xref: /openbmc/linux/arch/x86/kvm/mmu/spte.c (revision 8a406c89)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * Macros and functions to access KVM PTEs (also known as SPTEs)
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2020 Red Hat, Inc. and/or its affiliates.
9  */
10 
11 
12 #include <linux/kvm_host.h>
13 #include "mmu.h"
14 #include "mmu_internal.h"
15 #include "x86.h"
16 #include "spte.h"
17 
18 #include <asm/e820/api.h>
19 
20 static bool __read_mostly enable_mmio_caching = true;
21 module_param_named(mmio_caching, enable_mmio_caching, bool, 0444);
22 
23 u64 __read_mostly shadow_nx_mask;
24 u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
25 u64 __read_mostly shadow_user_mask;
26 u64 __read_mostly shadow_accessed_mask;
27 u64 __read_mostly shadow_dirty_mask;
28 u64 __read_mostly shadow_mmio_value;
29 u64 __read_mostly shadow_mmio_mask;
30 u64 __read_mostly shadow_mmio_access_mask;
31 u64 __read_mostly shadow_present_mask;
32 u64 __read_mostly shadow_me_mask;
33 u64 __read_mostly shadow_acc_track_mask;
34 
35 u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
36 u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
37 
38 u8 __read_mostly shadow_phys_bits;
39 
40 static u64 generation_mmio_spte_mask(u64 gen)
41 {
42 	u64 mask;
43 
44 	WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
45 	BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_TDP_AD_MASK);
46 
47 	mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
48 	mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
49 	return mask;
50 }
51 
52 u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
53 {
54 	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
55 	u64 spte = generation_mmio_spte_mask(gen);
56 	u64 gpa = gfn << PAGE_SHIFT;
57 
58 	WARN_ON_ONCE(!shadow_mmio_value);
59 
60 	access &= shadow_mmio_access_mask;
61 	spte |= shadow_mmio_value | access;
62 	spte |= gpa | shadow_nonpresent_or_rsvd_mask;
63 	spte |= (gpa & shadow_nonpresent_or_rsvd_mask)
64 		<< SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
65 
66 	return spte;
67 }
68 
69 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
70 {
71 	if (pfn_valid(pfn))
72 		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
73 			/*
74 			 * Some reserved pages, such as those from NVDIMM
75 			 * DAX devices, are not for MMIO, and can be mapped
76 			 * with cached memory type for better performance.
77 			 * However, the above check misconceives those pages
78 			 * as MMIO, and results in KVM mapping them with UC
79 			 * memory type, which would hurt the performance.
80 			 * Therefore, we check the host memory type in addition
81 			 * and only treat UC/UC-/WC pages as MMIO.
82 			 */
83 			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
84 
85 	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
86 				     pfn_to_hpa(pfn + 1) - 1,
87 				     E820_TYPE_RAM);
88 }
89 
90 int make_spte(struct kvm_vcpu *vcpu, unsigned int pte_access, int level,
91 		     gfn_t gfn, kvm_pfn_t pfn, u64 old_spte, bool speculative,
92 		     bool can_unsync, bool host_writable, bool ad_disabled,
93 		     u64 *new_spte)
94 {
95 	u64 spte = 0;
96 	int ret = 0;
97 
98 	if (ad_disabled)
99 		spte |= SPTE_TDP_AD_DISABLED_MASK;
100 	else if (kvm_vcpu_ad_need_write_protect(vcpu))
101 		spte |= SPTE_TDP_AD_WRPROT_ONLY_MASK;
102 
103 	/*
104 	 * Bits 62:52 of PAE SPTEs are reserved.  WARN if said bits are set
105 	 * if PAE paging may be employed (shadow paging or any 32-bit KVM).
106 	 */
107 	WARN_ON_ONCE((!tdp_enabled || !IS_ENABLED(CONFIG_X86_64)) &&
108 		     (spte & SPTE_TDP_AD_MASK));
109 
110 	/*
111 	 * For the EPT case, shadow_present_mask is 0 if hardware
112 	 * supports exec-only page table entries.  In that case,
113 	 * ACC_USER_MASK and shadow_user_mask are used to represent
114 	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
115 	 */
116 	spte |= shadow_present_mask;
117 	if (!speculative)
118 		spte |= spte_shadow_accessed_mask(spte);
119 
120 	if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
121 	    is_nx_huge_page_enabled()) {
122 		pte_access &= ~ACC_EXEC_MASK;
123 	}
124 
125 	if (pte_access & ACC_EXEC_MASK)
126 		spte |= shadow_x_mask;
127 	else
128 		spte |= shadow_nx_mask;
129 
130 	if (pte_access & ACC_USER_MASK)
131 		spte |= shadow_user_mask;
132 
133 	if (level > PG_LEVEL_4K)
134 		spte |= PT_PAGE_SIZE_MASK;
135 	if (tdp_enabled)
136 		spte |= static_call(kvm_x86_get_mt_mask)(vcpu, gfn,
137 			kvm_is_mmio_pfn(pfn));
138 
139 	if (host_writable)
140 		spte |= SPTE_HOST_WRITEABLE;
141 	else
142 		pte_access &= ~ACC_WRITE_MASK;
143 
144 	if (!kvm_is_mmio_pfn(pfn))
145 		spte |= shadow_me_mask;
146 
147 	spte |= (u64)pfn << PAGE_SHIFT;
148 
149 	if (pte_access & ACC_WRITE_MASK) {
150 		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
151 
152 		/*
153 		 * Optimization: for pte sync, if spte was writable the hash
154 		 * lookup is unnecessary (and expensive). Write protection
155 		 * is responsibility of mmu_get_page / kvm_sync_page.
156 		 * Same reasoning can be applied to dirty page accounting.
157 		 */
158 		if (!can_unsync && is_writable_pte(old_spte))
159 			goto out;
160 
161 		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
162 			pgprintk("%s: found shadow page for %llx, marking ro\n",
163 				 __func__, gfn);
164 			ret |= SET_SPTE_WRITE_PROTECTED_PT;
165 			pte_access &= ~ACC_WRITE_MASK;
166 			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
167 		}
168 	}
169 
170 	if (pte_access & ACC_WRITE_MASK)
171 		spte |= spte_shadow_dirty_mask(spte);
172 
173 	if (speculative)
174 		spte = mark_spte_for_access_track(spte);
175 
176 out:
177 	WARN_ON(is_mmio_spte(spte));
178 	*new_spte = spte;
179 	return ret;
180 }
181 
182 u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
183 {
184 	u64 spte;
185 
186 	spte = __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
187 	       shadow_user_mask | shadow_x_mask | shadow_me_mask;
188 
189 	if (ad_disabled)
190 		spte |= SPTE_TDP_AD_DISABLED_MASK;
191 	else
192 		spte |= shadow_accessed_mask;
193 
194 	return spte;
195 }
196 
197 u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn)
198 {
199 	u64 new_spte;
200 
201 	new_spte = old_spte & ~PT64_BASE_ADDR_MASK;
202 	new_spte |= (u64)new_pfn << PAGE_SHIFT;
203 
204 	new_spte &= ~PT_WRITABLE_MASK;
205 	new_spte &= ~SPTE_HOST_WRITEABLE;
206 
207 	new_spte = mark_spte_for_access_track(new_spte);
208 
209 	return new_spte;
210 }
211 
212 static u8 kvm_get_shadow_phys_bits(void)
213 {
214 	/*
215 	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
216 	 * in CPU detection code, but the processor treats those reduced bits as
217 	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
218 	 * the physical address bits reported by CPUID.
219 	 */
220 	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
221 		return cpuid_eax(0x80000008) & 0xff;
222 
223 	/*
224 	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
225 	 * custom CPUID.  Proceed with whatever the kernel found since these features
226 	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
227 	 */
228 	return boot_cpu_data.x86_phys_bits;
229 }
230 
231 u64 mark_spte_for_access_track(u64 spte)
232 {
233 	if (spte_ad_enabled(spte))
234 		return spte & ~shadow_accessed_mask;
235 
236 	if (is_access_track_spte(spte))
237 		return spte;
238 
239 	/*
240 	 * Making an Access Tracking PTE will result in removal of write access
241 	 * from the PTE. So, verify that we will be able to restore the write
242 	 * access in the fast page fault path later on.
243 	 */
244 	WARN_ONCE((spte & PT_WRITABLE_MASK) &&
245 		  !spte_can_locklessly_be_made_writable(spte),
246 		  "kvm: Writable SPTE is not locklessly dirty-trackable\n");
247 
248 	WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
249 			  SHADOW_ACC_TRACK_SAVED_BITS_SHIFT),
250 		  "kvm: Access Tracking saved bit locations are not zero\n");
251 
252 	spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) <<
253 		SHADOW_ACC_TRACK_SAVED_BITS_SHIFT;
254 	spte &= ~shadow_acc_track_mask;
255 
256 	return spte;
257 }
258 
259 void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask)
260 {
261 	BUG_ON((u64)(unsigned)access_mask != access_mask);
262 	WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
263 
264 	if (!enable_mmio_caching)
265 		mmio_value = 0;
266 
267 	/*
268 	 * Disable MMIO caching if the MMIO value collides with the bits that
269 	 * are used to hold the relocated GFN when the L1TF mitigation is
270 	 * enabled.  This should never fire as there is no known hardware that
271 	 * can trigger this condition, e.g. SME/SEV CPUs that require a custom
272 	 * MMIO value are not susceptible to L1TF.
273 	 */
274 	if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask <<
275 				  SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)))
276 		mmio_value = 0;
277 
278 	WARN_ON((mmio_value & mmio_mask) != mmio_value);
279 	shadow_mmio_value = mmio_value;
280 	shadow_mmio_mask  = mmio_mask;
281 	shadow_mmio_access_mask = access_mask;
282 }
283 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
284 
285 /*
286  * Sets the shadow PTE masks used by the MMU.
287  *
288  * Assumptions:
289  *  - Setting either @accessed_mask or @dirty_mask requires setting both
290  *  - At least one of @accessed_mask or @acc_track_mask must be set
291  */
292 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
293 		u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
294 		u64 acc_track_mask, u64 me_mask)
295 {
296 	BUG_ON(!dirty_mask != !accessed_mask);
297 	BUG_ON(!accessed_mask && !acc_track_mask);
298 	BUG_ON(acc_track_mask & SPTE_TDP_AD_MASK);
299 
300 	shadow_user_mask = user_mask;
301 	shadow_accessed_mask = accessed_mask;
302 	shadow_dirty_mask = dirty_mask;
303 	shadow_nx_mask = nx_mask;
304 	shadow_x_mask = x_mask;
305 	shadow_present_mask = p_mask;
306 	shadow_acc_track_mask = acc_track_mask;
307 	shadow_me_mask = me_mask;
308 }
309 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
310 
311 void kvm_mmu_reset_all_pte_masks(void)
312 {
313 	u8 low_phys_bits;
314 
315 	shadow_user_mask = 0;
316 	shadow_accessed_mask = 0;
317 	shadow_dirty_mask = 0;
318 	shadow_nx_mask = 0;
319 	shadow_x_mask = 0;
320 	shadow_present_mask = 0;
321 	shadow_acc_track_mask = 0;
322 
323 	shadow_phys_bits = kvm_get_shadow_phys_bits();
324 
325 	/*
326 	 * If the CPU has 46 or less physical address bits, then set an
327 	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
328 	 * assumed that the CPU is not vulnerable to L1TF.
329 	 *
330 	 * Some Intel CPUs address the L1 cache using more PA bits than are
331 	 * reported by CPUID. Use the PA width of the L1 cache when possible
332 	 * to achieve more effective mitigation, e.g. if system RAM overlaps
333 	 * the most significant bits of legal physical address space.
334 	 */
335 	shadow_nonpresent_or_rsvd_mask = 0;
336 	low_phys_bits = boot_cpu_data.x86_phys_bits;
337 	if (boot_cpu_has_bug(X86_BUG_L1TF) &&
338 	    !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
339 			  52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) {
340 		low_phys_bits = boot_cpu_data.x86_cache_bits
341 			- SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
342 		shadow_nonpresent_or_rsvd_mask =
343 			rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
344 	}
345 
346 	shadow_nonpresent_or_rsvd_lower_gfn_mask =
347 		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
348 }
349