |= shadow_accessed_mask; 297 298 return spte; 299 } 300 301 u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn) 302 { 303 u64 new_spte; 304 305 new_spte = old_spte & ~SPTE_BASE_ADDR_MASK; 306 new_spte |= (u64)new_pfn << PAGE_SHIFT; 307 308 new_spte &= ~PT_WRITABLE_MASK; 309 new_spte &= ~shadow_host_writable_mask; 310 new_spte &= ~shadow_mmu_writable_mask; 311 312 new_spte = mark_spte_for_access_track(new_spte); 313 314 return new_spte; 315 } 316 317 u64 mark_spte_for_access_track(u64 spte) 318 { 319 if (spte_ad_enabled(spte)) 320 return spte & ~shadow_accessed_mask; 321 322 if (is_access_track_spte(spte)) 323 return spte; 324 325 check_spte_writable_invariants(spte); 326 327 WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK << 328 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT), 329 "kvm: Access Tracking saved bit locations are not zero\n"); 330 331 spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) << 332 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT; 333 spte &= ~shadow_acc_track_mask; 334 335 return spte; 336 } 337 338 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask) 339 { 340 BUG_ON((u64)(unsigned)access_mask != access_mask); 341 WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask); 342 343 if (!enable_mmio_caching) 344 mmio_value = 0; 345 346 /* 347 * Disable MMIO caching if the MMIO value collides with the bits that 348 * are used to hold the relocated GFN when the L1TF mitigation is 349 * enabled. This should never fire as there is no known hardware that 350 * can trigger this condition, e.g. SME/SEV CPUs that require a custom 351 * MMIO value are not susceptible to L1TF. 352 */ 353 if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask << 354 SHADOW_NONPRESENT_OR_RSVD_MASK_LEN))) 355 mmio_value = 0; 356 357 /* 358 * The masked MMIO value must obviously match itself and a removed SPTE 359 * must not get a false positive. Removed SPTEs and MMIO SPTEs should 360 * never collide as MMIO must set some RWX bits, and removed SPTEs must 361 * not set any RWX bits. 362 */ 363 if (WARN_ON((mmio_value & mmio_mask) != mmio_value) || 364 WARN_ON(mmio_value && (REMOVED_SPTE & mmio_mask) == mmio_value)) 365 mmio_value = 0; 366 367 if (!mmio_value) 368 enable_mmio_caching = false; 369 370 shadow_mmio_value = mmio_value; 371 shadow_mmio_mask = mmio_mask; 372 shadow_mmio_access_mask = access_mask; 373 } 374 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); 375 376 void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask) 377 { 378 /* shadow_me_value must be a subset of shadow_me_mask */ 379 if (WARN_ON(me_value & ~me_mask)) 380 me_value = me_mask = 0; 381 382 shadow_me_value = me_value; 383 shadow_me_mask = me_mask; 384 } 385 EXPORT_SYMBOL_GPL(kvm_mmu_set_me_spte_mask); 386 387 void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only) 388 { 389 shadow_user_mask = VMX_EPT_READABLE_MASK; 390 shadow_accessed_mask = has_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull; 391 shadow_dirty_mask = has_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull; 392 shadow_nx_mask = 0ull; 393 shadow_x_mask = VMX_EPT_EXECUTABLE_MASK; 394 shadow_present_mask = has_exec_only ? 0ull : VMX_EPT_READABLE_MASK; 395 /* 396 * EPT overrides the host MTRRs, and so KVM must program the desired 397 * memtype directly into the SPTEs. Note, this mask is just the mask 398 * of all bits that factor into the memtype, the actual memtype must be 399 * dynamically calculated, e.g. to ensure host MMIO is mapped UC. 400 */ 401 shadow_memtype_mask = VMX_EPT_MT_MASK | VMX_EPT_IPAT_BIT; 402 shadow_acc_track_mask = VMX_EPT_RWX_MASK; 403 shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE; 404 shadow_mmu_writable_mask = EPT_SPTE_MMU_WRITABLE; 405 406 /* 407 * EPT Misconfigurations are generated if the value of bits 2:0 408 * of an EPT paging-structure entry is 110b (write/execute). 409 */ 410 kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, 411 VMX_EPT_RWX_MASK, 0); 412 } 413 EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks); 414 415 void kvm_mmu_reset_all_pte_masks(void) 416 { 417 u8 low_phys_bits; 418 u64 mask; 419 420 shadow_phys_bits = kvm_get_shadow_phys_bits(); 421 422 /* 423 * If the CPU has 46 or less physical address bits, then set an 424 * appropriate mask to guard against L1TF attacks. Otherwise, it is 425 * assumed that the CPU is not vulnerable to L1TF. 426 * 427 * Some Intel CPUs address the L1 cache using more PA bits than are 428 * reported by CPUID. Use the PA width of the L1 cache when possible 429 * to achieve more effective mitigation, e.g. if system RAM overlaps 430 * the most significant bits of legal physical address space. 431 */ 432 shadow_nonpresent_or_rsvd_mask = 0; 433 low_phys_bits = boot_cpu_data.x86_phys_bits; 434 if (boot_cpu_has_bug(X86_BUG_L1TF) && 435 !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >= 436 52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) { 437 low_phys_bits = boot_cpu_data.x86_cache_bits 438 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN; 439 shadow_nonpresent_or_rsvd_mask = 440 rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1); 441 } 442 443 shadow_nonpresent_or_rsvd_lower_gfn_mask = 444 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT); 445 446 shadow_user_mask = PT_USER_MASK; 447 shadow_accessed_mask = PT_ACCESSED_MASK; 448 shadow_dirty_mask = PT_DIRTY_MASK; 449 shadow_nx_mask = PT64_NX_MASK; 450 shadow_x_mask = 0; 451 shadow_present_mask = PT_PRESENT_MASK; 452 453 /* 454 * For shadow paging and NPT, KVM uses PAT entry '0' to encode WB 455 * memtype in the SPTEs, i.e. relies on host MTRRs to provide the 456 * correct memtype (WB is the "weakest" memtype). 457 */ 458 shadow_memtype_mask = 0; 459 shadow_acc_track_mask = 0; 460 shadow_me_mask = 0; 461 shadow_me_value = 0; 462 463 shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITABLE; 464 shadow_mmu_writable_mask = DEFAULT_SPTE_MMU_WRITABLE; 465 466 /* 467 * Set a reserved PA bit in MMIO SPTEs to generate page faults with 468 * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT 469 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports 470 * 52-bit physical addresses then there are no reserved PA bits in the 471 * PTEs and so the reserved PA approach must be disabled. 472 */ 473 if (shadow_phys_bits < 52) 474 mask = BIT_ULL(51) | PT_PRESENT_MASK; 475 else 476 mask = 0; 477 478 kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK); 479 } 480